Assignment 1

Intro to Modern Analysis

1. For a subset A of a set X, let A^{c} denote the complement of A given by $A^{c}=X \backslash A$. Let I be an index set, and let $\left\{A_{i}\right\}_{i \in I}$ be a collection of subsets of X indexed by I. Prove or disprove.
(a) We have

$$
\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c} .
$$

(b) We have

$$
\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}
$$

2. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of nonempty subsets of \mathbb{R} which are "nested" in the sense that

$$
A_{0} \supset A_{1} \supset A_{2} \supset \cdots .
$$

Is the intersection

$$
\bigcap_{n \in \mathbb{N}} A_{n}
$$

nonempty? Prove or disprove.
3. Let A denote the subset of \mathbb{R} given by

$$
A=\left\{\frac{|\cos (n)|}{n+1}: n \in \mathbb{N}\right\} .
$$

Find with proof the values $\sup A$ and $\inf A$, whenever either exists.
4. Let A be a nonempty subset of \mathbb{R} bounded from above, and let x_{0} be an upper bound of A. Show that x_{0} is equal to $\sup A$ if and only if for each $\epsilon>0$ there is an element $x \in A$ such that $x_{0}-x<\epsilon$.
5. Let A be a nonempty set of integers that is bounded from above. Show that A has a largest element. (Hint: Let $x_{0}=\sup A$. First show that x_{0} is an integer by showing that if not, then there are integers $m, n \in A$ satisfying $x_{0}-1<m<n<x_{0}$, which is an impossible statement [why?]. Then show that x_{0} belongs to A.)
6. Let A, B be nonempty subsets of \mathbb{R} each bounded from above. Prove or disprove.
(a) $\sup (A \cup B)=\sup \{\sup A, \sup B\}$.
(b) $\sup (A \cap B)=\inf \{\sup A, \sup B\}$.
7. For a real number t, let $|t|$ denote the absolute value of t defined by

$$
|t|=\left\{\begin{array}{ll}
t & t \geqslant 0 \\
-t & t \leqslant 0
\end{array} .\right.
$$

(a) For a real number t and a nonnegative number a, show that $|t| \leqslant a$ if and only if $-a \leqslant t \leqslant a$.
(b) Let x and y be points of \mathbb{R}^{n}. Show that

$$
|\|x\|-\|y\|| \leqslant\|x-y\| .
$$

