Assignment 2

Intro to Modern Analysis

1. Let A be a set, and let $P(A)$ be the collection of all subsets of A. Is there a bijection from A onto $P(A)$?
2. Let M be an infinite set, and let A be a countable set. Is there a bijection from M onto $M \cup A$?
3. Let $\left\{A_{k}\right\}_{k \geqslant 1}$ be a sequence of subsets of a metric space. Prove or disprove.
(a) For each integer $N>0$, we have

$$
\bigcup_{k=1}^{N} \overline{A_{k}} \subset \overline{\bigcup_{k=1}^{N} A_{k}}
$$

(b) For each integer $N>0$, we have

$$
\bigcup_{k=1}^{N} \overline{A_{k}}=\overline{\bigcup_{k=1}^{N} A_{k}} .
$$

(c) We have

$$
\bigcup_{k=1}^{\infty} \overline{A_{k}} \subset \bigcup_{k=1}^{\infty} A_{k} .
$$

(d) We have

$$
\bigcup_{k=1}^{\infty} \overline{A_{k}}=\overline{\bigcup_{k=1}^{\infty} A_{k}}
$$

4. Let A° denote the set of interior points of A.
(a) Prove that A° is open.
(b) Prove that A is open if and only if $A=A^{\circ}$.
(c) If $B \subset A$ and B is open, prove that $B \subset A^{\circ}$.
(d) Prove that the complement of A° is the closure of the complement of A.
5. Let X be the interval $[0,2) \subset \mathbb{R}$. The restriction of the usual metric on \mathbb{R} to X is a metric on X.
(a) Is the set $[0,1)$ open relative to X ?
(b) Is the set $[1,2)$ closed relative to X ?
(c) Is the set $[1,2)$ compact relative to X ?
6. Give an example of an open cover of $(0,1)$ which admits no finite subcover.
7. Let $f(x)=x^{2}$.
(a) Let $x_{n}=f\left(2+\frac{1}{n}\right)$. Does x_{n} converge? Prove your answer is correct.
(b) Let $y_{n}=f(n)$. Does y_{n} converge? Prove your answer is correct.
8. Let $\left\{A_{n}\right\}_{n \geqslant 1}$ be a sequence of open dense subsets of \mathbb{R}. Let A denote the intersection

$$
A=\cap_{n \geqslant 1} A_{n} .
$$

(a) Let U be a nonempty open subset of \mathbb{R}. Show that there is a sequence of points $x_{n} \in U \cap A_{n}$ together with a sequence of radii $0<r_{n}<1 / n$ such that $\overline{B_{r_{n+1}}\left(x_{n+1}\right)} \subset$ $B_{r_{n}}\left(x_{n}\right) \cap A_{n}$.
(b) Show that the sequence x_{n} is Cauchy, and hence converges to a point x of \mathbb{R}.
(c) Show that $x \in U \cap A$.
(d) Conclude that A is dense in \mathbb{R}.
9. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $p>0$, write

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Fix a point $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and for each positive integer $k>0$, let a_{k} denote the sequence of real numbers $a_{k}=\|x\|_{k}$. Show that

$$
\lim _{k \rightarrow \infty} a_{k}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right| .
$$

10. In the notation of the previous question, define a function $d_{p}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the rule

$$
d_{p}(x, y)=\|x-y\|_{p} .
$$

Is $\left(\mathbb{R}^{n}, d_{p}\right)$ a metric space for $p \in(0,1)$ and $n>1$?

