Assignment 3

Intro to Modern Analysis

1. Let X be a set and consider the discrete metric d on X defined by

$$
d(p, q)= \begin{cases}1 & p \neq q \\ 0 & p=q\end{cases}
$$

Show that X is compact if and only if X is finite.
2. Let x_{n} be the sequence of real numbers

$$
x_{n}=\sqrt{1+\frac{1}{n}} .
$$

(a) Show that x_{n} converges to 1 .
(b) Calculate

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n
$$

3. Let s_{n} be a sequence of real numbers. Construct a new sequence σ_{n} by the averages

$$
\sigma_{n}=\frac{s_{1}+s_{2}+\cdots+s_{n}}{n} .
$$

(a) If s_{n} converges to s, show that σ_{n} converges to s.
(b) Construct a sequence s_{n} which does not converge but which satisfies $\sigma_{n} \rightarrow 0$.
4. Construct a Cauchy sequence in \mathbb{Q} that does not converge (to a point of \mathbb{Q}). (Hint: It might be useful to use the construction from Example 1.1 of Rudin or Proposition 2 from the notes.)
5. Let (X, d) be a metric space, and let p_{n}, q_{n} be two Cauchy sequences in X. Show that the sequence $d\left(p_{n}, q_{n}\right)$ is Cauchy in \mathbb{R}.
6. (Not to be graded!) For a real number $p \geqslant 1$, let ℓ^{p} denote the vector space of sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ of real numbers such that

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}
$$

eonverges.
(a) Show that if $p \leqslant q$, then $\ell^{p} \subset \ell^{q}$.
(b) Suppose $p<q$. Find a sequence $x \in \ell^{q}$ but not in ℓ^{p}.
7. Let m denote the metric space whose elements are bounded infinite sequences of real numbers together with the metric

$$
d(x, y)=\sup _{n=1,2, \ldots}\left|x_{n}-y_{n}\right|
$$

Show that m is complete.
8. Let a_{n}, b_{n} be sequences of real numbers. Suppose that
(i) $\sum_{n} a_{n}$ converges
(ii) b_{n} is bounded
(iii) b_{n} is monotonic.

Show that $\sum_{n} a_{n} b_{n}$ converges.
9. This problem has two parts.
(a) Show that if x, y are nonnegative real numbers, then

$$
x y \leqslant \frac{1}{2}\left(x^{2}+y^{2}\right) .
$$

(b) Let a_{n} be a sequence of nonnegative real numbers, and let $b_{n}=\sqrt{a_{n}} / n$. Show that if $\sum_{n} a_{n}$ converges, then $\sum_{n} b_{n}$ converges.
10. State and prove the convergence or divergence of $\sum_{n} a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
(c) $a_{n}=(\sqrt[n]{n}-1)^{n}$.

Extra. (Not to be graded) Let (M, d) be a metric space. Let \mathcal{M} be the set of Cauchy sequences in M, that is, an element p of \mathcal{M} consists of a sequence $P=\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ of points of M.
(a) Problem 5 shows that we can associate to any two $P, Q \in \mathcal{M}$ a real number $\Delta(p, q)$ defined by

$$
\Delta(P, Q)=\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)
$$

Show that the resulting function $\Delta: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ is symmetric and nonnegative.
(b) Define a relation \sim on \mathcal{M} by $P \sim Q$ if and only if $\Delta(P, Q)=0$. Show that the relation \sim is an equivalence relation on \mathcal{M}.
(c) Let M^{*} denote the set \mathcal{M} / \sim of equivalence classes. Show that Δ induces a well-defined map on M^{*} which is a metric.
(d) Show that the resulting metric space M^{*} is complete.
(e) For any point $p \in M$, let P_{p} be the sequence whose terms are all p. Show that for any two points p, q in M, we have

$$
\Delta\left(P_{p}, P_{q}\right)=d(p, q)
$$

Conclude that there is a distance-preserving map $\varphi: M \rightarrow M^{*}$.
(f) Show that $\varphi(M)$ is dense in M^{*}.
(g) Show that $\varphi(M)=M^{*}$ if and only if M is complete.

As a result of this exercise, we may finally define \mathbb{R} : we may set $\mathbb{R}=M^{*}$ for $M=\mathbb{Q}$.

