Assignment 4
Intro to Modern Analysis

1. Let X, Y be metric spaces.
(a) Show that the identity map $f: X \rightarrow X$ defined by $f(x)=x$ is continuous.
(b) For a point q of Y, show that the constant map $g: X \rightarrow Y$ defined by $g(x)=q$ is continuous.
2. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ denote the function determined by the norm $f(x)=\|x\|$. Show that f is continuous.
3. Let X, Y be metric spaces. Suppose X is equipped with the discrete metric

$$
d(p, q)=\left\{\begin{array}{ll}
1 & p \neq q \\
0 & p=q
\end{array} .\right.
$$

Show that any function $f: X \rightarrow Y$ is continuous.
4. Let X, Y be metric spaces. Suppose X is connected and Y satisfies the property that every singleton set $\{y\}$ is open in Y. Show that a function $f: X \rightarrow Y$ is continuous if and only if f is constant. Deduce that any continuous function $\mathbb{R} \rightarrow \mathbb{N}$ is constant.
5. Let $f: X \rightarrow Y$ be continuous.
(a) For any subset $E \subset X$, show that

$$
f(\bar{E}) \subset \overline{f(E)}
$$

Also, find an example where the inclusion is strict.
(b) If E is dense in X and f is surjective, show that $f(E)$ is dense in Y.
(c) Let $g: X \rightarrow Y$ be another continuous function, and let $X_{0} \subset X$ be a dense subset of X. Show that if $f(x)=g(x)$ for each $x \in X_{0}$, then $f(x)=g(x)$ for each $x \in X$.
6. Let I denote the unit interval $I=[0,1]$ of \mathbb{R}. Show that any continuous map $f: I \rightarrow I$ has a fixed point, that is, a point $x_{0} \in I$ such that $f\left(x_{0}\right)=x_{0}$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=(x+1)^{2}$. Let $\epsilon>0$ be given.
(a) Find a $\delta>0$ such that if x satisfies $|x-3|<\delta$, then $|f(x)-f(3)|<\epsilon$.
(b) Find a function $\delta: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ such that if $x, p \in \mathbb{R}$ satisfy $|x-p|<\delta(p)$, then $|f(x)-f(p)|<\epsilon$. (Note that part (a) determines a possible value for $\delta(3)$.)
(c) Is it possible to choose $\delta(p)$ from (b) to be independent of p, that is, to be a constant function? Why or why not?
(d) What if the domains of f and δ are restricted to $[-2,0]$? Then is it possible to make $\delta(p)$ constant? Why or why not?
8. Let $f: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ be the square root function $f(x)=\sqrt{x}$. Show that f is uniformly continuous (even though the domain of f is not compact).
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote the function defined by

$$
f(x)= \begin{cases}\frac{1}{n} & x=m / n \text { for } m, n \text { relatively prime integers with } n>0 \\ 0 & x \text { is irrational }\end{cases}
$$

(And when $x=0$, take $n=1$.) Prove that f is continuous at every irrational number and discontinuous at every rational number.
10. Let α be a positive irrational number. Let E denote the subset of \mathbb{R} given by

$$
E=\{m+n \alpha: m, n \in \mathbb{Z}\} .
$$

The goal of this problem is to show that E is dense in \mathbb{R}.
(a) Show that if $e \in E$, then $-e \in E$.
(b) Let $\lfloor\alpha\rfloor$ denote the largest nonnegative integer smaller than α. In other words,

$$
\lfloor\alpha\rfloor=\sup (\mathbb{Z} \cap(-\infty, \alpha])
$$

Note that $0 \leqslant \alpha-\lfloor\alpha\rfloor<1$. For each positive integer k, let

$$
\beta_{k}=k \alpha-\lfloor k \alpha\rfloor .
$$

Show that if $j \neq k$, then $\beta_{j} \neq \beta_{k}$.
(c) Let N be an integer satisfying $N \geqslant 2$. For each integer ℓ, let

$$
A_{\ell}=\left[\frac{\ell}{N}, \frac{\ell+1}{N}\right) .
$$

Show that there is an integer ℓ satisfying $0 \leqslant \ell \leqslant N-1$ and integers j, k satisfying $1 \leqslant j<k \leqslant N+1$ such that

$$
\beta_{j}, \beta_{k} \in A_{\ell} .
$$

(d) Use (b) to show that there is an element $e \in E$ such that $0<e<\frac{1}{N}$.
(e) For each integer $\ell \geqslant 0$, show that there is an element of E in A_{ℓ}. Deduce from (a) that there is also an element in $A_{-\ell}$.
(f) For each point $x \in \mathbb{R}$ and each $\epsilon>0$, show that there is a point in the intersection $E \cap B_{\epsilon}(x)$.
(g) Deduce that E is dense in \mathbb{R}.

