Assignment 5

Intro to Modern Analysis

1. Let n be a given fixed positive integer. Find a function such that $f^{(n-1)}$ is continuous, but $f^{(n)}$ is not.
2. Let f be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $f^{\prime}(x) \neq 0$ for each x in (a, b). Show that f is injective on $[a, b]$.
3. Suppose the derivative f^{\prime} is continuous on (a, b) and $f^{\prime}(x) \neq 0$ for each x in (a, b).
(a) Show that f admits an inverse g defined on the image of f.
(b) Prove that g is differentiable and the derivative satisfies

$$
g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

for each $x \in(a, b)$.
4. Let f be continuous on $[a, b]$ and differentiable on (a, b). Set $f(a)=y$ and suppose that $\left|f^{\prime}(x)\right| \leqslant M$ for each $x \in(a, b)$. How large can $f(b)$ be? How small can $f(b)$ be? Prove that the values you find are actually achieved by demonstrating two functions which achieve them.
5. If n is a positive integer and $0 \leqslant y \leqslant x$, show that

$$
n y^{n-1}(x-y) \leqslant x^{n}-y^{n} \leqslant n x^{n-1}(x-y) .
$$

6. Suppose f is continuous on $[a, b]$ and $f(x) \geqslant 0$ for each $x \in[a, b]$. Show that if

$$
\int_{a}^{b} f(x) d x=0
$$

then $f(x)=0$ for each $x \in[a, b]$.
7. Define f on $[a, b]$ by

$$
f(x)= \begin{cases}1 & x \text { rational } \\ 0 & x \text { irrational }\end{cases}
$$

Show that f is not Riemann integrable on $[a, b]$.
8. Let f be defined on $(0,1]$. Suppose that f is Riemann integrable on $(c, 1]$ for each $c \in(0,1)$.
(a) If f is Riemann integrable on $[0,1]$, show that

$$
\int_{0}^{1} f(x) d x=\lim _{c \rightarrow 0} \int_{c}^{1} f(x) d x
$$

(b) Construct a function f for which the limit in (a) exists, even though the same limit fails to exist for $|f|$ in place of f.
9. Let p and q be positive real numbers satisfying

$$
\frac{1}{p}+\frac{1}{q}=1
$$

(a) Show that for any nonnegative numbers $u, v \geqslant 0$, we have

$$
u v \leqslant \frac{u^{p}}{p}+\frac{v^{q}}{q}
$$

(b) Show that if f and g are both nonnegative (i.e. $f \geqslant 0$ and $g \geqslant 0$) and satisfy

$$
\int_{a}^{b} f(x)^{p} d x=\int_{a}^{b} g(x)^{q} d x=1
$$

then

$$
\int_{a}^{b} f(x) g(x) d x \leqslant 1
$$

(c) Show that for any two functions (not necessarily nonnegative), we have

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leqslant\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{1 / q}
$$

provided both sides make sense. This is called Hölder's inequality.
10. Prove directly from the definitions that if f is Riemann integrable on $[a, b]$ and c is any positive constant, then $c f$ is also integrable on $[a, b]$ and moreover

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

