Name:

Warm-up #12

Let $u: T \to X$, let E be a subset of X, and let $g: E \to Y$. Let t_0 be a limit point of T, and set $x_0 = u(t_0)$. Suppose

- (a) x_0 is a limit point of E
- (b) $\lim_{x\to x_0} g(x)$ exists
- (c) u is continuous
- (d) u is injective.

Show that

 $\lim_{t \to t_0} g(u(t)) = \lim_{x \to x_0} g(x).$