Name:

Warm-up \#16
Suppose f is integrable on $[1, n]$ for each integer $n \geqslant 1$. Define

$$
\int_{1}^{\infty} f(x) d x=\lim _{n \rightarrow \infty} \int_{1}^{n} f(t) d t
$$

provided this limit exists. Suppose that
(a) $f \geqslant 0$
(b) f is descreasing.

Show that the limit above exists if and only if $\sum_{n} f(n)$ converges. (This is the integral test for series.)

