Name:

Warm-up #20

For a nonnegative integer k, let $C^k([a, b])$ denote the space of functions f on [a, b] which admit k continuous derivatives $f', f'', \ldots, f^{(k)}$. Define a norm on $C^k([a, b])$ by setting

$$||f||_{C^k} = \sum_{j=0}^k \sup_{x \in [a,b]} |f^{(j)}(x)|.$$

Use Arzela-Ascoli to show that any sequence f_n in $C^k([a, b])$ that is bounded with respect to the C^k -norm admits a convergent subsequence in $C^{k-1}([a, b])$.