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1. Wednesday, September 9, 2015

Abstract manifolds

Definition 1.1 (topological manifolds). A topological n-manifold (or a topological
manifold of dimension n) is a topological spaceM which is locally homeomorphic to Rn,
that is, for each p ∈M , there is an open neighborhood U of p in M and a homeo-
morphism φ from U to an open set Ω in Rn. We call such a pair (U, φ) a chart (or
coordinate system) for M around p, and U is called a

coordinate neighborhood at p.
1
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Remark 1.2 (cf. [Bo, page 6], [dC, page 29-30]). Some textbooks require that the
topology of M satisfy the following additional two properties.

(i) The topology of M is Hausdorff. Recall that, a topologial space M is
Hausdorff if for any two distinct points p and q in M , there exist open sets
U and V in M such that p ∈ U , q ∈ V , and U ∩ V is empty.

(ii) The topology of M has a countable basis of open sets.
Recall that a collection B of open subsets in a topological space M is a
basis of open sets of M if every open subset of M can be written as a union
of elements of B.

Example 1.3 (a non-Hausdorff manifold). Let M = Rt {p} be the disjoint union
of the real line R and a point p. Define a topology on M by the topology generated
by open subsets of R and sets of the form (U \ {0}) ∪ {p}, where U is an open
neighborhood of 0 in R. Note that any neighborhoods of p and 0 intersect, so M is
a non-Hausdorff topological space.

For any q ∈ R = M \ {p}, R ⊂ M is an open neighborhood of q in M , and the
identity map R→ R is a homemorphism from R to R. The set U = (R \ {0})∪{p}
is an open neighbhorhood of p in M , and[]../Lecture01.pdf

the map φ : U → R given by φ(x) = x for x ∈ R \ {0} and φ(p) = 0 is a
homeomorphism. Therefore, M is a topological 1-manifold.

Example 1.4. An example of a topological manifold which does not have a count-
able basis is the long line. A proper discussion of this manifold would be quite
lengthy and would require a digression on set theory, so we choose not to discuss
this example further here.

Definition 1.5 (atlas). An atlas of a topological n-manifold M is a collection
{(Uα, φα) : α ∈ I} of charts such that the collection {Uα : α ∈ I} is an open cover
of M . The maps φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) are called transition
functions.

Remark 1.6. • I is some index set, which can be finite, countably infinite,
or uncountably infinite.
• If follows from the definitions that the transition functions are homeomor-

phisms.
• If M has a countable atlas, then M has a countable basis of open sets.

Definition 1.7 (Ck atlas). Let k be a positive integer or ∞. A Ck-atlas for an
n-manifold M is an atlas Φ = {(Uα, φα) : α ∈ I} such that all transition functions
are Ck diffeomorphisms of open subsets of Rn.

Definition 1.8. We say that two Ck-atlases Φ = {(Uα, φα) : α ∈ I} and Ψ =
{(ψβ , Vβ) : β ∈ J} for a topological manifold M are equivalent if their union is a
Ck-atlas. A Ck differentiable structure on a topological manifold M is a choice of an
equivalence class of Ck-atlases. A Ck manifold is a topological manifold equipped
with a Ck-structure.

A C∞ differentiable structure is also called a smooth structure, and a C∞ man-
ifold is also called a smooth manifold.

Example 1.9. Let k be a positive integer. We endow M = R with two non-
equivalent Ckatlases. For the first atlas, take Φ = {(R, φ)} where φ(x) = x. For
the second atlas, take Ψ = {(R, ψ)} where ψ(x) = x3. Let k be any postive integer,
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or ∞. Both Φ and Ψ are Ck-atlases since all of their transition functions (which
consist of simply the identity map) are Ck-differentiable. However, their union
Φ ∪ Ψ is not a Ck-atlas, since the transition function φ ◦ ψ−1(x) = x1/3 is not
Ck-differentiable.

Example 1.10 (The real projective space Pn(R)).
1. As a set, Pn(R) is the set of one-dimensional R-linear subspace of Rn+1.

2. Topology.
Define a surjective map π : Rn+1\{0} → Pn(R) by sending a nonzero vector in Rn+1

to the one-dimensional R-linear subspace of Rn+1 spanned by that vector. For any
nonzero vector x = (x1, . . . , xn+1) in Rn+1 we let [x1, . . . , xn+1] denote its image
in Pn(R). Note that [x1, . . . , xn+1] = [y1, . . . , yn+1] if and only if (y1, . . . , yn+1) =
λ(x1, . . . , xn+1) for some nonzero λ ∈ R. Equip the set Pn(R) with the quotient
topology determined by the map π. This means that a subset U of Pn(R) is open
if and only if π−1(U) is open in Rn+1 \ {0}.

Let Sn = {(x1, . . . , xn+1) ∈ Rn+1 :
∑n+1
i=1 x

2
i = 1} ⊂ Rn+1 be the unit sphere

with center at the origin, equipped with the subset topology. Then π|Sn : Sn →
Pn(R) is a covering map of degree 2. The quotient topology determined by π|Sn :
Sn → Pn(R) agrees with the quotient topology determined by π : Rn+1 \ {0} →
Pn(R). It is easy to see that the quotient topology determined by π|Sn is compact
and Hausdorff.

3. Atlas.
For each positive integer i satisfying 1 ≤ i ≤ n + 1, let Ui denote the subset of
Pn(R) given by

Ui = {[x1, . . . , xn+1] ∈ Pn(R) : xi 6= 0}.
Note that Ui is an open subset of Pn(R) since the set π−1(Ui) is open in Rn+1 \{0}.
Also note that the collection {Ui : 1 ≤ i ≤ n+ 1} forms an open cover of Pn(R).

Let φ̃i : π−1(Ui)→ Rn denote the map given by

φ̃i(x1, . . . , xn+1) =

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
.

Note that φ̃i satisfies φ̃i(λx) = φ̃i(x) for each x ∈ π−1(Ui) and each scalar λ ∈ R.

It follows that φ̃i induces a well-defined map φi : Ui → Rn described by φ̃i = φi ◦π.

Since φ̃i is continuous, we see that φi is continuous as well. The map φ−1
i : Rn → Ui

given by

φ−1
i (x1, . . . , xn) = [x1, . . . , xi−1, 1, xi, . . . , xn]

is the inverse of φi : Ui → Rn. The map φ−1
i is also continuous since it can be

written as the composition φ−1
i = π◦si where si : Rn → Rn+1\{0} is the continuous

map given by

si(x1, . . . , xn) = (x1, . . . , xi−1, 1, xi, . . . , xn).

It follows that φi : Ui → Rn is a homeomorphism.
Therefore the topogical space Pn(R) is a topological n-manifold, and Φ = {(Ui, φi) :
i = 1, . . . , n+ 1} is an atalas on Pn(R).

4. Transition functions.

φ2 ◦ φ−1
1 (y1, . . . , yn) = φ1([1, y1, . . . , yn]) = (

1

y1
,
y2

y1
, . . . ,

yn
y1

)



4

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) = (R \ {0})× Rn−1 → φ2(U1 ∩ U2) = (R \ {0})× Rn−1 is a

C∞ diffeomorphism.
The general case φj ◦ φ−1

i (i 6= j) is similar.
Therefore Φ = {(Ui, φi) : i = 1, . . . , n + 1} is a C∞ atlas on Pn(Rn), an defines a
C∞ differentible structure on Pn(Rn). (Pn(R),Φ) is a C∞ n-manifold.

Remark 1.11. Note that the transition functions φj ◦ φ−1
i are real analytic (Cω),

so Φ is indeed a real analytic atlas, and (Pn(R),Φ) is a real analytic manifold of
dimension n.

Remark 1.12. Replacing R by C in Example 1.10, we obtain the definition of
the n-dimensional complex projective space Pn(C), equipped with the quotient
topology determined by π : Cn+1 − {0} → Pn(C). Pn(C) is locally homeomorphic
to Cn = R2n, so it is a topological 2n-manifold. Φ = {(Ui, φi) : i = 1, . . . , n + 1},
where φi : Ui → Cn = R2n, is a C∞ atlas on Pn(C), and (Pn(C),Φ) is a C∞

2n-manifold.
The transition functions φj ◦ φ−1

i are indeed complex analytic, so Φ defines a
complex struture on Pn(C), and (Pn(C),Φ) is a complex manifold of dimensiona n.
(cf. Phong’s class ”Complex Analysis and Riemann Surfaces”)

2. Monday, September 14, 2015

Ck-differentiable maps

Definition 2.1. Let M and N be Cl-manifolds of dimension m and n respectively.
A continuous map f : M → N is called Ck-differentiable for some k ≤ l if for
any p ∈ M , there is a coordinate chart (U, φ) around p in some atlas representing
the Cl-structure on M and a coordinate chart (V, ψ) around f(p) in some atlas
representing the Cl-structure on N such that

• f(U) ⊂ V
• the composition g = ψ ◦ f ◦ φ−1 : φ(U)→ ψ(V ) is Ck-differentiable.

Remark 2.2. There are two subtleties to this definition.

• The definition seems to depend on choices of coordinate charts in fixed
atlases for M and N respectively. Indeed, one might worry that while the
g = ψ ◦ f ◦ φ−1 is Ck-differentiable, there is another such composition

g̃ = ψ̃ ◦ f ◦ φ̃−1 that is not. However, because the transition maps in a
Cl atlas are Cl-differentiable and k ≤ l, the chain rule forbids this from
happening. It follows that the definition does not depend on the choices of
coordinate charts in fixed atlas for M and N .

• One might worry, nevertheless, that the definition depends on the choice
of atlases representing the given Cl-structures. But again, because of the
equivalence condition we placed on Cl-atlases, we see that the chain rule
guarantees that the definition does not depend on the choice of atlases
representing the given Cl-structures.

These subtleties will appear in forthcoming definitions as well, but we will neglect
to remark on them and leave the details to the interested reader.

Definition 2.3. A C∞-differentiable map f : M → N is also called a smooth map.

Example 2.4. As an example, let us view Rn+1 \ {0} as a smooth manifold where
the C∞-structure is the one determined by the atlas consisting only of the identity
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map, and let us equip Pn(R) with the C∞-structure described in Example 1.10.
Then the natural map π : Rn+1 \ {0} → Pn(R) is a smooth map. This can be seen
because the compositions

gi := φi◦π◦id−1 : π−1(Ui)→ Rn, (x1, . . . , xn+1) 7→ (
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi
)

are smooth at each point of their domains.

Remark 2.5. If M is a Cl manifold and U is an open subset of M , then the
Cl-differentiable structure on M restricts to a Cl-differentiable structure on U .

Definition 2.6. Let M,N be smooth manifolds. We say that f : M → N is a
diffeomorphism if

• f is a homeomorphism, and
• f and f−1 are smooth.

We say that f is a local diffeomorphism at p ∈M if there is an open neighborhood
U of p in M and an open neighborhood V of f(p) in N such that f(U) = V and
f |U : U → V is a diffeomorphism.

Example 2.7. Let φ : R → R be the map φ(x) = x and let ψ : R → R be the
map ψ(x) = x3. We have seen that Φ = {(R, φ)} and Ψ = {(R, ψ)} are two C∞

atlases on R which are not equivalent. Let f : (R,Φ) → (R,Ψ) denote the map
f(x) = x1/3. Then f is a diffeomorphism since ψ ◦ f ◦φ−1 : φ(R) = R→ Ψ(R) = R
is the identity map.

Definition 2.8. Given an open subset U of Rm and a smooth map f : U → Rn,
we say that f is a submersion (resp. immersion) at x ∈ U if the differential
dfx : Rm → Rn is a surjective (resp. injective) linear map.

Example 2.9 (Canonical submersion). Let m and n be positive integers satisfying
m ≥ n. Consider the map π : Rm → Rn given by

π(x1, . . . , xm) = (x1, . . . , xn).

Since π is a linear map, we see that dπx = π for each x ∈ Rm. It follows that π is
a submersion at any x ∈ Rm; π is called the canonical submersion.

Example 2.10 (Canonical immersion). Let m and n be positive integers satisfying
m ≤ n. Consider the map i : Rm → Rn given by

i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Since i is a linear map, we have dix = i for each x ∈ Rm. It follows that i is an
immersion at any x ∈ Rm; i is called the canonical immersion.

Definition 2.11. Let f : M → N be a smooth map between smooth manifolds
and let p be a point of M . We say that f is a submersion (resp. immersion) at p if
there is a chart (U, φ) for M around p and a chart (V, ψ) for N around f(p) such
that

• f(U) ⊂ V , and
• the composition g = ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is a submersion (resp.

immersion) at φ(p).

Proposition 2.12. Let f : M → N be a smooth map between smooth manifolds of
dimension m and n respectively.
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(1) (Canonical form for submersions and immersions) If f is a submersion
(resp. immersion) at p ∈M , so that m ≥ n (resp. m ≤ n), there is a chart
(U, φ) for M around p and a chart (V, ψ) for N around f(p) such that
• φ(p) = 0 ∈ Rm,
• ψ(f(p)) = 0 ∈ Rn, and
• the composition ψ◦f◦φ−1 is the restriction of the canonical submersion

(resp. immersion) to φ(U) ⊂ Rm.
(2) If f is a submersion and an immersion at p ∈ M , then f is a local diffeo-

morphism at p.

Proof. Roundtable on September 18. Reference: [Bo, II.7, III.4]. �

Definition 2.13. Let f : M → N be a smooth map between smooth manifolds. We
say that f is a submersion (resp. immersion) if f is a submersion (resp. immersion)
at each point p ∈M .

Definition 2.14. Let f : M → N be a smooth map between smooth manifolds.
We say that f is an embedding if

• f is an immersion
• f : M → f(M) is a homeomorphism onto f(M), where f(M) is equipped

with the subspace topology.

In this case, we say that f(M) is a submanifold of N .

From Proposition 2.12 (1), We also have the following alternative definition of a
submanifold.

Definition 2.15. Let N be a smooth n-dimensional manifold, and let M be a
subset of N . We say that M is a submanifold of N of dimension m (which is not
greater than n) if for each p in M , there is a chart (U, φ) for N around p such that
φ(p) = 0 and φ(U ∩M) = φ(U) ∩ (Rm × {0}).

Example 2.16. These examples are to illuminate the definition of an embedding.
Given a smooth map f : R→ R2, dft : R→ R2 is given by dft(u) = f ′(t)u. So f is
an immersion at t ∈ R iff f ′(t) is nonzero.

(1) Let f : R → R2 denote the parabola given by f(t) = (t, t2). Then f ′(t) =
(1, 2t) is nonzero for any t ∈ R, and hence f is an immersion. We see also
that f is a homeomorphism from R onto the image f(R), so f defines an
embedding.

(2) Let f : R → R2 denote the covering of the unit circle given by f(t) =
(cos(t), sin(t)). Then f ′(t) = (− sin t, cos t) is nonzero for any t ∈ R, so f is
an immersion, but f is not an embedding because it is not injective.

(3) Let f : R→ R2 be the nodal cubic defined by f(t) = (t3− 4t, t2− 4). Then
f ′(t) = (3t2 − 4, 2t) is always nonzero, so f is an immersion. However, f is
not an embedding since it is not injective: f(2) = f(−2) = (0, 0).

(4) Let f : R → R2 be the cuspidal cubic defined by f(t) = (t3, t2). Then we
see that f is injective and a homeomorphism onto its image, but f is not
an immersion at t = 0, because the derivative vanishes there.

Definition 2.17. Let f : M → N be a smooth map between smooth manifolds
and assume that the dimension of M is greater than or equal to the dimension of
N . A point p ∈M is a critical point of f if f is not a submersion at p. In this case,
f(p) is called a critical value of f , that is, a point q ∈ N is a critical value if there
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is a point p ∈ f−1(q) such that p is a critical point. We say that q ∈ N is a regular
value if q is not a critical value.

Theorem 2.18. Let f : M → N be a smooth map between smooth manifolds of
dimensions m and n respectively, with m ≥ n. If q ∈ N is a regular value of f then
the preimage f−1(q) is a closed submanifold of M of dimension m − n. (f−1(q)
can be empty.)

Proof. Roundtable on September 18. Reference: [Bo, III.5]. Idea: use canonical
form of submersion. �

Example 2.19. Let f : Rn+1 → R be the smooth map given by

f(x1, . . . , xn+1) = x2
1 + · · ·+ x2

n+1.

Then dfx : Rn+1 → R is given by dfx = [2x1 · · · 2xn+1], which is surjective iff x 6= 0.
So the only critical point of f is 0 ∈ Rn+1 and the only critical value of f is 0 ∈ R.
It follows that every nonzero real number is a regular value of f . If a > 0, then we
see that f−1(a) is a n-dimensional smooth submanifold of Rn+1. Note that f−1(a)
is the n-dimensional sphere of radius

√
a. We have f−1(0) = {0}, and f−1(a) is

empty when a < 0.

Example 2.20. Let p denote the composition Sn ↪→ Rn+1 \ {0} → Pn(R). Then
p is a covering map of degree 2. Moreover, p is a local diffeomorphism.

3. Wednesday, September 16, 2015

Example 3.1. Let O(n) denote the set of all n× n orthognal matrices:

O(n) = {A ∈Mn(R) : AAT = In}
where Mn(R) is the set of real n × n matrics, AT is the transpose of A, and

In denotes the n× n identity matrix. We may identify Mn(R) with Rn2

as an n2-

dimensional real vector space. We claim thatO(n) is a submanifold ofMn(R) ∼= Rn2

of dimension n(n−1)
2 . To prove this, we will use the preimage theorem.

Let Sn(R) denote the set of all real symmetric n× n matrices:

Sn(R) = {A ∈Mn(R) : A = AT }.

Then Sn(R) is an n(n+1)
2 -dimensional subspace of Mn(R). Define a map

f : Mn(R) ∼= Rn
2

−→ Sn(R) ∼= R
n(n+1)

2 , A 7→ AAT .

Then f is a smooth map, since it is a polynomial map in the entries of A: if
A = (aij) then (AAT )kl =

∑n
m=1 akmalm.

By the preimage theorem, it remains to show that In is a regular value of f . For
A ∈Mn(R), the differential dfA : Mn(R)→ Sn(R) at A is given by

dfA(B) = lim
h→0

f(A+ hB)− f(A)

h
= lim
h→0

(A+ hB)(AT + hBT )−AAT

h
= ABT+BAT .

If A ∈ f−1(In) = O(n) and C ∈ Sn(R) are arbitrary, then B = 1
2CA = 1

2C
TA

satisfies

dfA(B) = C,

showing that dfA is surjective for all A ∈ f−1(In). It follows that In is a regular
value of f as desired.
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Orientation

Definition 3.2. Let M be a Ck manifold, where k ≥ 1. We say that M is orientable
if there is a Ck-atlas Φ = {(Uα, φα) : α ∈ I} representing the Ck-structure on M
such that

(?) For each α, β ∈ I such that Uα ∩ Uβ 6= ∅, the transition function φβ ◦ φ−1
α

satisfies det(d(φβ ◦ φ−1
α )x) > 0 for each x ∈ φα(Uα ∩ Uβ).

If M is orientable, an orientation of M is a choice of a Ck-atlas satisfying (?). If Φ
and Ψ are two Ck-atlases satisfying (?), then they determine the same orientation
if their union Φ ∪Ψ satisfies (?)

Example 3.3. Suppose that Φ = {(U1, φ1), (U2, φ2)} is a Ck-atlas of a Ck-manifold
M such that the intersection U1 ∩U2 is connected. We claim that M is orientable.
Indeed, since the determinant of det(d(φ2 ◦ φ−1

1 )x) is a continuous map from the
connected set φ1(U1 ∪U2) to R \ {0}, it is either always positive or always negative
on φ1(U1 ∪ U2). If it is always positive then Φ determines an orientation; if it is
always negative, then we can change the sign of one of the coordinates of φ2 to
make it always positive.

By Assignment 1 (1) and the above observation, Sn is orientable for any n ≥ 2.
It is easy to see that S1 is also orientable.

Lemma 3.4. Let L : Cn → Cn be a C-linear isomorphism given by v 7→ Cv for
some complex n×n matrix C ∈Mn(R). Write C = A+iB for some A,B ∈Mn(R).
Let i : R2n → Cn be the R-linear map given by (x, y) 7→ x+ iy. Let L′ : R2n → R2n

denote the R-linear map such that L ◦ i = i ◦ L′. Then we see that L′ is given by[
x
y

]
7→
[
A −B
B A

] [
x
y

]
and

det

[
A −B
B A

]
= |detC|2.

Example 3.5. We may form complex projective space Pn(C) in a similar fashion
to real projective space. We claim that this 2n-dimensional manifold is orientable.
Indeed, for each x ∈ φi(Ui), the differential d(φj ◦ φ−1

i )x : Cn → Cn is a C-linear
isomorphism. By the Lemma, it follows that if we view the differential as an R-
linear map from R2n to R2n, then it has positive determinant.

This argument shows that a complex n-manifold is an orientable C∞ 2n-manifold;
indeed, the orientation is determined by the complex structure, so it is an oriented
C∞ 2n-manifold.

Example 3.6. We will see later the real projective space Pn(R) is orientable iff n
is odd. In particular, the real projective line P1(R) ∼= S1 is orientable, and the real
projective plane P2(R) is nonorientable.

Tangent spaces and tangent bundles

Let M be a Ck manifold of dimension n, where k ≥ 1.

Definition 3.7 (tangent space, tangent vector). Let (U, φ) and (V, ψ) be two charts
for M around p ∈M . For vectors ~u,~v ∈ Rn, we write (U, φ, ~u) ∼p (V, ψ,~v) if

d(ψ ◦ φ−1)φ(p)(~u) = ~v.
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This defines an equivalence relation on such triples, and we let [(U, φ, ~u)] denote the
equivalence class of such a triple under this relation. We define the tangent space
to M at p to be the set

TpM = {[(U, φ, ~u)] : (U, φ) is a chart around p, ~u ∈ Rn}.

For a fixed chart (U, φ) around p, the map θU,φ,p : Rn → TpM described by

θU,φ,p(~u) = [(U, φ, ~u)]

is a bijection (Assignment 3 (1)). This implies that we may endow the space TpM
with an R-linear structure. Moreover, this structure does not depend on the choice
of chart: Indeed if (V, ψ) is another chart around p, then the following diagram
commutes

Rn
θU,φ,p //

d(ψ◦φ−1)φ(p)
��

TpM

Rn
θV,ψ,p

77

and the map d(ψ ◦ φ−1)φ(p) is an R-linear isomorphism.
A tangent vector at p is a vector in the n-dimensional real vector space TpM .

We construct now a 2n-dimensional manifold called the tangent bundle of M ,
denoted TM .
1. As a set, the tangent bundle of M is given by

TM = {(p, v) : p ∈M,v ∈ TpM}.

There is a surjective map π : TM →M sending (p, v) to p.

2. Topology: For a chart (U, φ) for M , let φ̃ : π−1(U) → φ(U) × Rn be the map
described by

φ̃(p, v) = (φ(p), θ−1
U,φ,p(v)).

Equip the set TM with the topology such that φ̃ is a homeomorphism for each
chart (U, φ). This means that a subset A of TM is open if and only if for each

chart (U, φ) for M , the set φ̃(π−1(U)∩A) is open in φ(U)×Rn. With this topology,
TM is a topological manifold of dimension 2n.

It can be shown that that if M is Hausdorff (resp. has a countable basis), then
TM is Hausdorff (resp. has a countable basis) as well.
3. Transition functions: Note that if U is an open subset of M then π−1(U) can
be identified with TU . We have π−1(U) ∩ π−1(V ) = TU ∩ TV = T (U ∩ V ) =

π−1(U ∩ V ). Given two charts (U, φ) and (V, ψ) for M , (TU, φ̃) and (TV, ψ̃) are
charts for TM , and the transition function

ψ̃ ◦ φ̃−1 : φ̃(TU ∩ TV ) = φ̃(T (U ∩ V ))→ ψ̃(TU ∩ TV ) = ψ̃(T (U ∩ V ))

is given by

ψ̃ ◦ φ̃−1(~x, ~u) = (ψ ◦ φ−1(~x), d(ψ ◦ φ−1)~x(~u))

where ψ ◦φ−1(~x) is Ck in ~x and the map ~x 7→ d(ψ ◦φ−1)~x is Ck−1 in ~x. So ψ̃ ◦ φ̃−1

is a Ck−1 diffeomorphism. It follows that TM is a Ck−1-manifold. In particular, if
M is a C∞ manifold then TM is a C∞ manifold.

Lemma 3.8. The projection map π : TM → M is a Ck−1 map. In particular,
when k =∞, π : TM →M is a smooth map and a submersion.
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Proof. Given a point (p, v) in TM , where p ∈M and v ∈ TpM , let (U, φ) be a Ck

chart for M around p = π(p, v). Then (π−1(U) = TU, φ̃) is a Ck−1 chart around
(p, v), and we have the following commutative diagram

π−1(U)
π //

φ̃

��

U

φ

��
φ(U)× Rn

g // φ(U)

where g(~x, ~u) = ~x is the restriction of the canonical submersion R2n → Rn. �

Assignment 2 (2): TM is orientable, even though M may not be.

4. Monday, September 21, 2015

The differential of a Ck map

Definition 4.1. Let f : M → N be a Ck map between Ck manifolds of dimension
m and n respectively, where k ≥ 1. The differential of f at p is the linear map

dfp : TpM → Tf(p)N

defined as follows: Given a chart (U, φ) for M around p and a chart (V, ψ) for N
around f(p) such that f(U) ⊂ V , let g := ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ), and let dfp
denote the composition

dfp = θV,ψ,f(p) ◦ dgφ(p) ◦ θ−1
U,φ,p.

In terms of diagrams, this is the map given below

TpM
dfp //

θ−1
U,φ,p

��

Tf(p)N

Rm
dgφ(p) // Rn

θV,ψ,f(p)

OO

Remark 4.2. At first glance, it seems that the differential dfp may be ill-defined:
a different choice of charts seems to lead to a different definition of dfp. However,
the chain rule again comes to our rescue, and one can indeed show that dfp is a
well-defined map that is independent of the choice of charts.

Note that dfp is indeed a linear map since the θ and dgφ(p) are.
Finally, note that this definition is consistent with the case when M is an open

subset of Rm and N is an open subset of Rn.

Theorem 4.3 (Chain Rule). Let f : M1 → M2 and g : M2 → M3 be Ck maps
between Ck manifolds, where k ≥ 1. Then

(1) The composition g ◦ f : M1 →M3 is a Ck map.
(2) For each point p in M1, the differential of the composition is given by

d(g ◦ f)p = dgf(p) ◦ dfp.

The following definition is equivalent to Definition 2.11 when k =∞.

Definition 4.4. Let f : M → N be a Ck map between Ckmanifolds, where k ≥ 1.
We say f is a submersion at p (resp. immersion at p) if dfp is surjective (resp.
injective).
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Remark 4.5. Suppose that M is a submanifold of N . Then for each p in M , the
tangent space TpM can be viewed as a subspace of TpN . Indeed, if i : M → N
denotes the inclusion, then dip : TpM → TpN is injective.

Remark 4.6. Suppose that f : M → N is a smooth map. Let q ∈ N be a regular
value. By Theorem 2.18 (the preimage theorem), S = f−1(q) is a submanifold of
M of dimension m − n, where m = dimM and n = dimN . For each p ∈ S, the
tangent space TpS is given by TpS = ker(dfp : TpM → Tf(p)N). That is, we have
the following short exact sequence of real vector spaces

0 −→ TpS −→ TpM −→ TqN −→ 0.

Remark 4.7. For every point p ∈ Rn, we have an isomorphism TpRn ∼= Rn given

by v 7→ θ−1
Rn,id,p(v). We also have ĩd : TRn → Rn × Rn.

Example 4.8. Let f : Rn+1 → R be the map f(x1, . . . , xn+1) = x2
1 + · · · + x2

n+1.
We have already seen that 1 is a regular value of f , and thus the unit sphere
Sn = f−1(1) is a submanifold of Rn+1. For each p ∈ Sn, we compute

TpS
n = {v ∈ Rn+1 : dfp(v) = 0} = {v ∈ Rn+1 : p · v = 0}

Example 4.9. Let f : Mn(R) → Sn(R) be the map of Example 3.1, that is,
f(A) = AAT . Recall that the orthogonal group O(n) is the preimage of the regular
value In. For A ∈ O(n), we compute

TAO(n) = {B ∈Mn(R) : dfA(B) = 0} = {B ∈Mn(R) : BAT +ABT = 0}.

In particular, TInO(n) = {B ∈ Mn(R) : B + BT = 0} ∼= R
n(n−1)

2 is the set of real
n× n skew-symmetric matrices.

Definition 4.10. Let f : M → N be a Ck map between Ck manifolds. Define
df : TM → TN by the rule

df(p, v) = (f(p), dfp(v)).

Proposition 4.11. Let f : M → N be a Ck map between Ck manifolds. Then
df : TM → TN is a Ck−1 map between Ck−1 manifolds.

Proposition 4.12. If M is a smooth submanifold of N of dimension m, then TM
is a smooth submanifold of TN of dimension 2m.

Example 4.13. The tangent bundle of the sphere Sn is given by

TSn = {(x, v) ∈ Rn+1 × Rn+1 : |x|2 = 1, x · v = 0} ⊂ Rn+1 × Rn+1.

Example 4.14. The tangent bundle of the orthogonal group O(n) is given by

TO(n) = {(A,B) ∈Mn(R)×Mn(R) : AAT = In, BA
T+ABT = 0} ⊂Mn(R)×Mn(R).

Vector bundles
Roughly speaking, a real vector bundle of rank r over a manifold M consists of

a family of r-dimensional real vector spaces parametrized by M .

Definition 4.15. Let M be a Ck manifold. A real Ck vector bundle of rank r over
M consists of

• a Ck manifold E called the total space and
• a Ck surjective map π : E →M

such that
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(i) (local trivialization) There is an open cover {Uα : α ∈ I} of M (where
Uα is not necessarily a coordinate neighborhood) and Ck diffeomorphisms
hα : π−1(Uα)→ Uα×Rr (called local trivializations) such that the following
diagram commutes

π−1(Uα)
hα //

πα

��

Uα × Rr

pr1
xx

Uα

where πα is the restriction of π to π−1(Uα), and pr1 is the projection to
the first factor.

(ii) (transition functions) If the intersection Uα∩Uβ is nonempty, then the map

hβ ◦ h−1
α : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr

is a Ck diffeomorphism of the form hβ ◦ h−1
α (x, v) = (x, gβα(x)v) where

gβα : Uα ∩ Uβ → GL(r,R) is a Ck map. (Note that GL(r,R) = {A ∈
Mr(R) : det(A) 6= 0} is an open subset of Mr(R) ∼= Rr2 .)

Remark 4.16. From condition (i), we know that hβ ◦ h−1
α is a Ck diffeomorphism

of the form (x, v) 7→ (x, gβα(x)v) where gβα(x) : Rr → Rr is a Ck diffeomorphism
(depending on x ∈ Uα ∩ Uβ). However, in condition (ii), we require something
stronger: namely that gβα(x) is a linear isomorphism. If we only had the weaker
condition, then we would say that π : E → M is a fiber bundle with total space E
and fiber Rr.

Example 4.17 (product vector bundle). The product vector bundle of rank r
consists of π = pr1 : E = M × Rr →M where pr1 denotes the projection onto the
first factor.

Definition 4.18 (trivial vector bundle). We say that π : E →M is a trivial vector
bundle of rank r if there is a Ck diffeomorphism (when k ≥ 1) or a homeomorphism
(when k = 0) h : E →M × Rr such that

• h commutes with the projection maps in the sense that π = pr1 ◦ h
• the restriction of h to each fiber hx : Ex → {x}×Rr is a linear isomorphism.

In other words, π : E → M is a trivial vector bundle of rank r if there exists a
global trivialization h : E →M × Rr.

5. Wednesday, September 23, 2015

Vector bundles (continued)

Example 5.1 (tangent bundle). Suppose that M is a Ck manifold with dimension
n. Then π : TM →M is a Ck−1 vector bundle of rank n over M .

To see this, let Φ = {(Uα, φα) : α ∈ I} be a Ck-atlas of the Ck manifold M ,
define local trivializations hα : π−1(Uα)→ Uα × Rn by

hα(p, v) =
(
p, θ−1

Uα,φα,p
(v)
)

where p ∈ Uα and v ∈ TpM . Then each hα is Ck−1 diffeomorphism which satisfies
(i) in Definition 4.15. If Uα ∩ Uβ 6= ∅, the transition function

hβ ◦ h−1
α : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn



13

is given by
hβ ◦ h−1

α (p, ~u) =
(
p, d(φβ ◦ φ−1

α )φα(p)(~u)
)
.

Note that p 7→ d(φβ ◦ φ−1
α )φα(p) defines a Ck−1 map from Uα ∩Uβ to GL(n,R). So

the transition functions satisfy (ii) in Definition 4.15.

Example 5.2 (universal line bundle over Pn(R)). See Assignment 3 (2).

Definition 5.3. Let π : E →M be a Ck vector bundle over a Ck manifold M . A
Ck section of π is a Ck map s : M → E such that π ◦ s = idM .

Lemma 5.4. Let π : E →M be a Ck vector bundle of rank r over a Ck manifold
M . Then π : E → M is trivial if and only if there are Ck sections s1, . . . , sr of
π : E →M such that for each point x ∈M , the collection {s1(x), . . . , sr(x)} forms
a basis of Ex.

Proof. (⇒) Suppose that π : E → M is trivial and let h : E → M × Rr be a triv-
ialization as in Definition 4.18. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , er =
(0, . . . , 0, 1) be the standard basis of Rr. Define si : M → E by si(x) = h−1(x, ei),
i = 1, . . . , r. Then si are Ck sections of π : E → M , and for each x ∈ M the
collection {s1(x), . . . , sr(x)} forms a basis of Ex ∼= Rr.
(⇐) Conversely, if we are given Ck sections s1, . . . , sr of π : E → M such that
the collection {s1(x), . . . , sr(x)} forms a basis of Ex ∼= Rr for all x ∈M , we define
ψ : M × Rr → E by

(x, (v1, . . . , vr)) 7→ (x,

r∑
i=1

visi(x)).

where x ∈ M , (v1, . . . , vr) ∈ Rr, and
∑r
i=1 visi(x) ∈ Ex. Then ψ is a Ck-

diffeomorphism (when k ≥ 1) or a homeomorphism (when k = 0), and h := ψ−1 :
E →M × Rr is a global trivialization as in Definition 4.18. �

Definition 5.5. Let M be a smooth manifold. A smooth vector field on M is a
smooth section of TM .

Derivations

Definition 5.6. Let M be a Ck manifold and let p be a point of M . Let U and V
be open neighborhoods of p in M and let f : U → R and g : V → R be Ck functions.
We define an equivalence relation ∼p by the rule (f : U → R) ∼p (g : V → R)
if and only if there is an open neighborhood W of p such that W ⊂ U ∩ V and
f |W ≡ g|W .

A germ of Ck functions at p is an equivalence class under this equivalence rela-
tion. Let [f : U → R] denote the equivalence class represented by f : U → R. We
let Ckp (M) denote the collection of all such equivalence classes:

Ckp (M) := {(f : U → R) : U is an open neighborhood of p in M , f is a Ck function on U}/ ∼p .

Lemma 5.7. The set Ckp (M) of germs of Ck-functions at p has the natural struc-
ture of a ring:

[f : U → R] + [g : V → R] = [f + g : U ∩ V → R],

[f : U → R] · [g : V → R] = [f · g : U ∩ V → R],

where (f + g)(q) = f(q) + g(q) and (f · g)(q) = f(q)g(q) for q ∈ U ∩ V .
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Remark 5.8. In the definition of Ckp (M) in Definition 5.6, we may assume that U
is contained in some fixed coordinate chart (U0, φ0) for M around p, and hence we
get a map

Ckp (M)→ Ck0 (Rn)

[f : U → R] 7→ [f ◦ φ−1
0 : φ0(U)→ R].

which is a ring isomorphism. Therefore, it is sufficient to study germs of Ck func-
tions at 0 in Rn.

Lemma 5.9. Let Ck(M) be the set of all Ck-functions on M . The natural map
Ck(M)→ Ckp (M) given by f 7→ [f : M → R] is surjective.

Proof. Suppose we have a Ck function f : U → R defined on a open neighborhood
U of p. We claim that there is a neighborhood U ′ containing p and a Ck-map
β : U ′ → R such that

• U ′ ⊂ U
• U ′ is compact
• β(x) = 1 for each x ∈ U ′
• supp(β) is relatively compact in U
• β(x) = 0 for all x /∈ U .

Then the multiplication (βf : U → R) ∼p (f : U → R). But βf extends to a Ck

function defined on all of M . The result now follows. �

Definition 5.10. A derivation on Ckp (M) is an R-linear map δ : Ckp (M)→ R such
that

δ(fg) = δ(f)g(p) + f(p)δ(g) (Leibniz rule)

for each f, g ∈ Ckp (M).

Remark 5.11. The set of derivations on Ckp (M) is an R-linear space.

Example 5.12. Suppose that k ≥ 1. For i = 1, . . . , n,

∂

∂xi
(0) : Ck0 (Rn)→ R, f 7→ ∂f

∂xi
(0).

is a derivation on Ck0 (Rn). For any a1, . . . , an ∈ R,

n∑
i=1

ai
∂

∂xi
(0) : Ck0 (Rn)→ R, f 7→

n∑
i=1

ai
∂f

∂xi
(0)

is a derivation on Ck0 (R).

Lemma 5.13. This lemma has three parts.

(a) If δ is a derivation on Ck0 (Rn) and f is constant near 0, then δ(f) = 0.
(b) If δ is a derivation on C0

0 (Rn), then δ ≡ 0.
(c) If δ is a derivation on C∞0 (Rn), then we may write

δ =

n∑
i=1

ai
∂

∂xi
(0)

where ai = δ(xi).
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Proof. (a) Since δ is linear, it suffices to show that δ(1) = 0, but this is indeed the
case as

δ(1) = δ(1 · 1) = δ(1)1 + 1δ(1) = 2δ(1).

(b) Assignment 3 (3).
(c) Let f be a smooth function on Rn defined on a neighborhood of 0. Take x small
enough such that the map g : (−2, 2)→ R defined by g(t) = f(tx) is defined. Then
g(t) is a smooth function on (−2, 2).

f(x)−f(0) = g(1)−g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

( n∑
i=1

xi
∂f

∂xi
(tx)

)
dt =

n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt

Let hi(x) =
∫ 1

0
∂f
∂xi

(tx)dt. Then hi ∈ C∞0 (Rn) and

hi(0) =

∫ 1

0

∂f

∂xi
(0)dt =

∂f

∂xi
(0).

It then follows that

δ(f) = δ(f−f(0)) = δ
( n∑
i=1

xihi(x)
)

=

n∑
i=1

(δ(xi)hi(0)+xi(0)δ(hi)) =

n∑
i=1

δ(xi)
∂f

∂xi
(0)

as desired. �

Let DpM denote the space of derivations on C∞p (M). We claim that there is a
linear isomorphism

TpM −→ DpM

[(U, φ, ~u)] 7→
n∑
i=1

ui
∂

∂xi
(p).

where the derivation ∂
∂xi

(p) : C∞p (M) → R is defined by f 7→ ∂(f◦φ−1)
∂xi

(φ(p)).
Indeed, if this is well-defined, it is clearly a linear isomorphism, so it suffices to
show that it is well-defined.

Let (V, ψ) be another chart for M around p. Let v ∈ Rn be such that [(U, φ, ~u)] =
[(V, ψ,~v)]. Then this means that ~v = d(ψ ◦φ−1)φ(p)(~u). Write φ = (x1, . . . , xn) and

ψ = (y1, . . . , yn). Then the fact that ~v = d(ψ ◦ φ−1)φ(p)~u implies that

vj =

n∑
i=1

∂yj
∂xi

(φ(p))ui,

We then apply the chain rule to see that

n∑
i=1

ui
∂

∂xi
(p) =

n∑
i,j=1

ui
∂yj
∂xi

(φ(p))
∂

∂yj
(p) =

n∑
j=1

vj
∂

∂yj
(p).

n∑
i=1

ui
∂

∂xi
(p) is the notation of a tangent vector at p ∈M in do Carmo’s book.

Let (U, φ) be a coordinate chart for M and write φ = (x1, . . . , xn). Recall

that φ̃ : TU → φ(U) × Rn is defined by φ̃(p, v) = (φ(p), θ−1
U,φ,p(v)), and the linear
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isomorphism TpM
∼=−→ DpM is given by θU,φ,p(~u) 7→

∑n
i=1 ui

∂
∂xi

(p). So φ̃−1 :

φ(U)× Rn → TU is given by

φ̃−1(x, ~u) = (φ−1(x),

n∑
i=1

ui
∂

∂xi
(p))

where x ∈ φ(U) ⊂ Rn and ~u = (u1, . . . , un) ∈ Rn. For i = 1, . . . , n

∂

∂xi
: U → TU, p 7→ (p,

∂

∂xi
(p))

are smooth sections of TU → U . Moreover, for each point p ∈ U , the collection
{ ∂
∂xi

(p) : i = 1 . . . , n} forms a basis for TpU , and hence the collection { ∂
∂xi

: i =

1, . . . , n} forms a C∞ frame for TU → U . We let C∞(U, TU) denote the space of
C∞ sections of TU → U . We have an isomorphism

TpM =

n⊕
i=1

R
∂

∂xi
(p)

as real vector spaces, and an isomorphism

C∞(U, TU) =

n⊕
i=1

C∞(U)
∂

∂xi

as C∞(U)-modules. Therefore, any C∞ vector field on U is of the form∑
i

ai
∂

∂xi
, ai ∈ C∞(U).

6. Monday, September 28, 2015

Lie derivative and Lie bracket
Last time we defined derivations on the germs of smooth functions of M at p.

We also identified the set of derivations DpM with the tangent space TpM .

Definition 6.1. Let M be a smooth manifold. A derivation on C∞(M) is an
R-linear map δ : C∞(M)→ C∞(M) satisfying the Leibniz rule

δ(fg) = δ(f)g + fδ(g).

Let D(M) denote the set of derivations on C∞(M).

Remark 6.2. This is a sort of global extension of the previous definition.

Remark 6.3. Note that D(M) is a C∞(M)-module: Indeed if δ ∈ D(M) and
h ∈ C∞(M), then we can define hδ ∈ D(M) by the rule

(hδ)(f) = hδ(f).

Now we relate this notion to vector fields, via Lie derivatives.

Definition 6.4. Let X be a smooth vector field on a smooth manifold M . Define
a map LX : C∞(M)→ C∞(M) called the Lie derivative by the rule

(LXf)(p) = X(p)f

for any p ∈ M . Recall that a smooth vector field is a smooth section M → TM ,
so that means that X(p) ∈ TpM = DpM , so we may apply X(p) to the germ
determined by f at p. We sometimes denote LXf by Xf .



17

To see Xf is a smooth function on a coordinate neighborhood U of p, recall that
X restricted to U is given by X =

∑n
i=1 ai

∂
∂xi

where ai ∈ C∞(U). Then we see
that

(Xf)(p) =

n∑
i=1

ai(p)
∂

∂xi
(f ◦ φ−1)(φ(p)).

In do Carmo’s notation, we write

(Xf)(p) =

n∑
i=1

ai(p)
∂f

∂xi
(p).

Theorem 6.5. The assignment

C∞(M,TM)→ D(M)

X 7→ LX

is an isomorphism of C∞(M)-modules.

Proof. We provide an outline of the proof. First it is clear that the map is C∞(M)-
linear.

To see that the map is surjective, suppose we are given δ ∈ D(M), we will define
X ∈ C∞(M,TM) such that LX = δ. For any p ∈M , we let (U, φ) be a coordinate
chart for M around p and we let X(p) =

∑n
i=1 δp(xi)

∂
∂xi

(p). Here the notation δp
means that we restrict the derivation δ to the germs of functions at p.

To see that the map is injective, we want to show that if X ∈ C∞(M,TM) is
not identically zero, then LX is not identically zero. If X 6= 0, then there is a point
p ∈ M such that X(p) 6= 0 ∈ TpM = DpM . So there is an f ∈ C∞p (M) such that
X(p)f 6= 0. We may assume that f ∈ C∞(M). Then (LXf)(p) = X(p)f 6= 0. �

Definition 6.6 (Lie bracket). Let X,Y be smooth vector fields on M . We define
[X,Y ] : C∞(M)→ C∞(M) by the rule

[X,Y ](f) = XY f − Y Xf = LXLY f − LY LXf.

Lemma 6.7. The map [X,Y ] is a derivation.

Proof. It is clear that [X,Y ] is R-linear. We need to check the Leibniz rule. But
this is straightforward and left as an exercise. �

By the Lemma and the Theorem, we may view [X,Y ] as a smooth vector field.
In local coordinates (U, φ), suppose that X =

∑
i ai

∂
∂xi

and Y =
∑
i bi

∂
∂xi

. Then
in terms of local coordinates we find that

[X,Y ] =
∑
i,j

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj

Proposition 6.8. The map [−,−] : C∞(M,TM)× C∞(M,TM)→ C∞(M,TM)
defines a map which satisfies the following properties:

(i) [−,−] is R-bilinear.
(ii) [−,−] is anti-commutative in the sense that [X,Y ] = −[Y,X].
(iii) [−,−] satisfies the Jacobi identity in the sense that

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

(iv) If f, g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.
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Remark 6.9. The first three properties show that (C∞(M,TM), [−,−]) is a Lie
algebra over R.

Proof of Proposition 6.8. (i) and (ii) are clear from definition. It is straightforward
to check (iii) and (iv); you will be asked to verify (iii) in Assignment 4 (1). �

We now discuss the differential in terms of derivations.

Definition 6.10. Let F : M → N be a Ck map between Ck manifolds. Let l be
a positive integer satisfying l ≤ k. Then F induces a map F ∗ : Cl(N) → Cl(M)
called the pullback defined by the rule f 7→ f ◦ F . If p is a point in M , we get a
map F ∗p : ClF (p)(N)→ Clp(M) defined by [(V, f)] 7→ [(F−1(V ), f ◦ F )].

Remark 6.11. If M and N are Ck manifolds and F : M → N is a continuous
map, then for each p ∈M , we get a map F ∗p : C0

F (p)(N)→ C0
p(M). Then F is a Ck

map if and only if for each p in M , the image F ∗p (CkF (p)(N)) is a subring of Ckp (M).

We may use this to define Ck maps. (cf. Roundtable on September 25, and Well’s
Differential Analysis on Complex Manifolds, Chapter I)

Lemma 6.12. Let F : M → N be a smooth map between smooth manifolds. For
each point p in M , the map dFp : TpM = DpM → TF (p)N = DF (p)N is given by

(6.1) dFp(X)f = X(F ∗f)

for any X ∈ TpM = DpM and f ∈ C∞F (p)(N).

Proof. This follows from the chain rule. Passing to local coordinates, we may
assume that M is an open subset of Rm, N is an open subset of Rn, p = 0, and
F (p) = 0. We write F (x) = (y1(x), . . . , yn(x)). Then any derivation X ∈ D0Rm is
given by X =

∑m
i=1 ai

∂
∂xi

(0). Note that

dFp(X) =

n∑
j=1

(
m∑
i=1

∂yj
∂xi

(0)ai

)
∂

∂yj
(0).

The LHS and RHS of (6.1) are

LHS = dFp(X)f =

m∑
i=1

n∑
j=1

ai
∂yj
∂xi

(0)
∂f

∂yj
(0), RHS =

m∑
i=1

ai
∂

∂xi
(f ◦ F )(0).

which are equal by the chain rule. �

Remark 6.13. We may use (6.1) to define dFp.

Definition 6.14. Let M be a smooth manifold. A smooth curve in M is a smooth
map γ : (a, b)→M where −∞ ≤ a < b ≤ +∞.

Notation 6.15. For any t ∈ (a, b), let γ′(t) (or dγ
dt (t)) denote the tangent vector

dγt
(
∂
∂t

)
∈ Tγ(t)M .

Example 6.16. If M = Rn, then a smooth map γ : (a, b)→M is given by

γ(t) = (x1(t), . . . xn(t))

where xi : (a, b)→ R are C∞ function on (a, b).

γ′(t) = (x′1(t), . . . , x′n(t)) =

n∑
i=1

x′i(t)
∂

∂xi
(γ(t)).
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Lemma 6.17. Let M be a smooth manifold and let γ : (−ε, ε) → M be a smooth
curve. Let γ(0) = p. Then γ′(0) is a derivation at p given by

(6.2) γ′(0)f =
d

dt
(f ◦ γ)|t=0

Proof. This is a special case of Lemma 6.12. �

Remark 6.18. do Carmo uses (6.2) to define a derivation γ′(0) : C∞p (M) → R
for each smooth curve passing through p ∈ M at t = 0. The tangent space TpM
is defined to be the collection of such γ′(0). Under this definition, the differential
dFp : TpM → TF (p)N of a smooth map F : M → N at p ∈M is defined by

γ′(0) 7→ (F ◦ γ)′(0).

7. Wednesday, September 30, 2015

Integral Curves

Definition 7.1. Let X be a smooth vector field on a smooth manifold M and
let γ : I → M be a smooth curve. We say that γ is an integral curve of X if
γ′(t) = X(γ(t)) for all t ∈ I.

Example 7.2. M = Rn

γ(t) = (x1(t), . . . , xn(t))

where xi : I → R are smooth functions on I. A smooth vector field on Rn is of the
form

X(x) = (a1(x), . . . , an(x)) =
∑
i

ai(x)
∂

∂xi

where ai are smooth functions on Rn, so X can be viewed as a smooth map from
Rn to Rn. The statement that γ is an integral curve of X is equivalent to a system
of ODE’s given by

dxi
dt

(t) = ai(x1(t), . . . , xn(t)), i = 1, . . . , n.

Theorem 7.3. Let M be a smooth manifold and let X be a smooth vector field on
M .

(i) For any point p ∈ M , there is an open interval Ip ⊂ R containing 0 and
an integral curve φp : Ip → M of X such that φp(0) = p and Ip is a
maximal interval for such a φp. Moreover, this integral curve is unique in
the following sense. If γ : I ′ → M is an integral curve of X on an open
interval I ′ containing 0 such that γ(0) = p, then I ′ ⊂ Ip and γ = φp|I′ .

(ii) For any p ∈M there is
• an open neighborhood U of p in M
• an open interval I of 0 in R
• a smooth map φ : I × U →M

such that {
∂φ
∂t (t, q) = X(φ(t, q))

φ(0, q) = q

Proof. We may assume M = Rn and p = 0. Then the proof becomes one in ODE’s.
Reference: Boothby Chapter IV. �
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Example 7.4. If M = Rn and p = (a1, . . . , an). Suppose that X is the identity
vector field, i.e. X(~x) = ~x for all ~x = (x1, . . . , xn) ∈ Rn. Then the integral curves
are straight lines emanating from the origin. In terms of local coordinates,{

dxi
dt = xi

xi(0) = ai
i = 1, . . . , n,

which implies xi(t) = aie
t. And φ : R × Rn → Rn is given by φ(t, x1, . . . , xn) =

(x1e
t, . . . , xne

t), or equivalently, φ(t, ~x) = et~x.

Example 7.5. Let M = {~x ∈ Rn : |~x| < 1} and again X is the identity vector
field. If p = ~a = (a1, . . . , an) then φp : Ip → Rn is given by φp(t) = et~a, where
Ip = (−∞,− log |~a|).

Remark 7.6. If q = φp(t0), then φq(t) = φp(t+ t0).

Now we change our point of view. Instead of fixing p, we fix time t in the function
φ(t, p). Define φt : U → M by the rule φt(q) = φ(t, q). We should think of this as
telling us where points in M get mapped after flowing a certain time t. Because of
this, we call φt the local flow of X.

Remark 7.7. By the previous remark (Remark 7.6), we find that φt1 ◦φt2 = φt1+t2

when both hand sides of the equality are defined.

Lemma 7.8. Let X be a smooth vector field on a smooth manifold M such that
the support of X is compact. Recall that the support of X is

Supp(X) = {p ∈M : X(p) 6= 0}.

Then there exists a unique smooth map φ : R×M →M such that

(7.1)
∂φ

∂t
(t, q) = X(φ(t, q)), φ(0, q) = q.

(In other words, we have a global flow φt : M →M which exists for all time t ∈ R.)

Proof. It suffices to prove the existence; the uniqueness follows from part (i) of
Theorem 7.3. Let K = Supp(X).
1. The set V := M \K is open, and X(q) = 0 for q ∈ V . Define φ : R × V → M
by φ(t, q) = q. Then φ is smooth, and it satisfies

∂φ

∂t
(t, q) = 0 = X(q) = X(φ(t, q)), φ(0, q) = q.

2. Given any p ∈ K, by Theorem 7.3 (ii), there exists an open neighbhood Up of p in
M and a positive number εp > 0 such that there is a C∞ map ψp : (−εp, εp)×Up →
M satisfying

∂ψp
∂t

(t, q) = X(ψp(t, q)), ψp(0, q) = q.

Moreover, if p1, p2 ∈ K and Up1 ∩ Up2 6= ∅ then part (i) of Theorem 7.3 implies

ψp1 |(−ε,ε)×(Up1∩Up2 ) = ψp2 |(−ε,ε)×(Up1∩Up2 )

where ε = min{εp1 , εp2} > 0. So we obtain a smooth map ψ(t, q) defined on
(−ε, ε)× (Up1 ∪ Up2).
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K is compact and K ⊂ ∪p∈KUp, so there are finitely many p1, . . . , pN ∈ K such
that K ⊂ ∪Ni=1Upi . Let ε := min{εp1 , . . . , εpN } > 0, and define U := ∪Ni=1Upi . Then
we obtain a smooth map ψ : (−ε, ε)× U →M satisfying

∂ψ

∂t
(t, q) = X(ψ(t, q)), ψ(0, q) = q.

3. By part (i) of Theorem 7.3, φ|(−ε,ε)×(U∩V ) = ψ|(−ε,ε)×(U∩V ), where φ : R× V →
M is defined in Step 1 above and ψ : (−ε, ε)× U → M is defined in Step 2 above.
We also have U ∪ V = M , so we obtain a smooth map φ : (−ε, ε) × M → M
satisfying (7.1).
4. For any t ∈ R, there exists a positive integer n such that |t| < nε. Define

φ(t, q) := φ(
t

n
, φ(

t

n
, · · ·φ(

t

n
,︸ ︷︷ ︸

n times

q )) · · · )︸ ︷︷ ︸
n times

where q ∈M ; the definition is independent of choice of n > |t|. Then φ : R×M →
M is a smooth map satisfying (7.1). �

If φt is defined on all of M and for all t ∈ R, then we have a group homomorphism
(R,+)→ (Diff(M), ◦) defined by t 7→ φt. In particular, φ0 is the identity map. The
inverse of φt is the map φ−t. The image of this group homomorphism lies in the
connected component of the identity diffeomorphism, since R is connected.

Flow and Lie derivative
Let M be a smooth manifold and let X be a smooth vector field. We have

defined the Lie derivative of X by the rule LX(f)(p) = X(p)(f). Recall that
LX : C∞(M)→ C∞(M) is R-linear and satisfies the Leibniz rule. Now we want to
extend LX to a map LX : C∞(M,TM)→ C∞(M,TM).

Definition 7.9. We define LX : C∞(M,TM)→ C∞(M,TM) by the rule

LX(Y ) = [X,Y ].

Then LX is an R-linear map. Moreover, it satisfies the following Leibniz rule:

LX(fY ) = LX(f)Y + f(LX(Y ))

for any smooth function f and any vector fields Y on M .

Remark 7.10. We have a few remarks.

• If we consider LX : C∞(M)→ C∞(M), then we can see that LfX = fLX
if f ∈ C∞(M) and X ∈ C∞(M,TM). So the operator LX on C∞(M) is
C∞(M)-linear in X.
• If we consider LX : C∞(M,TM)→ C∞(M,TM), then we can see that

LfX(Y ) = [fX, Y ] = f [X,Y ]− Y (f)X = fLX(Y )− Y (f)X.

So the operator LX on C∞(M,TM) is R-linear but not C∞(M)-linear in
X.

We now discuss the pushforward and pullback of a vector field under a diffeo-
morphism.
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Definition 7.11. Let F : M → N be a smooth diffeomorphism and let X be a
smooth vector field on M . Then we define the pushforward F∗X to be the smooth
vector field on N defined by

F∗X(p) = (dF )F−1(p)(X(F−1(p))).

Given a smooth vector field Y on N , we define the pullback of Y to be F ∗Y =
(F−1)∗(Y ), which is a smooth vector field on M .

Proposition 7.12. Let X be a smooth vector field on a smooth manifold M . Let
p be a point of M . By Theorem 7.3 (ii), there is an open neighborhood U of p in
M and a local flow φt : U → M of X for t in some small neighborhood (−ε, ε) of
0. Then

(a) For each f ∈ C∞p (M), we compute that

(LXf)(p) =
d

dt

∣∣∣
t=0

(φ∗t f)(p) =
d

dt

∣∣∣
t=0

(f ◦ φt)(p).

(b) For a smooth vector field Y defined an on open neighborhood V of p in U ,
we compute that

(LXY )(p) = − d

dt

∣∣∣
t=0

((φt)∗Y )(p) = lim
t→0

Y (p)− ((φt)∗Y )(p)

t
.

Proof. (a) We compute

d

dt

∣∣∣
t=0

(f ◦ φt)(p) =
d

dt

∣∣∣
t=0

f(φt(p)) =
d

dt

∣∣∣
t=0

f(φp(t))

=
d

dt

∣∣∣
t=0

(f ◦ φp)(t) = φ′p(0)f = X(p)f.

(b) It suffices to show that for any f ∈ C∞p (M), we have

[X,Y ](p)f = − d

dt

∣∣∣
t=0

((φt)∗Y )(p)f.

We then compute

((φt)∗Y )(p)f = (dφt)φ−t(p)(Y (φ−t(p)))f = Y (φ−t(p))(f ◦ φt),

where the second equality follows from Lemma 6.12. Let h(t, q) = f ◦ φt(q)− f(q).
Then note that h is a smooth map from (−δ, δ)×V → R for some small δ and some
open neighborhood V of p in M . Then h(0, q) = 0 for all q ∈ V . By Lemma 7.13
below, we may write

h(t, q) = tg(t, q)

where g : (−δ, δ)× V → R is some smooth function. Define gt : V → R by the rule
gt(q) = g(t, q). Then gt ∈ C∞(V ). By part (a),

(LXf)(q) =
d

dt

∣∣∣
t=0

(f ◦φt)(q) = lim
t→0

f ◦ φt(q)− f(q)

t
= lim
t→0

g(t, q) = g(0, q) = g0(q).

It follows that g0 = Xf ∈ C∞p (M). Then we find that

Y (φ−t(p))(f ◦ φt) = Y (φ−t(p))(f + tgt) = Y (φ−t(p))(f) + tY (φ−t(p))(gt).

Let r(t) = Y (φ−t(p))(gt), which is a smooth function in one variable t. Then we
find

Y (φ−t(p))(f ◦ φt) = (Y f)(φ−t(p)) + t · r(t).
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We now differentiate to find

d

dt

∣∣∣
t=0

((φt)∗Y )(p)f =
d

dt

∣∣∣
t=0

(Y f) ◦ φ−t(p) + r(0) = −X(p)(Y f) + Y (p)g0

=−X(p)(Y f) + Y (p)(Xf) = −[X,Y ](p)f

as desired. �

Lemma 7.13. Let δ be a small positive number, let U be an open subset of M , and
let h : (−δ, δ) × U → R be smooth. Suppose that h(0, q) = 0 for any q ∈ U . Then
h(t, q) = tg(t, q) for some smooth function g : (−δ, δ)× U → R.

Proof. Fix t, q. Let u(s) = h(st, q). Then u(s) is C∞ function of one variable s.

h(t, q) = h(t, q)− h(0, q) = u(1)− u(0) =

∫ 1

0

u′(s)ds =

∫ 1

0

t
∂h

∂t
(st, q)ds

= t

∫ 1

0

∂h

∂t
(st, q)ds = tg(t, q).

where

g(t, q) :=

∫ 1

0

∂h

∂t
(st, q)ds

is a C∞ function in (t, q) since h is. �

8. Monday, October 5, 2015

Definition 8.1 (Subbundle). Let π : E → M be a smooth vector bundle of rank
r over M . A subset F of E is called a smooth subbundle of rank k if for any
p ∈ M , there is an open neighborhood U of p in M and a local trivialization
h : π−1(U)→ U × Rr such that h

(
F ∩ π−1(U)

)
= U ∩ (Rk × {0}).

Remark 8.2. We have some remarks.

(i) For any p ∈ M , the fiber Fp = F ∩ Ep is a k-dimensional subspace of Ep.
Moreover, Fp depends smoothly on the choice of p.

(ii) The map π|F : F → M is a smooth vector bundle of rank k over M .
Moreover, the transition functions gFβα for this vector bundle are found by

restricting the transition functions gEβα for E: for x ∈ Uα ∩ Uβ ,

gEβα(x) =

[
gFβα(x) ?

0 ?

]
∈ GL(r,R)

where gFβα(x) ∈ GL(k,R).

Proposition 8.3. Let π : E → M be a smooth vector bundle of rank r over a
smooth manifold M . Let {Fp : p ∈ M} be a collection of k-dimensional linear
subspaces Fp of Ep and set F = ∪pFp ⊂ E. Then F is a smooth subbundle of E of
rank k if and only if for each p ∈ M , there is an open neighborhood U of p in M
and smooth sections s1, . . . , sk of π : π−1(U) = E|U → U such that for each q ∈ U ,
the collection {si(q)}ki=1 form a basis of Fq.

Example 8.4. The universal line bundle

E = {(l, v) : l ∈ Pn(R), v ∈ l} ⊂ Pn(R)× Rn+1
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is a smooth subbundle of the product bundle. For any l ∈ Pn(R), l ∈ Ui for some
i ∈ {1, . . . , n+ 1}, where Ui = {[x1, . . . , xn+1] ∈ Pn(R) : xi 6= 0}. On Ui, we define
si : Ui → E|Ui by

si([y1, . . . , yi−1, 1, yi, . . . , yn]) = ([y1, . . . , yi−1, 1, yi, . . . , yn], (y1, . . . , yi−1, 1, yi, . . . , yn).

Then si is a smooth section of Ui×Rn+1 → Ui, and El = Rsi(l) for any l ∈ Ui. By
Proposition 8.3, E is a rank 1 smooth subbundle of Pn(R)× Rn+1.

Definition 8.5 (Distribution). LetM be a smooth manifold. A smooth distribution
of dimension k on M is a collection {Fp ⊂ TpM : p ∈ M} of k-dimensional
subspaces Fp of TpM such that F = ∪pFp is a smooth subbundle of rank k of TM .

Remark 8.6. By Proposition 8.3, a collection {Fp ⊂ TpM : p ∈ M} of k-
dimensional subspaces Fp of TpM is a smooth distribution if and only if for each
p ∈M , there is an open neighborhood U of p and smooth vector fields X1, . . . , Xk

on U such that for each q ∈ U , the list {X1(q), . . . , Xk(q)} forms a basis for Fq.

Remark 8.7. Let C∞(M,F ) denote the space of smooth sections of the subbundle
F → M . Note that C∞(M,F ) is a C∞(M)-submodule of the space C∞(M,TM)
of smooth sections of TM , that is, the space of smooth vector fields on M .

Definition 8.8. Let F be a smooth distribution of dimension k on a smooth
manifold M of dimension n.

(i) We say that F is involutive if C∞(M,F ) is a Lie subalgebra of (C∞(M,TM), [−,−]).
(ii) We say that F is completely integrable if for each p in M , there is a chart

(U, φ) for M around p such that for each q ∈ U , the subspace Fq is spanned

by the list { ∂
∂x1

(q), . . . , ∂
∂xk

(q)}, where (x1, . . . , xn) are local coordinates on
U .

Remark 8.9. Note that F is completely integrable if and only if for each p ∈M ,
there is a k-dimensional submanifold S ⊂ M such that p ∈ S and for any q ∈ S,
the subspace TqS = Fq.

Example 8.10. We see that a smooth distribution F has the same dimension as
M if and only if F = TM . And of course F is involutive and completely integrable.

Example 8.11. If the dimension of F is 1, then F is both involutive and completely
integrable. For each point p ∈M , there is an open neighborhood U of p in M and
a smooth vector field X on U such that Fq = RX(q) for each q ∈ U . There is an
integral curve of X on this neighborhood showing that F is completely integrable.
Moreover, to see that F is involutive, we note that any smooth section of F is
locally a multiple of X and hence

[fX, gX] = (fX(g)− gX(f))X.

Lemma 8.12. If F is completely integrable then F is involutive.

Proof. Suppose that X and Y are smooth sections of F . On a coordinate chart
(U, φ), we may write

X =

k∑
i=1

ai
∂

∂xi

Y =

k∑
i=1

bi
∂

∂xi
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for some smooth functions ai, bi ∈ C∞(U). Then we compute that

[X,Y ] =

k∑
i,j=1

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj

belongs to the span of { ∂
∂x1

(q), . . . , ∂
∂xk

(q)}. �

The converse is also true:

Theorem 8.13 (Frobenius). A smooth distribution F on a smooth manifold is
completely integrable if and only if F is involutive.

Proof. A reference is [Bo, Chapter IV, Section 8]. �

Operations on vector bundles
Let π : E →M be a smooth vector bundle of rank r over a smooth manifold M .

We will construct a smooth vector bundle π∗ : E∗ → M called the dual bundle,
whose fibers are given by E∗p = (Ep)

∗.
Let π : E →M be a smooth vector bundle of rank r over a smooth manifold M .

Let E∗ denote the set
E∗ =

⋃
p∈M

E∗p .

Define π∗ : E∗ → M such that π∗(E∗p) = {p}. We wish to equip E∗ with the
structure of a smooth manifold.
1. Suppose that {Uα : α ∈ I} is an open cover of M and hEα : π−1(Uα) = E|Uα →
Uα × Rr are local trivializations of E. Let {e1, . . . , er} be the standard basis of
Rr, and define sαi : Uα → π−1(Uα) by h−1

α (x, ei). Then {sα1, . . . , sαr} is a C∞

frame of E|Uα → Uα. Suppose that Uα ∩ Uβ 6= ∅. Then there exists a C∞ map
gEβα : Uα ∩ Uβ → GL(r,R) such that

sαj(x) =

r∑
i=1

sβi(x)gEβα(x)ij .

The transition function hEβ ◦ (hEα )−1 : (Uα ∩Uβ)×Rr → (Uα ∩Uβ)×Rr is given by

hEβ ◦ (hEα )−1(x, v) = (hEβ )(x,

r∑
j=1

vjsαj(x)) = hEβ (x,

r∑
i,j=1

vjsβi(x)gEβα(x)ij)

= hEβ (x,

r∑
i=1

uisβi(x)) = (x, ui)

where ui =
∑r
j=1 g

E
βα(x)ijvj . So the transition function is given by

hEβ ◦ (hEα )−1(x, v) = (x, gEβα(x)v).

2. Let Γ(Uα, E
∗|Uα) denote the set of maps s : Uα → (π∗)−1(Uα) = ∪x∈UαE∗x such

that s(x) ∈ E∗x. For any x ∈ Uα, let {s∗α1(x), . . . , s∗αr(x)} be the basis of E∗x dual
to the basis {sα1(x), . . . , sαr(x)} of Ex:

〈s∗αi(x), sαj(x)〉 = δij .

Then s∗α1, . . . , s
∗
βr ∈ Γ(Uα, E

∗|Uα), and there is a bijection

Φα : Uα × Rr → (π∗)−1(Uα), (x, v) 7→ (x,

r∑
i=1

vis
∗
αi(x)).
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We equip (π∗)−1(Uα) with the topological structure and C∞ structure such that the
bijection Φα is a C∞ diffeomorphism. Define hE

∗

α := Φ−1
α : (π∗)−1(Uα)→ Uα×Rr.

Then π∗|(π∗)−1(Uα) = pr1 ◦ hE
∗

α and hE
∗

α |E∗x is a linear isomorphism from Ex to
{x} × Rr ∼= Rr for all x ∈ Uα
3. Suppose that Uα ∩ Uβ 6= ∅.

s∗βi(x) =

r∑
i=1

〈s∗βi(x), sαj(x)〉s∗αj(x) =

r∑
j=1

gEβα(x)ijs
∗
αj(x) =

r∑
j=1

s∗αj(x)
(
gEβα(x)T

)
ji
.

where AT denote the transpose of A. Therefore,

hE
∗

α ◦ (hE
∗

β )−1 : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr

is given by hE
∗

α ◦ (hE
∗

β )−1(x, v) = (x, gEβα(x)T v). Its inverse map

hE
∗

β ◦ (hE
∗

α )−1 : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr

is given by

(8.1) hE
∗

β ◦ (hE
∗

α )−1(x, v) = (x, (gEβα(x)T )−1v)

which is a C∞ diffeomorphism. This shows that the topological structures and
C∞ structures on (π∗)−1(Uα) and (π∗)−1(Uβ) defined in Step 2 coincide on their
intersection (π∗)−1(Uα ∩ Uβ), so we obtain the structure of a C∞ manifold on E∗.
Indeed, by shrinking Uα we may assume that there is a C∞ atlas on M of the form
{(Uα, φα) : α ∈ I}. Define

φ̃α : (π∗)−1(Uα)→ φα(Uα)× Rr, φ̃α(x,

r∑
i=1

vis
∗
αi(x)) = (φα(x), (v1, . . . , vr)).

Then {
(

(π∗)−1(Uα), φ̃α

)
: α ∈ I} is a C∞ atlas for E∗. Moreover, hE

∗

α and

hE
∗

β ◦ hE
∗

α satisfy (i) and (ii) in Definition 4.15, respectively. Finally, (8.1) tells us

gE
∗

βα (x) = (gEβα(x)T )−1 for x ∈ Uα ∩ Uβ .

Remark 8.14. The C∞ structure on E∗ is characterized as follows. Let Γ(M,E∗)
denote the set of maps φ : M → E∗ = ∪x∈ME∗x such that φ(x) ∈ E∗x. We
say φ ∈ Γ(M,E∗) is a smooth section of E∗ → M if, for every smooth section
s : M → E, the function 〈φ, s〉 : M → R is smooth. Equivalently, given C∞ frame
{sα1, . . . , sαr} of E|Uα , we declare that {s∗α1, . . . , s

∗
αr} is a C∞ frame of E∗|Uα . For

any φ ∈ Γ(Uα, E
∗|Uα) we may write

φ(x) =

r∑
i=1

ai(x)s∗αi(x), x ∈ Uα.

φ is a smooth section, i.e., φ ∈ C∞(Uα, E
∗|Uα), if and only if a1, . . . , ar are smooth

functions on Uα.

Let F be another smooth vector bundle over M . We may apply operations
on vector spaces to construct new smooth vector bundles. For example, we can
construct E ⊕ F and E ⊗ F whose fibers are given by Ep ⊕ Fp and Ep ⊗ Fp re-
spectively. As another example, we can take Hom(E,F ) whose fibers are given by
Hom(E,F )p = Hom(Ep, Fp). Note that Hom(E,F ) ' E∗ ⊗ F . We can also take
the k-th exterior power ΛkE, where k ≤ r.
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In each above example, the smooth structure is given by the following. For
each point p ∈ M , we take a neighborhood U of p such that there is a C∞ frame
{e1, . . . , er} for E|U and a C∞ frame {f1, . . . , fs} for F |U .

• The dual frame {e∗1, . . . , e∗r} is a C∞ frame for E∗|U .
• {e1, . . . , er, f1, . . . , fs}, we get a C∞ frame for (E ⊕ F )|U .
• {ei ⊗ fj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} is a C∞ frame for (E ⊗ F )|U .
• {ei1 ∧· · ·∧eik : 1 ≤ i1 < · · · < ik ≤ r} is a C∞ frame of ΛkE. (Here k ≤ r.)

9. Wednesday, October 7, 2015

Definition 9.1. Let M be a smooth manifold. The cotangent space at p ∈ M is
the space T ∗pM := (TpM)∗, the dual vector space of the tangent space TpM to M
at p. A cotangent vector at p ∈M is an element of T ∗pM . The cotangent bundle of
M is T ∗M := (TM)∗, the dual of the tangent bundle TM of M .

Definition 9.2. Let M be a smooth manifold.

(i) A smooth (r, s)-tensor on M is a smooth section of

T rsM := (TM)⊗r ⊗ (T ∗M)⊗s.

(ii) A smooth s-form on M is a smooth section of ΛsT ∗M .

Example 9.3. A vector field is a (1,0)-tensor. An s-form is a particular type of
(0, s)-tensor. A 1-form is the same as a (0, 1)-tensor.

Example 9.4. Let f : M → R be smooth. Then for any point p ∈ M , the
differential dfp is a linear map dfp : TpM → R. It follows that dfp ∈ T ∗pM . Suppose
that (U, φ) is a chart for M and φ = (x1, . . . , xn) are local coordinates. Then

〈df, ∂

∂xi
〉 =

∂f

∂xi
are smooth functions on U . This shows that df is a smooth section of T ∗M , i.e.,
df is a smooth 1-form on M . The 1-form df is called the differential of f .

We now study tensors in local coordinates. Let (U, φ) be a chart for M such
that φ = (x1, . . . , xn). Then we know that { ∂

∂x1
, · · · , ∂

∂xn
} is a smooth frame for

TM |U = TU . The differentials dxi of the coordinate functions are smooth sections
of T ∗M |U = T ∗U and

dxi(
∂

∂xj
) = δij .

So {dx1, . . . , dxn} is a C∞ frame of T ∗U dual to the C∞ frame { ∂
∂x1

, . . . , ∂
∂xn
} For

any smooth function f : U → R, we may write

df =

n∑
i=1

∂f

∂xi
dxi.

More generally, any smooth (r, s)-tensor can be written in terms of the local frames:∑
1≤i1,··· ,ir≤n
1≤j1,··· ,js≤n

ai1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

where ai1···irj1···js ∈ C
∞(U).

Pullback of (0, s) tensors under a C∞ map
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Definition 9.5. Let φ : M → N be a smooth map between smooth manifolds.
Let p be a point of M . Then dφp : TpM → Tφ(p)N is a linear map. We get a dual
linear map dφ∗p : T ∗φ(p)N → T ∗pM . Then for any (0, s)-tensor T on N , we let φ∗T

denote the (0, s)-tensor of M described by

φ∗T (p) = (dφ∗p)
⊗s(T (φ(p))).

Definition 9.6. We let Ωs(N) denote the space of smooth s-forms on N , that is,
the space of smooth sections of ΛsT ∗N . The above definition implies that we may
pull back s-forms.

Lemma 9.7. For any smooth function f : N → R, we have

φ∗(df) = d(φ∗f).

Proof. For any p ∈M , we compute

(φ∗df)(p) = dφ∗p(dfφ(p)) = dfφ(p) ◦ dφp = d(f ◦ φ)p = d(φ∗f)(p).

�

Example 9.8. Let φ : (0,∞)× R→ R2 be the map

φ(r, θ) = (r cos θ, r sin θ).

Note φ∗x = r cos θ and φ∗y = r sin θ. Then

φ∗dx = d(φ∗x) = d(r cos θ) = cos θdr − r sin θdθ

and

φ∗dy = d(φ∗y) = d(r sin θ) = sin θdr + r cos θdθ.

We also compute that

φ∗(dx ∧ dy) = rdr ∧ dθ.

Pullback and pushforward of tensors under a C∞ diffeomorphism

Definition 9.9. Let φ : M → N be a smooth diffeomorphism. It follows that
dφp : TpM → Tφ(p)N is an invertible linear map with inverse d(φ−1)φ(p). Then we
get a map φ∗ : C∞(N,T rsN)→ C∞(M,T rsM) called the pullback described by

φ∗T (p) = [(d(φ−1)φ(p))
⊗r ⊗ (dφ∗p)

⊗s]T (φ(p))

We also get a map φ∗ : C∞(M,T rsM) → C∞(N,T rsN) called the pushforward
described by φ∗ = (φ−1)∗.

Example 9.10. If X is a smooth vector field, then

φ∗X(q) = dφφ−1(q)X(φ−1(q))

for any q ∈ N .

Lemma 9.11. If φ : M1 →M2 and ψ : M2 →M3 are smooth maps.

(i) Then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
(ii) If φ, ψ are diffeomorphisms, then (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Lie derivatives on tensors
Let X be a smooth vector field on M . We have already defined LXf = X(f) for

f : M → R a smooth function. We have also defined LX(Y ) = [X,Y ] for a smooth
vector field Y on M . Now we want to define LXT for any smooth tensor T .
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Recall from before that if φt : U →M is the local flow of X around p ∈M , then

LXf(p) =
d

dt

∣∣∣
t=0

(φ∗t f)(p)

and

LXY (p) =
d

dt

∣∣∣
t=0

(φ∗tY )(p).

Note that φ∗t = (φ−1
t )∗ = (φ−t)∗.

Definition 9.12. Let M be a smooth manifold and let X be a smooth vector
field. We can define the Lie derivative with respect to X to be the map LX :
C∞(M,T rsM)→ C∞(M,T rsM) by the rule

LXT (p) :=
d

dt

∣∣∣
t=0

(φ∗tT )(p)

where φt : U →M is the local flow of X.

Lemma 9.13. The Lie derivative satisfies the following properties

(i) For a smooth function f , we have LXf = X(f).
(ii) For a smooth vector field Y , we have LXY = [X,Y ].
(iii) For a (0,1)-tensor α and Y a vector field, we have

(LXα)(Y ) = LX(α(Y ))− α(LXY ) = X(α(Y ))− α([X,Y ]).

(iv) For tensors S and T , we have

LX(S ⊗ T ) = LX(S)⊗ T + S ⊗ LX(T ).

In particular, if f is a smooth function, then

LX(fT ) = X(f)T + fLXT

Proof. To see (iii), we can check that

φ∗t (α(Y )) = (φ∗tα)(φ∗t (Y )).

For (iv), we can check that

φ∗t (S ⊗ T ) = φ∗tS ⊗ φ∗tT.
�

Remark 9.14. Alternatively, one can use properties (i) through (iv) to define the
Lie derivative.

Lemma 9.15. LX ◦ LY − LY ◦ LX = L[X,Y ].
This means that the map L : C∞(M,TM)→ gl(C∞(M,T rsM)) given by X 7→ LX
is a Lie algebra homomorphism.

Proof. Assignment 5 (1). �

Exterior derivative on forms

Definition 9.16. Define d : Ωs(M) → Ωs+1(M) to be the unique R-linear map
satisfying

(i) If f is a smooth function on M , then df is the differential of f .
(ii) For any smooth function f on M , we have ddf = 0.
(iii) (Leibniz rule): If α is an r-form and β is an s-form, then

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ.
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In terms of local coordinates, we have the following. If α is an s-form and (U, φ)
is a local coordinate chart, then we may write

α =
∑

1≤j1<···js≤n

aj1···jsdxj1 ∧ · · · ∧ dxjs

and we compute

dα =
∑

1≤j1<···js≤n

daj1···js ∧ dxi1 ∧ · · · ∧ dxjs

Proposition 9.17. Let ω be an s-form on M . Then we have the following.

(i) ddω = 0.
(ii) If φ : M ′ →M is a smooth map, then d(φ∗ω) = φ∗(dω), that is, d commutes

with pullbacks.
(iii) If X is a smooth vector field on M , then d(LXω) = LX(dω), that is, d

commutes with Lie derivatives.
(iv) For an s-form ω and vector fields X0, . . . , Xs, we compute

dω(X0, . . . , Xs) =

s∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xs))

+
∑

0≤i,j≤s

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xs).

Proof. The proofs of (i) and (ii) are straightforward. Taking φ = φt in (ii), we get
(iii). The proof of (iv) is Assignment 5 (3). �

Interior derivatives on forms

Definition 9.18. Let X be a smooth vector field on a smooth manifold M . Define
iX : Ωs(M)→ Ωs−1(M) by the rules

(i) iXf = 0 for a smooth function f : M → R and
(ii) For an s-form α, we have iXα(X1, . . . , Xs−1) = α(X,X1, . . . , Xs−1).

Lemma 9.19. We have the following.

(i) iX ◦ iX = 0
(ii) iX(α ∧ β) = iXα ∧ β + (−1)deg(α)α ∧ iXβ.
(iii) (Cartan’s formula): We have d ◦ iX + iX ◦ d = LX .

Proof. (i) and (ii) are straightfoward to check. (iii) is Assignment 5 (2a). �

10. Monday, October 12, 2015

Riemannian Metrics

Definition 10.1. Let M be a smooth manifold. A Riemannian metric g on M is
a smooth (0, 2)-tensor such that for any p ∈M , g(p) : TpM × TpM → R is a inner
product on TpM . We say such a pair (M, g) is a Riemannian manifold.

The tensor bundle T 0
2M can be written as a direct sum of two C∞ subbundles:

T 0
2M = (T ∗M)⊗2 = S2(T ∗M)⊕ Λ2(T ∗M)

where S2(T ∗M) is the symmetric square of T ∗M .
Let n = dim(M). For any p ∈M ,

• (T ∗pM)⊗2 is the space of bilinear forms on TpM , which is n2 dimensional;
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• S2T ∗pM is the space of symmetric bilinear forms on TpM , which is 1
2n(n+1)

dimensional;
• Λ2T ∗pM is the space of skew-symmetric bilinear forms on TpM , which is

1
2n(n− 1) dimensional.

Let Ω ⊂ C∞(M,S2T ∗M) denote the space of Riemannian metrics on M . Then
we claim that Ω is a convex subset. This is because if g0, g1 ∈ Ω, then (1−t)g0 +tg1

is a Riemannian metric for t ∈ [0, 1]. In particular, we see that Ω is contractible.

We now discuss Riemannian metrics in local coordinates. Let (U, φ) be a chart
for M and write φ = (x1, . . . , xn). Then {dx1, . . . , dxn} is a C∞ frame for T ∗M |U =
T ∗U . If we let

dxidxj =
1

2
(dxi ⊗ dxj + dxj ⊗ dxi)

then we see that {dxidxj : 1 ≤ i ≤ j ≤ n} is a C∞ frame for S2T ∗M |U . Then we
know that on U , we may write

g =
∑
i,j

gijdxidxj

for some smooth functions gij , where gij = gji. For any p, the collection (gij(p))
forms a symmetric, positive definite, n× n matrix with entries in R.

Example 10.2. Let M = Rn. Then we let g0( ∂
∂xi

, ∂
∂xj

) = δij . This is called the

Euclidean metric. In terms of global coordinates (x1, . . . , xn) on Rn,

g0 = dx2
1 + · · ·+ dx2

n.

Example 10.3. On R2, let (x, y) be the cartesian coordinates, so that the Eulidean
metric g0 can be written as g0 = dx2 + dy2. The polar coordinates (r, θ), which are
local coordinates around any point in R2 − {(0, 0)}, are related to (x, y) by

x = r cos θ, y = r sin θ

In terms of the polar coordinates, the Euclidean metric is of the form

g0 = Edr2 + F (drdθ + dθdr) +Gdθ2 = Edr2 + 2Fdrdθ +Gdθ2,

where

E = g0(
∂

∂r
,
∂

∂r
), F = g0(

∂

∂r
,
∂

∂θ
), G = g0(

∂

∂θ
,
∂

∂θ
).

We have

∂

∂r
=

∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
= cos θ

∂

∂x
+ sin θ

∂

∂y
=
x ∂
∂x + y ∂

∂y√
x2 + y2

,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
= −y ∂

∂x
+ x

∂

∂y

We compute that E = 1, F = 0 and G = r2. It follows that

g0 = dr2 + r2dθ.

{ ∂∂x ,
∂
∂y} is an C∞ orthonormal frame for TR2.

{ ∂∂r ,
1
r
∂
∂θ} is a C∞ orthonormal frame for TR2|R2−{(0,0)}.
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Example 10.4. On R3, the Euclean metric is g0 = dx2 + dy2 + dz2 in terms
of the cartesian coordinates (x, y, z). The spherical coordinates (ρ, φ, θ) are local
coordinates around any point in U := (R2 − {(0, 0)}) × R, the complement of the
z-axis x = y = 0; they are related to the cartesian coordinates by

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

We find that

∂

∂ρ
=
x ∂
∂x + y ∂

∂y + z ∂
∂z√

x2 + y2 + z2

∂

∂θ
= −y ∂

∂x
+ x

∂

∂y

∂

∂φ
=

1√
x2 + y2

(
xz

∂

∂x
+ yz

∂

∂y
− (x2 + y2)

∂

∂z

)
.

ρ =
√
x2 + y2 + z2 is a smooth function on U ; indeed it is a smooth function on

R3−{(0, 0, 0)}. Although φ and θ are well-defined only locally but not globally on
U , the above computations show that ∂

∂ρ , ∂
∂θ , ∂

∂φ are well-defined C∞ vector fields

on U and form a C∞ frame for TR3|U ; dφ and dθ are well-defined, smooth 1-forms
on U , and {dρ, dθ, dφ} is a C∞ frame for T ∗R3|U .

We compute that

g0 = dρ2 + ρ2dφ2 + ρ2 sin2 φdθ2.

{ ∂∂x ,
∂
∂y ,

∂
∂z} is a C∞ orthonormal frame for TR3.

{ ∂∂ρ ,
1
ρ
∂
∂φ ,

1
ρ sinφ

∂
∂θ} is a C∞ orthonormal frame for TR3|U .

Let f : M → N be a smooth map between smooth manifolds. If g is a Riemann-
ian metric on N , then g ∈ C∞(N,S2(T ∗N)), so f∗g ∈ C∞(M,S2T ∗M). Given
p ∈M , (f∗g)(p) is an inner product on TpM iff dfp : TpM → Tf(p)M is injective iff
f is an immersion at p. Therefore, if f is an immersion then f∗g is a Riemannian
metric on M .

Definition 10.5. Let f : M → N be a smooth immersion and let g be a Riemann-
ian metric on N . Then f∗g is a Riemannian metric on M called the pullback.

Example 10.6. Let ir : S2(r)→ R3. Then gcan := i∗rg0 is known as the canonical
metric or round metric on the sphere of radius r.

It is convenient to use the coordinates

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

Then we find that

gcan = i∗rg0 = r2(dφ2 + sin2 φdθ2)

Definition 10.7. Let f : (M, g1)→ (N, g2) be a smooth map between Riemannian
manifolds. We say that f is

(i) an isometric immersion (resp. embedding) if f is an immersion (resp. em-
bedding) and f∗g2 = g1 (in other words, if the differential preserves the
inner product).

(ii) a (local) isometry if f is a (local) diffeomorphism and f∗g2 = g1.



33

Suppose that i : (M1, g1) ↪→ (M2, g2) is an isometric embedding. Then i(M1) is
a Riemannian submanifold of (M2, g2). This means that it is a submanifold when
equipped with the Riemannian metric given by pulling back the metric on M2 under
inclusion.

Example 10.8. Let ir : Sn(r) → Rn+1. Then gcan = i∗rg0 is the round metric on
the n-sphere of radius r > 0.

Example 10.9. Let A ∈ GL(n,R). Then A defines an invertible linear map
A : Rn → Rn. In particular, A is a smooth diffeomorphism. Then we can pull back
the Euclidean metric. We find that

A∗g0 =
∑
i

d
(∑

j

Aijdxj

)
d
(∑

k

Aikdxk

)
=
∑
j,k

(∑
i

AijAik

)
dxjdxk

=
∑
j,k

(ATA)jkdxjdxk.

We see that A is an isometry if and only if A∗g0 = g0, which happens if and only
if ATA = I, which means that A ∈ O(n).

We will see later the following.

Theorem 10.10. A smooth map φ : (Rn, g0)→ (Rn, g0) is an isometry if and only
if φ is a rigid motion, i.e. φ(x) = Ax+ b for some A ∈ O(n) and b ∈ Rn.

Example 10.11. Let A ∈ O(n + 1). Then A(Sn(r)) = Sn(r). It follows that the
restriction A : (Sn(r), gcan) → (Sn(r), gcan) is an isometry. We will see later that,
these are all of the isometrics of the round sphere.

Example 10.12. Let φ : R→ S1 be the map φ(t) = (cos t, sin t). This is a smooth
local diffeomorphism. On R, we have the metric dt2 and on R2, we have the metric
dx2 + dy2, which induces the metric gcan on S1. Then we find that

φ∗gcan = (i ◦ φ)∗(dx2 + dy2) = (− sin tdt)2 + (cos tdt)2 = dt2.

It follows that φ : (R, dt2)→ (S1, gcan) is a local isometry.

Definition 10.13. Let (M1, g1) and (M2, g2) be Riemannian manifolds and let
M1 ×M2 denote the product manifold. For i = 1, 2, let πi : M1 ×M2 → Mi. We
define the product metric on M1 ×M2 to be

g1 × g2 = π∗1g1 + π∗2g2.

In this way, the metric on T(p1,p2)(M1 ×M2) ensures the space decomposes as an
orthogonal sum Tp1M1 ⊕ Tp2M2. This means that

(g1 × g2)(p1, p2)((u1, v1), (u2, v2)) = 〈u1, u2〉p1 + 〈v1, v2〉p2 .

Example 10.14. Let Tn denote the torus S1 × · · · × S1︸ ︷︷ ︸
n copies

. The flat metric on T is

g = gcan × · · · × gcan︸ ︷︷ ︸
n times

. Let φ : Rn → Tn be the map

(t1, . . . , tn) 7→ ((cos t1, sin t1), . . . , (cos tn, sin tn)).

Then φ is a local isometry from (Rn, g0) to (Tn, g).
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Definition 10.15. Let M be a smooth manifold (note that we are assuming that
M is Hausdorff with a countable basis). A smooth partition of unity on M is a
collection of smooth functions {fγ ∈ C∞(M) : γ ∈ Γ} such that

(i) (nonnegative) We have fγ ≥ 0 for each γ
(ii) (locally finite) The collection {suppfγ : γ ∈ Γ} is locally finite in the sense

that for each p ∈M , there is a neighborhood W of p such that only finitely
many suppfγ intersect W .

(iii) For each p ∈M , we have ∑
γ∈Γ

fγ(p) = 1.

Note that the left hand side is a finite sum by (ii).

Moreover we say that a partition of unity {fγ} is subordinate to an open cover
A = {Aα : α ∈ I} if for each γ ∈ Γ, there is an α ∈ I such that suppfγ ⊆ Aα.

Theorem 10.16. Let M be a smooth manifold and let A = {Aα : α ∈ I} be an
open cover of M . Then there is a partition of unity {fγ : γ ∈ Γ} subordinate to the
open cover A.

Proof. See [Bo, Chapter V Section 4]. �

The proofs of the following two propositions rely on Theorem 10.16 and will be
presented on the roundtable on October 16.

Proposition 10.17. Let M be a smooth manifold. Then there is a Riemannian
metric on M .

Proposition 10.18. Let M be a compact Hausdorff smooth n-manifold. Then M
can be smoothly embedded in R2n+1.

We have the following classical theorems.

Theorem 10.19 (Weak Whitney Embedding). Let M be a smooth n-manifold
(Hausdorff and countable basis). Then M can be smoothly embedded in R2n+1 as a
closed submanifold.

Theorem 10.20 (Strong Whitney Emdedding). Let M be a smooth n-manifold
(Hausdorff with countable basis). Then M can be smoothly embedded in R2n as a
closed submanifold.

Theorem 10.21 (Nash Embedding Theorem). Any Riemannian n-manifold can be
isometrically embedded in Rn(n+1)(3n+11)/2. Any compact Riemannian n-manifold
can be isometrically embedded in Rn(3n+11)/2.

11. Wednesday, October 14, 2015

Volume form

Definition 11.1 (Volume Form). Let M be a smooth n-manifold. A volume form
on M is a smooth n-form ν on M such that ν(p) 6= 0 for any p ∈M .

Lemma 11.2. If M is a smooth n-manifold, the following are equivalent.

(i) There is a volume form on M .
(ii) ΛnT ∗M is trivial.
(iii) M is orientable.
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Proof. (i)⇔ (ii): Item (i) means that there is a global smooth frame for ΛnT ∗M .
This happens if and only if ΛnT ∗M is a trivial vector bundle of rank 1 by a previous
lemma.
(i)⇒ (iii): Assume that (i) holds. Call the volume form ν. Let {(Uα, φα) : α ∈ I}
be a smooth atlas for M such that each Uα is connected. We define a smooth atlas
{(Uα, φ′α) : α ∈ I} as follows: On Uα, we may write ν = fαdx

α
1 ∧ · · · ∧ dxαn where

n is the dimension of M and φα = (xα1 , . . . , x
α
n) are local coordinates on Uα. We

know that fα 6= 0, and Uα is connected. It follows that either fα > 0 or fα < 0 on
Uα.

• If fα > 0, define (U ′α, φ
′
α) = (Uα, φα).

• If fα < 0, then let r be the map r(x1, . . . , xn) = (−x1, x2, . . . , xn) and
define (Uα, φ

′
α = r ◦ φα).

Then we can check that {(Uα, φ′α) : α ∈ I} defines an orientation on M .
(iii)⇒ (i): Assume that (iii) holds. Suppose that {(Uα, φα) : α ∈ I} is an orientation
on M , that is, {(Uα, φα) : α ∈ I} is a smooth atlas on M such that det d(φβ ◦
φ−1
α ) > 0 on φα(Uα ∩ Uβ). Equip M with a Riemannian metric g. On Uα, write
φα = (xα1 , . . . , x

α
n). Then

g =

n∑
i,j=1

gαijdx
α
i dx

α
j

where gαij = 〈 ∂
∂xαi

, ∂
∂xαj
〉 ∈ C∞(Uα), and (gαij(p)) is a positive definite symmetric

n× n matrix for every p ∈ Uα.

Define να ∈ Ωn(Uα) to be να =
√

det(gαij)dx
α
1 ∧ · · · ∧ dxαn. For each p ∈ Uα,

we know that gαij(p) is a symmetric positive definite matrix and so det(gαij) : Uα →
(0,∞). Then να is a smooth nowhere zero section of (ΛnT ∗M)|Uα . If Uα∩Uβ 6= ∅,
then

gβkl = 〈 ∂

∂xβk
,
∂

∂xβl
〉 = 〈

∑
i

∂xαi

∂xβk

∂

∂xαi
,
∑
j

∂xαj

∂xβl

∂

∂xαj
〉 =

∑
i,j

∂xαi

∂xβk

∂xαj

∂xβl
gαij .

Write Aij = gαij and Bkl = gβkl and Cik =
∂xαi
∂xβk

. Then B = CtAC. It follows that

detB = detA(detC)2 ⇒ detB = detA
√

detC (since A, B are symmetric and
positive definite, and detC > 0). We also have

dxα1 ∧ · · · ∧ dxαn = detCdxβ1 ∧ · · · ∧ dxβn.

On Uα ∩ Uβ ,

να =
√

detAdxα1 ∧ · · · ∧ dxαn =
√

detA detCdxβ1 ∧ · · · ∧ dxβn
= detBdxβ1 ∧ · · · ∧ dxβn = νβ .

�

Remark 11.3. Let (M, g) be an oriented Riemannian manifold of dimension n.
Then there is a unique volume form ν compatible with the orientation and the
Riemannian metric, namely, the one we constructed. For any p ∈ M , choose
an orthonormal basis (e1, . . . , en) for TpM compatible with the orientation in the
sense that if {(Uα, φα)} is an orientation and φα = (xα1 , . . . , x

α
n), then (dxα1 ∧ · · · ∧

dxαn)p(e1, . . . , en) > 0. Then we let ν(p) = e∗1∧· · ·∧e∗n, where (e∗1, . . . , e
∗
n) is the dual
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basis of T ∗pM . This is well-defined because if (f1, . . . , fn) is another orthonormal
basis which is compatible with the orientation then

fi =

n∑
j=1

aijej

where aij = A ∈ O(n) and det(A) > 0 (which means that A ∈ SO(n)) and so

f∗1 ∧ · · · ∧ f∗n = e∗1 ∧ · · · ∧ e∗n.

Example 11.4. For (Rn, g0 = dx2
1 + · · ·+ dx2

n), we let ei = ∂
∂xi

and e∗i = dxi and
so ν = dx1 ∧ · · · ∧ dxn.

Example 11.5. Let j : (Sn, gcan) ↪→ (Rn+1, g0) be the round unit sphere isomet-
rically embedded in Rn+1. For any x = (x1, . . . , xn+1) ∈ Sn, we know that

TxS
n = {v ∈ Rn+1 : x · v = 0}.

Then we find that,

volSn,gcan = ±j∗(iX(dx1 ∧ · · · ∧ dxn+1))

where ± depends on the orientation on Sn, and X =
∑n+1
j=1 xj

∂
∂xj

.

Example 11.6. More generally, let (Nn+1, g) be an oriented Riemannian man-
ifold. Let j : Mn ↪→ Nn+1 be a submanifold of codimension 1 equipped with
the Riemannian metric j∗g. If M is also oriented, then we have volume forms
νM ∈ Ωn(M) and νN ∈ Ωn+1(M) which are compatible with the orientations and
metrics. Suppose that there is a vector field X on N such that for any p ∈ M ,
we have |X(p)| = 1 and X(p) ⊥ TpM . By replacing X by −X if necessary, we
may further assume that (X(p), e1, . . . , en) is an orthonormal basis for TpN which
is compatible with the orientation on N where e1, . . . , en is an orthonormal basis
for TpM compatible with the orientation on M . Then j∗(iXνN ) = νM .

Integration on an oriented manifold
Let (M, g) be a smooth n-manifold equipped with an orientation defined by a

C∞ atlas {(Uα, φα) : α ∈ I}. Let φα = (xα1 , . . . , x
α
n). Given a smooth n-form ω

and a compact subset R of ω, the integral∫
R

ω

is characterized by the following properties.

(1) Suppose that R is contained in Uα for some α ∈ I, and let (xα1 , . . . , x
α
n)

be local coordinates on Uα. On Uα, any smooth n-form can be written as
ω = fαdx

α
1 ∧ · · · dxαn for some fα ∈ C∞(Uα). We define∫

R

ω =

∫
φα(R)

fα(x)dxα1 · · · dxαn.

(2) If R1 and R2 are disjoint compact subsets of M then∫
R1∪R2

ω =

∫
R1

ω +

∫
R2

ω.

(3) If ω1, ω2 ∈ Ωn(M) and c1, c2 ∈ R then∫
R

(c1ω1 + c2ω2) = c1

∫
R

ω1 + c2

∫
R

ω2.
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Let {fγ : γ ∈ Λ} be a partition of unity subordinate to the open cover {Uα : α ∈
I}. Given any ω ∈ Ωn(M),∫

R

ω =

∫
R

∑
γ∈Λ

fγω =
∑
γ∈Λ

∫
R

fγω =
∑
γ∈Λ

∫
Rγ

fγω.

where Rγ := R ∩ Supp(fγ) is a compact set contained in some Uα, so we define∫
Rγ
fγω by (1).

Definition 11.7. Let (M, g) be an oriented Riemannian manifold and let νg be a
volume form compatible with the orientation and Riemannian metric g. Given a
compact set R in M , we define the volume of R

volumeg(R) =

∫
R

νg.

Example 11.8. Equip S2 with the metric gcan = dφ2 + sin2 φdθ2. Let U =
S2 \ {(0, 0, 1), (0, 0,−1)}. An orthonormal frame for TS2|U is

∂

∂φ
,

1

sinφ

∂

∂θ

and the dual coframe is dφ, sinφdθ. (In general, if e1, . . . , en is an orthonormal basis
of TpM which is compatible with the orientation, then g(p) = e∗1⊗e∗1 + · · ·+e∗n⊗e∗n
and ν(p) = e∗1 ∧ · · · ∧ e∗n.) Then we see that the volume form is

νgcan = sinφdφ ∧ dθ,

and so

volumegcan(S2) =

∫ 2π

0

∫ π

0

sinφdφdθ = 4π.

Length

Definition 11.9. Let γ : (a, b)→ (M, g) be a smooth curve. Then the length of γ
is

length(γ) =

∫ b

a

‖γ′(t)‖dt, where ‖γ′(t)‖ =
√
〈γ′(t), γ′(t)〉γ(t).

Example 11.10. We consider upper half plane H2 = {(x, y) : R2 : y > 0}. We
endow this with the metric

g =
dx2 + dy2

y2
.

Pick points x1 > x0 and y1 > y0 > 0 in R. Let γ1 be the straight line from (x0, y0)
to (x1, y0) and let γ2 be the straight line from (x0, y0) to (x0, y1):

γ1(t) = (t, y0), t ∈ (x0, x1); γ2(t) = (x0, t), t ∈ (y0, y1).

We compute that γ′1 = ∂
∂x ,

〈γ′1(t), γ′1(t)〉γ(t) =
1

y2
0

.

Hence we find that

length(γ1) =

∫ x1

x0

|γ′1|dt =
x1 − x0

y0
.
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On the other hand, we compute that γ′2 = ∂
∂y ,

〈γ′2(t), γ′2(t)〉γ(t) =
1

t2

and hence

length(γ2) =

∫ y1

y0

dt

t
= log(y1/y0).

For any a > 0 ,we can consider Fa : H → H given by Fa(x, y) = (ax, ay) and
then

F ∗g =
d(ax)2 + d(ay)2

(ay)2
= g.

It follows that Fa is an isometry.

12. Monday, October 19, 2015

Distance

Definition 12.1. If (M, g) is a connected Riemannian manifold and p, q ∈M , then
for any p, q in M there exists a piecewise smooth curve γ : [0, 1] → M such that
γ(0) = 1 and γ(1) = q. We define the distance from p to q to be

dg(p, q) = inf{length(γ) : γ : [0, 1]→Mpiecewise smooth, γ(0) = p, γ(1) = q}.

From the above definition, it is clear that for p, q, r ∈M ,

• dg(p, q) ∈ [0,∞) and distg(p, p) = 0;
• dg(p, q) = distg(q, p);
• dg(p, q) + distg(q, r) ≥ distg(p, r).

We will see later that if M is Hausdorff then dg(p, q) = 0⇒ p = q, so that (M,dg)
is a metric space (in the sense of topology). The topology defined by dg agrees with
the topology on M .

Lemma 12.2. The distance is preserved by isometry. That is, if φ : (M1, g1) →
(M2, g2) is an isometry, then

dg1(p, q) = dg2(φ(p), φ(q)).

Proof. Note that γ : I → M1 is a piecewise smooth curve in M1 if and only if
φ ◦ γ : I → M2 is a piecewise smooth curve in M2, and in this case, we have
length(φ ◦ γ) = length(γ). �

Example 12.3. For (Rn, g0), dg0(~x, ~y) = |~x − ~y|. To see this, by Lemma 12.2
and the fact that rigid motions are isometries, we may assume ~x = (0, . . . , 0) and
~y = (d, 0, . . . , 0), where d ≥ 0. Details are left as an exercise.

Discrete group actions

Definition 12.4. Let G be a group and M a set. We say that G acts on M on the
left (resp. on the right) if there is a map φ : G×M −→M , φ(m, g) = φg(m) = g ·m
(resp. m · g), satsifying the following (i) and (ii) (resp. (ii)’).

(i) If e ∈ G is the identity of G then φe : M →M is the identity map.
(ii) (left action) For any g1, g2 ∈ G, we have φg1g2 = φg1 ◦ φg2 ,

i.e. (g1g2) ·m = g1 · (g2 ·m) for all m ∈M .
(ii)’ (right action) For any g1, g2 ∈ G, we have φg1g2 = φg2 ◦ φg1 ,

i.e., m · (g1g2) = (m · g1) · g2 for all m ∈M .
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Remark 12.5. A left (resp. right) G-action on a set M is the same thing as a
group homomorphism G→ (Perm(M), ◦) given by g 7→ φg (resp. g 7→ φg−1 .)

Definition 12.6. Let G be a group and M a topological space. Then we say that
G acts on M on the left (resp. on the right) if there is a map φ : G ×M → M
satisfying (i) and (ii) (resp. (ii)’) above and also

(iii) The map φg : M →M is continuous for each g ∈ G.

Remark 12.7. A left (resp. right) G-action on a topological space M is the same
thing as a group homomorphism G → (Homeo(M), ◦) given by g 7→ φg (resp.
g 7→ φg−1 .)

Definition 12.8. Let G be a group and M a topological space and suppose G acts
on M on the left. The action of G on M is called properly discontinuous if for each
point p ∈ M , there is a neighborhood U of p in M such that for each g ∈ G \ {e},
we have φg(U) ∩ U = ∅.

Remark 12.9. Let U be as in Definition 12.8. If g1, g2 ∈ G are distinct then
φg1(U) ∩ φg2(U) = ∅. In particular, a properly discontinuous action is free in the
sense that if g ∈ G and p ∈M , then g · p = p implies that g = e.

Proposition 12.10. If a group G acts on a topological space M properly discon-
tinuously, then the map π : M →M/G is a covering map, where M/G is equipped
with the quotient topology.

Proof. For a point p̄ ∈M/G, there is a p ∈M such that π(p) = p̄. There is an open
neighborhood U of p in M such that if g is not the identity, then g(U)∩U = ∅. Let
Ū be π(U). Then p̄ ∈ Ū and π−1(Ū) is the disjoint union tg∈Gφg(U), where each
φg(U) is open. It follows that Ū is an open neighborhood of p̄ in M/G. Moreover,
the restriction π|φg(U) : φg(U)→ Ū is a homeomorphism for any g ∈ G. �

Definition 12.11. Let G be a group and let M be a smooth manifold. We say
that G acts on M on the left (resp. on the right) if there is a map φ : G×M →M
satisfying (i) and (ii) (resp. (ii)’), and also

(iii)’ The map φg : M →M is a smooth for each g ∈ G.

Remark 12.12. A left (resp. right) G-action on a smooth manifold M is the same
thing as a homomorphism G→ Diffeo(M) given by g 7→ φg (resp. g 7→ φg−1).

Proposition 12.13. Suppose that a group G acts on a smooth manifold M properly
discontinuously. Then

(i) There is a unique smooth structure on M/G such that π : M →M/G is a
local smooth diffeomorphism.

(ii) If h is a Riemannian metric on M and φg is an isometry of (M,h) for each
g ∈ G (in this case we say that G acts isometrically on (M,h)), then there

is a unique Riemannian metric ĥ on M/G such that π∗ĥ = h.

Example 12.14. Let G = {±1} and let M = Sn. Let φ1 = id and let φ−1 be the
antipodal map A : Sn → Sn, A(x) = −x. Then G acts properly discontinuously
and isometrically on (Sn, gcan). It follows that there is a metric ĝ on Pn(R) such
that π∗ĝ = gcan. When n = 1, (P1(R), ĝ) is isometric to S1( 1

2 ) (circle of radius 1
2 ).
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Example 12.15. Let G = Zn acts Rn by

(m1, . . . ,mn) · (x1, . . . , xn) 7→ (x1 +m1, . . . , xn +mn),

where (m1, . . . ,mn) ∈ Zn and (x1, . . . , xn) ∈ Rn, i.e., φ(m1,...,mn) : Rn → Rn is
translation by the vector (m1, . . . ,mn). This action is properly discontinuous and
preserves the Euclidean metric g0, so it descendents to a Riemannian metric ĝ0,
known as the flat metric, on the quotient Tn = Rn/Zn. There is an isometry
(Rn/Zn, ĝ0)→ (S1( 1

2π ))n.

We now discuss orientation.

Definition 12.16. Let V be a real vector space of dimension n. An orientation
on V is an equivalence class of ordered bases, where two bases are equivalent if the
change of coordinates matrix has positive determinant.

Let (Uα, φα) be a smooth atlas on a smooth manifold M and say it defines an
orientation, meaning that the transition functions have positive Jacobian. Choose
local coordinates φα = (xα1 , . . . , x

α
n) around p ∈M . Then the basis { ∂

∂xi
(q)} defines

an orientation on TqM for each q ∈ Uα.

Definition 12.17. Suppose that f : M1 → M2 is a local diffeomorphism between
oriented smooth manifolds. We say that f is orientation preserving (resp. orienta-
tion reversing) at p ∈M1 if given an ordered basis (e1, . . . , en) of TpM1 compatible
with the orientation on M1, the ordered basis (dfp(e1), . . . , dfp(en)) of Tf(p)M2 is
compatible (resp. not compatible) with the orientation on M2.

We say f is orientation preserving (resp. orientation reversing) if it is orientation
preserving (resp. orientation reversing) at all p ∈M1.

Remark 12.18. If M1 and M2 are connected, then f is orientation preserving
(reversing) at some point p ∈M1 if and only if f is orientation preserving (reversing)
at all p ∈M1.

Example 12.19. The antipodal map A : Sn → Sn is orientation preserving if and
only if n is odd. (cf. Problem (4) of Assignment 6)

Example 12.20. The action of Zn on Rn by translation is orientation preserving.

13. Wednesday, October 21, 2015

Lie groups

Definition 13.1. A Lie group G is a group together with the structure of a smooth
manifold such that λ : G×G→ G given by λ(x, y) = xy−1 is a smooth map.

Remark 13.2. From the definition:

• (inverse) The map G→ G given by x 7→ x−1 is smooth.
• (multiplication) The map G×G→ G given by (x, y) 7→ xy is smooth.
• (left multiplication) For any x ∈ G, the map Lx : G→ G given by Lx(y) =
xy (left multiplication by x) is a smooth map.
• (right multiplication) For any x ∈ G, the map Rx : G → G given by
Rx(y) = yx (right multiplication by x) is a smooth map.

Indeed, G acts on G on the right (resp. on the left) by right (resp. left) multipli-
cation, so Lx and Rx are smooth diffeomorphisms for any x ∈ G.

Example 13.3. (Rn,+) is a Lie group.
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Example 13.4. The set GL(n,R) of invertible n×n matrices is a smooth manifold
with a smooth group operation given by matrix multiplication. This manifold has
two connected components, namely, GL(n,R)+ = {A ∈ GL(n,R) : detA > 0} and
GL(n,R)− = {A ∈ GL(n,R) : detA < 0}. GL(n,R)+ is a connected Lie group.
The special linear group SL(n,R) = {A ∈ GL(n,R) : detA = 1} is a Lie subgroup
of GL(n,R).

Example 13.5. The orthogonal group O(n) = {A ∈ GL(n,R) : ATA = In} is a Lie
subgroup of GL(n,R). It has two connected components; SO(n) = O(n)∩SL(n,R),
the connected component of the identity, is a Lie subgroup of SL(n,R).

Definition 13.6. Let G be a Lie group. A tensor T on G is left (resp. right)
invariant if L∗xT = T (resp. R∗xT = T ) for each x ∈ G. If a tensor T on G is both
left-invariant and right-invariant, then T is called bi-invariant.

Remark 13.7. Note that if T is left (resp. right) invariant then T is determined
by T (e), the value of T at the identity e ∈ G. In particular:

• A function on G is left (resp. right) invariant if and only if it a constant
function.

• A vector field X on G is left (resp. right) invariant if and only if for each
x ∈ G, we have X(x) = d(Lx)e(X(e)) (resp. X(x) = d(Rx)e(X(e))).

Let X(G)L (resp. X(G)R) denote the space of left (resp. right) invariant vector

fields. We have an R-linear isomorphisms TeG
'−→ X(G)L (resp. TeG

'−→ X(G)R)
described by ξ 7→ XL

ξ (resp. ξ 7→ XR
ξ ), where XL

ξ (resp. XR
ξ ) is the unique left

(resp. right) invariant vector field on G such that XL
ξ (e) = ξ (resp. XR

ξ (e) = ξ).

More explicitly, XL
ξ (x) = d(Lx)e(ξ) and XR

ξ (x) = d(Rx)e(ξ), x ∈ G.

Definition 13.8. Let F : M → N be smooth and let X be a smooth vector field
on M and Y a smooth vector field on N . We say that X and Y are F -related if for
each p ∈M , we have dFp(X(p)) = Y (F (p)).

Remark 13.9. If F is a diffeomorphism then X and Y are F -related if and only
if Y = F∗X.

Remark 13.10. More generally, X and Y are F -related if and only if for each
f ∈ C∞(N), we have X(F ∗f) = F ∗(Y (f)).

Proposition 13.11. Let F : M → N be smooth, let X1, X2 be smooth vector fields
on M and let Y1, Y2 be smooth vector fields on N . Suppose that Xi and Yi are
F -related. Then [X1, X2] and [Y1, Y2] are F -related.

Proof. Let f be a smooth function on N . Then

[X1, X2](F ∗f) = X1(X2F
∗f)−X2(X1F

∗f)

= X1(F ∗(Y2f))−X2(F ∗(Y1f))

= F ∗(Y1Y2f)− F ∗(Y2Y1f)

= F ∗([Y1, Y2]f),

where the second and the third equalities follow from Remark 13.10. By Remark
13.10, [X1, X2] and [Y1, Y2] are F -related. �

Corollary 13.12. If F is a smooth diffeomorphism and X1, X2 are vector fields
on M , then

[F∗X1, F∗X2] = F∗[X1, X2].
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Corollary 13.13. The set of left invariant vector fields X(G)L is a Lie subalgebra
of X(G). So is the set X(G)R.

Definition 13.14. We define [−,−] : TeG× TeG→ TeG by

(ξ, η) 7→ [XL
ξ , X

L
η ](e).

We define the Lie algebra g of G to be TeG with the above Lie bracket. Then we
note that we have an isomorphism g ' X(G)L as Lie algebras.

Remark 13.15 (Assignment 7 (1)). If we let i : G→ G denote the map g 7→ g−1,
then i2 = id and die(ξ) = −ξ. We have

G
i //

La
��

G

Ra−1

��
G

i // G.

It follows that XR
ξ = −i∗XL

ξ . Hence,

[XR
ξ , X

R
η ] = [i∗X

L
ξ , i∗X

L
η ] = i∗[X

L
ξ , X

L
η ] = i∗X

L
[ξ,η] = −XR

[ξ,η].

Proposition 13.16. The tangent bundle of a Lie group is trivial.

Proof. Let ξ1, . . . , ξn be a basis of g = TeG. Then XL
ξ1
, . . . , XL

ξn
forms a global C∞

frame of TG. Let φ : G× g→ TG be the map

(x, ξ) 7→ (x,XL
ξ (x)).

Then φ−1 : TG→ G× g is a global trivialization of TG. �

Example 13.17. Let G = (Rn,+). For any a1, . . . , an ∈ R, the vector field∑n
i=1 ai

∂
∂xi

is bi-invariant. We have

X(G)L = X(G)R = {
n∑
i=1

ai
∂

∂xi
: (a1, . . . , an) ∈ Rn} ∼= Rn.

The Lie bracket on T0Rn is trivial. The map φ in the proof of Proposition 13.16 is
given by

φ : Rn × Rn → TRn, (x, y) 7→ (x,

n∑
i=1

yi
∂

∂xi
)

where x = (x1, . . . , xn), y = (y1, . . . , yn).

Example 13.18. Let G = GL(n,R). Recall that g = Mn(R). For ξ ∈ Mn(R),
then d(LA)In(ξ) = Aξ and d(RA)In(ξ) = ξA. Because of this, we see that

XL
ξ (A) = Aξ =

∑
i,j

(
∑
k

aikξkj)
∂

∂aij

XR
ξ (A) = ξA =

∑
i,j

(
∑
k

ξikakj)
∂

∂aij

The map φ : GL(n,R)× g→ TG = GL(n,R)×Mn(R) is described by

(A, ξ) 7→ (A,Aξ).

Moreover, if H is a Lie subgroup of G = GL(n,R), φ restricts to H × h ⊂
G × h → TH ⊂ TG. For example, H = SL(n,R), h = sl(n,R); H = O(n) or
SO(n), h = so(n).
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Remark 13.19. This argument of trivializing a bundle will work also for the
cotangent bundle of G and more generally for any tensor bundle T rsG of G. Indeed,
if E → M is a trivial vector bundle then the dual bundle E∗ → M is also trivial
and more generally E⊗r ⊗ (E∗)⊗s is a trivial vector bundle for any r, s ∈ Z≥0.

Lemma 13.20. Let φLξ be the flow of XL
ξ and φRξ the flow of XR

ξ . Then

(i) For each a ∈ G, we have

La ◦ φLξ (t, x) = φLξ (t, ax)

(ii) For each a ∈ G, we have

Ra ◦ φRξ (t, x) = φRξ (t, xa).

Remark 13.21. This is saying that left (resp. right) multiplication by a carries an
integral curve of a left (resp. right) invariant vector field to another integral curve
of this vector field.

Proof of Lemma 13.20. It suffices to show that

(a) (La ◦ φLξ )(0, x) = ax

(b) d
dt (La ◦ φ

L
ξ )(t, x) = XL

ξ ((La ◦ φLξ )(t, x)).

To see (a), we note that

La ◦ φLξ (0, x) = a · φLξ (0, x) = ax.

For (b), we note that

d

dt
(La ◦ φLξ )(t, x) = d(La)φLξ (t,x)(

d

dt
φLξ (t, x))

= d(La)φLξ (t,x)(X
L
ξ (φLξ (t, x)))

= XL
ξ (La ◦ φLξ (t, x)).

�

Proposition 13.22. If G is a Lie group and ξ ∈ g, then φLξ , φ
R
ξ are defined on

R×G.

Proof. There is an ε > 0 and an open neighborhood V of e in G such that φ(t, x) is
defined for (t, x) ∈ (−ε, ε)× V . By the previous result, we see that φt(x) is defined
for (t, x) ∈ (−ε, ε)×G. Then we see that φnt(x) = φt ◦ · · · ◦ φt(x) is defined for all
n ∈ N, t ∈ (−ε, ε), x ∈ G, and hence φ(t, x) is defined for all (t, x) ∈ R×G. �

Example 13.23. If G = GL(n,R) or any Lie subgroup of GL(n,R), then, we see
that XL

ξ (A) = Aξ and also that

XL
ξ (A) = Aξ, φLξ (t, A) = A exp(tξ),

XR
ξ (A) = ξA, φRξ (t, A) = exp(tξ)A.

Here exp(B) =
∑∞
n=0

Bn

n! , B ∈Mn(R). We want to use this observation to extend
the definition of the exponential to any Lie group.

Definition 13.24 (Exponential map). If G is a Lie group. Define the exponential
map exp : g→ G by the rule

ξ 7→ φLξ (1, e)

where e is the identity of G.
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Remark 13.25. We note that φLξ (t, x) = φLtξ(1, x) = φLtξ(1, x · e) = xφLtξ(1, e) =

x exp(tξ). It follows that

φLξ (t, x) = x exp(tξ).

In other words
(φLξ )t = Rexp(tξ) : G→ G.

14. Wednesday, October 28, 2015

As a special case of Definition 13.6:

Definition 14.1. Let G be a Lie group and let g be a Riemannian metric on G.
We say g is left-invariant if L∗xg = g for all x ∈ G. Equivalently, g is left-invariant
if and only if for each x ∈ G, Lx : (G, g)→ (G, g) is an isometry.

Remark 14.2. We have a one-to-one correspondence:

{left-invariant metrics on G} ↔ {inner products on TeG}.
Indeed, g is left-invariant if and only if for each x ∈ G and for each U, V ∈ TxG,

g(x)(U, V ) = g(e)(d(Lx−1)xU, d(Lx−1)xV ).

Example 14.3. G = (Rn,+), g0 = dx2
1 + · · · dx2

n. For any x ∈ Rn, L∗xg = R∗xg = g.
So g is bi-invariant.

Example 14.4. Let

G = {g : R→ R, t 7→ yt+ x : x ∈ R, y ∈ (0,∞)},
that is, the group of proper affine transformations of R. Define multiplication by
composition: g1(t) = y1t+ x1 and g2(t) = y2t+ x2, then

(g1 ◦ g2)(t) = g1(y2t+ x2) = y1(y2t+ x2) + x1 = y1y2t+ (y1x2 + x1).

We may identify G with the upper half plane: G = {(x, y) ∈ R2 : y > 0}. With
this identification, the multiplication is given by

(x1, y1) · (x2, y2) = (y1x2 + x1, y1y2).

So the multiplication defines a smooth map G × G → G. The identity element is
e = (0, 1). The inverse map is given by

(x1, y1)−1 = (−x1y
−1
1 , y−1

1 ),

which is smooth. So G is indeed a Lie group.
We note that

L(a,b)(x, y) = b(x, y) + (a, 0).

And hence
d(L(a,b))(x,y)(v) = bv.

Let g be the unique left-invariant metric on G such that g(0, 1) = dx2 +dy2. We
know that g is of the form g = Edx2 + 2Fdxdy +Gdy2 for some smooth functions
E,F,G, where E(0, 1) = G(0, 1) = 1, and F (0, 1) = 0. We compute

L∗(a,b)dx = d(bx+ a) = bdx, L∗(a,b)dy = d(by) = bdy.

So

L∗(a,b)g(x, y) = E(bx+ a, by)b2dx2 + 2F (bx+ a, by)b2dxdy +G(bx+ a, by)b2dy2.

L∗(a,b)g(0, 1) = E(a, b)b2dx2 + 2F (a, b)b2dxdy +G(a, b)b2dy2.
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Since g is left-invariant, (L∗(a,b)g)(0, 1) = g(0, 1) = dx2 + dy2, so

E(a, b) =
1

b2
, F (a, b) = 0, G(a, b) =

1

b2
.

We conclude that

g =
dx2 + dy2

y2
.

We find that

g =
dx2 + dy2

y2
.

We remark that there is a natural inclusion G ↪→ Isom(G, g) given by x 7→ Lx.
We can check that this metric is not right-invariant. Indeed

R(a,b)(x, y) = (ay + x, by).

So we find that

R∗(a,b)dx = dR∗(a,b)x = dx+ ady

R∗(a,b)dy = dR∗(a,b)y = bdy.

And hence

R∗(a,b)g =
(dx+ ady)2 + (bdy)2

(by)2
=
dx2 + 2adxdy + (a2 + b2)dy2

b2y2
.

John Milnor proved the following:

Theorem 14.5 ( [Mi, Lemma 7.5]). A connected Lie group admits a bi-invariant
Riemannian metric if and only if it is isomorphic to the direct product of a compact
Lie group and an additive vector group.

Definition 14.6 (Adjoint representation). Let G be a Lie group. Given an element
a ∈ G, the map Ra−1 ◦ La : G → G is a diffeomorphism sending e to e, and hence
we get a linear isomorphism

Ad(a) := d(Ra−1 ◦ La)e : TeG→ TeG.

This means that we get a group homomorphism

Ad : G→ GL(g)

a 7→ Ad(a)

where GL(g) is the space of R-linear isomorphisms of g. This is a representation of
G called the adjoint representation.

Example 14.7. (1) Let G = (Rn,+). For any a ∈ Rn, Ra−1 ◦ La = id is the
identity map, and hence

Ad(a) = idg

for each a ∈ G.
(2) More generally, for any abelian Lie group, the adjoint representation is

trivial.
(3) Let G = GL(n,R) or any subgroup of GL(n,R). In this case

Ad(A)(ξ) = AξA−1, where A ∈ GL(n,R), ξ ∈ gl(R).
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Proposition 14.8 ([dC, page 41]). Let ξ, η ∈ g. Then

[ξ, η] =
d

dt

∣∣∣
t=0

Ad(exp(tξ))η.

We set ad(ξ)η = [ξ, η]. The map ad : g → gl(g) is called adjoint representation of
the Lie algebra.

Proof. We note that

Ad(exp(tξ))η = d(R− exp(tξ))exp(tξ)d(Lexp(tξ))eη

= d(R− exp(tξ))exp(tξ)(X
L
η (exp(tξ)))

= φ∗tX
L
η (e)

where φt = Rexp(tξ) is the flow of XL
ξ . So

d

dt

∣∣∣
t=0

Ad(exp(tξ))η =
d

dt

∣∣∣
t=0

(φ∗tX
L
η )(e) = [XL

ξ , X
L
η ](e) = [ξ, η].

�

Example 14.9. Let G = GL(n,R) or a subgroup. Then for ξ, η ∈ gl(n,R)

[ξ, η] =
d

dt

∣∣∣
t=0

etξηe−tξ = ξη − ηξ.

Continuous group actions

Definition 14.10. Let G be a group and M a set. Suppose that G acts on M on
the left. For any p ∈M :

• Let Gp denote the stabilizer of p, that is, Gp = {g ∈ G : g · p = p}
• Let G · p denote the orbit of p, that is, G · p = {g · p : g ∈ G}.

We say G acts on M freely if Gp = {e} for each p ∈ M . We say that G acts
transitively if M = G · p for some p ∈M (which implies M = G · p for all p ∈M).

Definition 14.11 (topological group). We say that G is a topological group if G is
a topological space together with a group structure such that the map G×G→ G
given by (x, y) 7→ xy−1 is continuous.

Definition 14.12. Let G be a group and M a set, and suppose that G acts on M
on the left. Let φ : G×M →M denote the action.

(i) If G is a topological group and M is a topological space, we say the action
is continuous if φ is continuous as a map from the product space.

(ii) If G is a Lie group and M is smooth, then we say that the action is smooth
if φ is smooth if φ is smooth as a map from the product manifold.

Lemma 14.13. Let G be a group, let M be a topological space. Equip G with the
discrete topology. Then φ : G×M →M is continuous if and only if for each g ∈ G,
the map φg : M →M is continuous.

Proof. (⇒) If φ is continuous, then we note that φg = φ◦ig, where ig : M → G×M
is the map ig(p) = (g, p), which is continuous, since G is given the discrete topology.

(⇐) Suppose that each φg is continuous. Let U be an open subset of M . Then
we note that

φ−1(U) =
⋃
g∈G

({g} × φ−1
g (U)).

Each of the sets in the union is open, and hence so is the union. �
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Definition 14.14. Let G be a topological group and let M be a Hausdorff topo-
logical manifold. Suppose G acts on M on the left continuously. We say that the
action is proper if for any compact K ⊂M , the set GK := {g ∈ G : φg(K)∩K 6= ∅}
is relative compact in G, i.e. the closure of GK is compact. (This is automatic if
G is compact.)

Example 14.15. Suppose that C∗ acts on C by multiplication. Then this action
is not proper. On the other hand if C∗ acts on C∗, then the action is proper.

Remark 14.16. (i) Suppose that G is a discrete group. The action is contin-
uous and proper if and only if for each compact subset K ⊂M , the set GK
is finite. In particular, when K = {p}, GK = Gp, we see that the stabilizer
Gp of p is finite.

(ii) Suppose that G is discrete. Suppose that the action is continuous, proper,
and free. We already know that for any p ∈ M there is an open neigh-
borhood U of p in M such that U is compact. Because GU is finite, we
claim that (G · p) ∩ U is finite. Because M is Hausdorff, there is an open
neighborhood U ′ of p such that U ′ ∩φg(U ′) = ∅ for each g ∈ G \ {e}. This
means that the action is “properly discontinuous.”

Example 14.17. Let S1 = {z ∈ C : |z| = 1}, a Lie group. Also S2n+1 =
{(z0, . . . , zn) ∈ Cn+1 : |z0|2 + · · · |zn|2 = 1}. Let S1 act on S2n+1 by the rule

λ · (z0, . . . , zn) = (λz0, . . . , λzn).

This action is smooth. The action is also proper because S1 is compact. Moreover
the action is free.

Theorem 14.18. Let G be a Lie group and let M be a smooth manifold. If G acts
on M smoothly, freely, and properly, then there is a unique smooth structure on
M/G such that π : M →M/G is a smooth submersion.

Example 14.19. Let π : S2n+1 → Pn(C) = S2n+1/S1 be the projection. We
already constructed a C∞ atlas on Pn(C). We can check that π is a C∞ submersion
with respect to this C∞ structure on Pn(C). Theorem 14.18 implies that this C∞

structure is unique with these properties. It follows that Pn(C) is diffeomorphic
to S2n+1/S1, where S2n+1/S1 is equipped with the unique C∞ structure given by
Theorem 14.18.

15. Wednesday, November 4, 2015

Definition 15.1 (Smooth fibration). A map π : E → B is a smooth fibration with
total space E, base B, and fiber F if

(i) E,B, F are smooth manifolds.
(ii) π is a surjective smooth map.

(iii) There is an open cover {Uα : α ∈ I} of B and smooth diffeomorphisms

hα : π−1(Uα)→ Uα × F

such that π|π−1(Uα) = pr1 ◦ hα, where pr1 : Uα × F → Uα is the projection
to the first factor. (It follows that π is a submersion.)

Example 15.2. Take E = B × F with π : E → B being projection onto the first
factor. This is called the product fiber bundle with base B and fiber F .



48

Definition 15.3. We say that π : E → B is a trivial fiber bundle over B with fiber
F if there is a smooth diffeomorphism h : E → B × F such that π = pr1 ◦ h.

Example 15.4. If π : E → B is a smooth vector bundle of rank r, then π : E → B
is a smooth fibration with fiber Rr. But the converse is not true: the transition
functions for a vector bundle need to satisfy some additional linearity requirement.

Example 15.5. A covering space is a smooth fibration with discrete fiber.

Theorem 15.6. Let G be a Lie group and let M be a smooth manifold. If G acts
on M smoothly, freely, and properly, then there is a unique smooth structure on
M/G such that π : M →M/G is a smooth fibration with fiber G.

Example 15.7. The map π : S2n+1 → Pn(C) is a smooth circle bundle, known as
the Hopf fibration.

Riemannian submersions
Let f : (M, g)→ (N,h) be a smooth submersion between Riemannian manifolds.

For a point p ∈M , let q = f(p) ∈ N . Then we have an exact sequence of the form

0→ Tpf
−1(q)→ TpM

dfp→ TqN → 0.

Let Hp be the orthogonal complement of Tpf
−1(q) in TpM (using the metric

〈−,−〉p). If we restrict dfp to Hp, then we see that dfp|Hp gives a linear isomorphism
Hp
∼= TqN .

Definition 15.8 (Riemannian submersion). We say that f : (M, g) → (N,h)
is a Riemannian submersion if df |Hp : Hp → Tf(p)N is an inner product space
isomorphism. This means that for any u, v ∈ Hp, we have

〈u, v〉p = 〈dfp(u), dfp(v)〉q

Theorem 15.9. If (M, g) is a Riemannian manifold and G is a Lie group acting
smoothly, freely, and properly on M and in addition the action is by isometries, then
there is a unique Riemannian metric ĝ on M/G such that π : (M, g) → (M/G, ĝ)
is a Riemannian submersion.

Proof. To determine this metric, we write

ĝ(q)(u, v) = g(p)((dπ|Hp)−1u, (dπ|Hp)−1v)

where p ∈ π−1(q). The right hand side is independent of choice of p ∈ π−1(q) = G·p
since (dφg)p defines an isomoetry from Hp to Hg·p. �

Example 15.10. Use the round metric gcan on S2n+1 induced by the Euclidean
metric on R2n+2. Then S1 acts on S2n+1 smoothly, freely, properly, and iso-
metrically. So there is a unique Riemannian metric ĝcan on Pn(C) such that
π : S2n+1 → Pn(C) is a Riemannian submersion. When n = 1, the space Pn(C)
is diffeomorphic to S2 and (P1(C), ĝcan) is isometric to (S2, 1

4gcan). (See Example

15.15 below.) So π : S3(1)→ S2( 1
2 ) is a Riemannian submersion.

Theorem 15.11. Let G be a Lie group and let H be a closed Lie subgroup. Then
there is a unique smooth structure on G/H such that

• π : G→ G/H is a smooth submersion and
• the action φ : G×G/H → G/H is smooth.
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Theorem 15.12. If G is a Lie group and M is a smooth manifold, then the fol-
lowing are equivalent.

(i) G acts on M transitively, smoothly, and H is the stabilizer of some p ∈M
(ii) M is diffeomorphic to G/H.

Example 15.13. Let φ : SO(n+ 1)× Sn → Sn be the smooth map described by
(A, x) 7→ Ax. The action is smooth, transitive. The stabilizer of (0, 0, . . . , 0, 1) is{[

A 0
0 1

]
: A ∈ SO(n)

}
' SO(n).

So there is a map

SO(n+ 1)/SO(n)→ Sn

A · SO(n) 7→ A


0
...
0
1

 ,
which is a diffeomorphism.

By Assignment 7 (3), there is a bi-invariant metric g on SO(n + 1). There is a
unique metric ĝ on SO(n+ 1)/SO(n) such that π is a Riemannian submersion.

Assignment 8 (2): (SO(n + 1)/SO(n), ĝ) is isometric to (Sn, λgcan) for some
constant λ > 0.

Example 15.14. Let Gr(k, n) = {V ⊂ Rn : V k-dimensional subspace of Rn}.
In particular we have Pn(R) = Gr(1, n + 1). Note that O(n) acts transitively on
Gr(k, n) and the stabilizer of Rk ×{0} can be identified with O(k)×O(n− k). We
may identify

Gr(k, n) = O(n)/(O(k)×O(n− k))

where the right hand side is a homogeneous space, which is a smooth manifold. The
bi-invariant metric on O(n) induces a Riemannian metric on Gr(k, n), and O(n)
isometrically on Gr(k, n).

For example, we may write

Gr(1, n+ 1) =
O(n+ 1)

O(1)×O(n)
=

1

{±1}
O(n+ 1)

O(n)
=

1

{±1}
SO(n+ 1)

SO(n)
=

1

{±1}
Sn.

Example 15.15. We have a diagram

S3 π //

p
""

S2

j

��
P1(C)

where the diffeormophism j−1 : P1(C)→ S2 is

[z1, z2] 7→
(

2z1z̄2

|z1|2 + |z2|2
,
|z2|2 − |z1|2

|z1|2 + |z2|2

)
and

π : S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} → S2 = {(w, z) ∈ C× R : |w|2 + z2 = 1}
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is given by

(z1, z2) 7→ (2z1z̄2, |z1|2 − |z2|2)

Let ĝcan be the unique metric on P1(C) such that p : (S3, gcan) → (P1(C), ĝcan) is
a Riemannian submersion. We want to compute ĝ = j∗ĝcan.

Write {
z1 = sinλeiθ1

z2 = cosλeiθ2
.

These coordinates cover almost all of S3 and because metrics are continuous, this
is sufficient for our purposes. On S2 we use spherical coordinates

x = sinφ cos θ

y = sinφ sin θ

z = cosφ

.

We already know that g
S2(1)
can = dφ2 + (sin2 φ)dθ2. If we write zj = xj + iyj , then

we note that 
x1 = sinλ cos θ1

y1 = sinλ sin θ1

x2 = cosλ cos θ2

y2 = cosλ sin θ2

.

We compute that

gS
3(1)

can = dλ2 + sin2 λdθ2
1 + cos2 λdθ2

2.

In these coordinates, we find that

(sinλeiθ1 , cosλeiθ2) 7→ (sin(2λ)ei(θ1−θ2), cos2 λ− sin2 λ).

In other words, φ = 2λ and θ = θ1 − θ2. We find that

dπ(
∂

∂λ
) = 2

∂

∂φ
, dπ(

∂

∂θ1
) =

∂

∂θ
, dπ(

∂

∂θ2
) = − ∂

∂θ
.

We note that

ker(dπ) = R(
∂

∂θ1
+

∂

∂θ2
).

We find that the horizontal subspace is

H = (ker dπ)⊥ = R
∂

∂λ
⊕ R(cos2 λ

∂

∂θ1
− sin2 λ

∂

∂θ2
).

Let X̃ denote the horizontal lift of X. Then we find that

∂̃

∂φ
=

1

2

∂

∂λ
,

∂̃

∂θ
= cos2 λ

∂

∂θ1
− sin2 λ

∂

∂θ2
.
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We know that

ĝ(
∂

∂φ
,
∂

∂φ
) = gS

3(1)
can (

∂̃

∂φ
,
∂̃

∂φ
) = gS

3(1)
can (

1

2

∂

∂λ
,

1

2

∂

∂λ
) =

1

4
,

ĝ(
∂

∂φ
,
∂

∂θ
) = gS

3(1)
can (

∂̃

∂φ
,
∂̃

∂θ
) = 0

ĝ(
∂

∂θ
,
∂

∂θ
) = gS

3(1)
can (

∂̃

∂θ
,
∂̃

∂θ
) = cos4 λ sin2 λ+ sin4 λ cos2 λ

= sin2 λ cos2 λ =
1

4
sin(2λ)2 =

1

4
sin2 φ.

We see that

ĝ =
1

4
(dφ2 + sin2 φdθ2) =

1

4
gS

2(1)
can .

16. Monday, November 9, 2015

Affine connections

Definition 16.1 (affine connection). An affine connection ∇ on a smooth manifold
M is a map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY
such that for each X,Y, Z ∈ X(M) and f, g ∈ C∞(M), we have

(i) ∇fX+gY Z = f∇XZ + g∇Y Z.

(ii) ∇X(Y + Z) = ∇XY +∇XZ
(iii) ∇X(fY ) = f∇XY +X(f)Y .

Remark 16.2. • In the above definition:
i): for fixed Y ∈ X(M), the map X 7→ ∇XY is C∞(M)-linear.
ii) and iii): for fixed X ∈ X(M), the map ∇X : X(M)→ X(M) is R-linear,
and satisfies the Leibniz rule.
• The Lie derivative L : X(M) × X(M) → X(M), (X,Y ) → LXY = [X,Y ],

is NOT an affine connection: it does not satisfy (i), although it satisfies (ii)
and (iii).

Remark 16.3. If ∇1 and ∇2 are affine connections, then for X ∈ X(M), the map

(∇1)X − (∇2)X : X(M)→ X(M)

is C∞(M)-linear and can be viewed as a section of End(TM). That is, we may
write

∇1 −∇2 ∈ C∞(M,T ∗M ⊗ T ∗M ⊗ TM)

The space of affine connections is an affine space associated to the vector space
C∞(M,T 1

2M).

We now study connections in local coordinates. Let (U, φ) be a chart for M and
write φ = (x1, . . . , xn). The list ∂

∂x1
, . . . , ∂

∂xn
form a smooth frame for TM |U = TU .

Then

∇ ∂
∂xi

(
∂

∂xj
) =

∑
k

Γkij
∂

∂xk

for some Γkij ∈ C∞(U).
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If X and Y are smooth vector fields on U , we may write

X =
∑
i

ai
∂

∂xi
and Y =

∑
j

bj
∂

∂xj

where ai, bj ∈ C∞(U). We find that

∇XY =

n∑
k=1

 n∑
i=1

ai
∂bk
∂xi

+

n∑
i,j=1

Γkijaibj

 ∂

∂xk
.

Definition 16.4 (Vector field along a curve). Let M be a smooth manifold and
c : I → M a smooth curve. A smooth vector field along c is a smooth map
V : I → TM such that π ◦ V = c, that is, for each t ∈ I, we have V (t) ∈ Tc(t)M .

In local coordinates, if we restrict c to I ′ such that c(I ′) ⊂ U . Then

V (t) =

n∑
i=1

ai(t)
∂

∂xi

∣∣∣
c(t)

for ai ∈ C∞(I ′).

Example 16.5. The tangent vector field dc
dt is a smooth vector field along c.

Proposition 16.6. Let M be a smooth manifold with an affine connection ∇. Then
there is a unique correspondence taking a smooth curve c : I → M together with a
smooth vector field V : I → TM along c to a smooth vector field DV

dt : I → TM
along c, called the covariant derivative of V along c such that

(i) D
dt (V +W ) = DV

dt + DW
dt

(ii) D
dt (fV ) = df

dtV + f DVdt
(iii) If V = Y ◦ c for some Y ∈ X(M), then

DV

dt
(t) = ∇ dc

dt (t)Y.

In local coordinates, consider the case c : I → U , where (U, φ) is a local coordi-
nate chart. Then φ ◦ c : I → φ(U) ⊂ Rn is given by φ ◦ c(t) = (x1(t), . . . , xn(t)),
where xi ∈ C∞(I). On U , we may write

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

And we may write

V (t) =

n∑
i=1

ai(t)
∂

∂xi

∣∣∣
c(t)

,
dc

dt
(t) =

n∑
i=1

dxi
dt

(t)
∂

∂xi

∣∣∣
c(t)

Then

DV

dt
=
D

dt

(
n∑
i=1

ai(t)
∂

∂xi

∣∣∣
c(t)

)

=

n∑
i=1

D

dt
(ai(t)

∂

∂xi

∣∣∣
c(t)

)

=

n∑
i=1

dai
∂t

(t)
∂

∂xi

∣∣∣
(c(t))

+ ai
D

dt
(
∂

∂xi

∣∣∣
c(t)

)
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where

D

dt
(
∂

∂xi
|c(t)) = ∇ dc

dt (t)

∂

∂xi
=

n∑
j=1

dxj
dt

(t)∇ ∂
∂xi
|c(t)

∂

∂xi
=

n∑
j=1

dxj
dt

(t)

n∑
k=1

Γkji(c(t))
∂

∂xk

∣∣∣
c(t)

Then we conclude that

DV

dt
=

n∑
k=1

dak
dt

+

n∑
i,j=1

Γkij
dxi
dt
aj

 ∂

∂xk
.

Parallel transport

Definition 16.7. Let M be a smooth manifold with an affine connection ∇. A
smooth vector field V along smooth curve c : I →M is parallel if DV

dt (t) = 0 for all
t ∈ I.

Proposition 16.8. Let M be a smooth manifold with an affine connection ∇. Let
c : I →M be a smooth curve and let t0 ∈ I. For each tangent vector V0 ∈ Tc(t0)M
there is a unique parallel vector field V (t) along c(t) with V (t0) = V0. The vector
field V (t) is called the parallel transport of V0 along c.

Proof. We may assume that c(I) ⊂ U where U is a coordinate chart. We may write

V0 =
∑
i

ai
∂

∂xi
|c(t0)

for some ai ∈ R. We want to solve DV
dt = 0 and V (t0) = V0. In terms of local

coordinates, this means that, for k = 1, . . . , n,
dak
dt

+

n∑
i,j=1

Γkij
dxi
dt
aj = 0

ak(t0) = ak

If we write

~a(t) =

 a1(t)
...

an(t)

 , ~a =

 a1

...
an

 .
and let A(t) = (Akj(t)), where

Akj(t) = −
n∑
i=1

Γkij(x1(t), . . . , xn(t))
dxi
dt

(t)

Then these conditions are equivalent to{
d
dt~a(t) = A(t)~a(t)

~a(t0) = ~a
.

So the proposition follows from the existence and uniqueness of solutions to first
order ODE’s. �

Example 16.9. On Rn we can take the trivial connection ∇ ∂
∂xi

∂
∂xj

= 0. Then the

parallel vector fields are just constant along curves.
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Riemannian Connection

Definition 16.10. An affine connection ∇ on a smooth manifold M is said to be
symmetric if for any smooth vector fields X,Y ∈ X(M), we have

∇XY −∇YX = [X,Y ].

In terms of local coordinates, this places the requirement that Γkij = Γkji.

Definition 16.11. Let (M, g) be a Riemannian manifold with affine connection
∇. We say that ∇ is compatible with the metric g if for each X,Y, Z ∈ X(M), we
have

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ)

Theorem 16.12 (Levi-Civita). Given a Riemannian manifold (M, g), there is a
unique affine connection ∇ on M such that

(i) ∇ is symmetric and
(ii) ∇ is compatible with g.

This connection is known as the Riemannian connection or the Levi-Civita connec-
tion on the Riemannian manifolds (M, g).

Proof. For uniqueness, suppose that ∇ is an affine connection satisfying (i) and (ii).
Then for any X,Y, Z ∈ X(M),

X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

= g(∇XY +∇YX,Z) + g([X,Z], Y ) + g([Y, Z], X)

= g([X,Y ] + 2∇YX,Z) + g([X,Z], Y ) + g([Y, Z], X).

It follows that

(16.1)
g(∇YX,Z) =

1

2
(X(g(Y,Z)) + Y (g(Z,X)))− Z(g(X,Y ))

− g([X,Z], Y )− g([Y,Z], X)− g([X,Y ], Z).

Since Z is arbitrary, Equation (16.1) uniquely determines ∇YX.
For existence, one defines ∇YX by (16.1) and shows that this is an affine con-

nection satisfying (i) and (ii). �

In terms of local coordinates: in (16.1), let

X =
∂

∂xj
, Y =

∂

∂xi
, Z =

∂

∂xk
.

We obtain

g(∇ ∂
∂xi

∂

∂xj
,
∂

∂xk
) =

1

2

(
∂

∂xj
gik +

∂

∂xi
gkj −

∂

∂xk
gij

)
,

where ∇ ∂
∂xi

∂

∂xj
=

n∑
l=1

Γlij
∂

∂xl
, so

n∑
l=1

Γlijglk =
1

2

(
∂

∂xj
gik +

∂

∂xi
gkj −

∂

∂xk
gij

)
and hence

Γlij =
1

2

n∑
k=1

glk(
∂

∂xj
gik +

∂

∂xi
gkj −

∂

∂xk
gij)
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where glk is the l, k entry of the inverse of g.

17. Wednesday, November 11, 2015

Recall that the Levi-Civita connection on a Riemannian manifold (M, g) is the
unique affine connection which is symmetric and compatible with the Riemannian
metric g.

Definition 17.1. Let ∇ be an affine connection on a smooth manifold M . The
torsion of ∇ is defined to be

T∇ : X(M)× X(M)→ X(M)

(X,Y ) 7→ ∇XY −∇YX − [X,Y ].

It is straighforward to check that:

Lemma 17.2. (i) T∇ is antisymmetric: T∇(X,Y ) = −T∇(Y,X).
(ii) T∇ is C∞(M)-bilinear.

So T∇ ∈ C∞(M,Λ2T ∗M ⊗ TM) is a (1,2)-tensor on M .

By definition, an affine connection ∇ is symmetric if and only of T∇ = 0. So the
“symmetric” condition is also known as the “torsion free” condition.

Proposition 17.3. Let (M, g) be a Riemannian manifold, and let ∇ be an affine
connection on M compatible with the Riemannian metric g. If V,W are smooth
vector fields along a smooth curve c : I →M then

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉,

where 〈 , 〉 is the inner product defined by g, and D
dt is the covariant derivative

along c determined by ∇. In particular, if V,W are parallel vector fields along c
then 〈V,W 〉 is a constant function on I.

We will see later that Proposition 17.3 is a special case of a more general result.

Example 17.4. Let M = Rn and let g0 = dx2
1 + · · ·+ dx2

n. Since all the gij ’s are

constant, we find that Γkij = 0. This means that ∇ ∂
∂xi

∂
∂xj

= 0. This implies that if

X =
∑
i ai

∂
∂xi

and Y =
∑
j bj

∂
∂xj

, then we see that

∇XY =
∑
i,j

(
ai
∂bj
∂xi

)
∂

∂xj
.

Recall that

LXY =
∑
i,j

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj
= ∇XY −∇YX.

This shows that ∇ is indeed torsion free.

Example 17.5. Let S2 be equipped with the round metric. Use spherical coordi-
nates 

x = sinφ cos θ

y = sinφ sin θ

z = cosφ

.
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In these coordinates, we know that gcan = dφ2 + sin2 φdθ2. Write (x1, x2) = (φ, θ).
In terms of these coordinates, we have

g =

[
1 0
0 sin2 φ

]
and g−1 =

[
1 0
0 1

sin2 φ

]
.

Let gij,k = ∂
∂xk

gij . We compute the Christoffel symbols of the Levi-Civita connec-
tion to be

Γ1
11 = 0

Γ2
11 = 0

Γ1
12 = Γ1

21 = 0

Γ2
12 = Γ2

21 =
1

2
g22(g22,1 + g12,2 − g12,2) =

1

2

1

sin2 φ
2 sinφ cosφ = cotφ

Γ1
22 =

1

2
g11(2g21,2 − g22,1) = − sinφ cosφ

Γ2
22 = 0.

∇ ∂
∂φ

∂

∂φ
= Γ1

11

∂

∂φ
+ Γ2

11

∂

∂θ
= 0

∇ ∂
∂φ

∂

∂θ
= ∇ ∂

∂θ

∂

∂φ
= Γ1

12

∂

∂φ
+ Γ2

12

∂

∂θ
= cotφ

∂

∂θ

∇ ∂
∂θ

∂

∂θ
= Γ1

22

∂

∂φ
+ Γ2

22

∂

∂θ
= − sinφ cosφ

∂

∂φ
.

Parallel transport along a meridian θ = θ0.
The vector field ∂

∂φ is parallel along θ = θ0 since ∇ ∂
∂φ

∂
∂φ = 0. From Proposition

17.3, the vector field 1
sinφ

∂
∂θ is also parallel along θ = θ0 since it is perpendicular

to ∂
∂φ and of constant length 1. We now verify this directly:

∇ ∂
∂φ

(
1

sinφ

∂

∂θ
) =
− cosφ

sin2 φ

∂

∂θ
+

1

sinφ
· cotφ

∂

∂θ
= 0.

Any parallel vector field along a meridian θ = θ0 is of the form

a
∂

∂φ
+ b · 1

sinφ

∂

∂θ

where a, b ∈ R are constants.
Parallel transport along a parallel φ = φ0. Write (x1(θ), x2(θ)) = (φ0, θ). A
vector field V (θ) = a1(θ) ∂

∂φ + a2(θ) ∂∂θ along φ = φ0 is parallel if and only if
da1

dθ
+ Γ1

22a2 = 0

da2

dθ
+ Γ2

21a1 = 0

where Γ1
22 = − sinφ0 cosφ0, Γ2

21 = cotφ0. The above two equations can be rewrit-
ten as

d

dθ

[
a1(θ)

sinφ0a2(θ)

]
=

[
0 cosφ0

− cosφ0 0

] [
a1(θ)

sinφ0a2(θ)

]
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The solution is[
a1(θ)

sinφ0a2(θ)

]
=

[
cos((cosφ0)θ) sin((cosφ0)θ)
− sin((cosφ0)θ) cos((cosφ0)θ)

] [
a1(0)

sinφ0a2(0)

]
Let a1(0) = 1 and a2(0) = 0, we see that the parallel transport of the unit vector
∂
∂φ along φ = φ0 is

cos((cosφ0)θ)
∂

∂φ
− sin((cosφ0)θ)

sin(φ0)

∂

∂θ
.

Let a1(0) = 0 and a2(0) = 1
sinφ0

, we see that the parallel transport of the unit

vector 1
sinφ0

∂
∂θ along φ = φ0 is

sin((cos θ0)θ)
∂

∂φ
+

cos((cosφ0)θ)

sinφ0

∂

∂θ

Another way to see it is to consider a cone C tangent to S2 along the circle
φ = φ0. Then for any p on the circle φ = φ0, TpC = TpS

2. By Assignment 8 (4),
the parallel tranport along φ = φ0 defined by the Levi-Civita connection on C and
the Levi-Civita connection on S2 are the same. See page 79 of [GHL] for details.

Geodesics

Definition 17.6. Let M be a Riemannian manifold and let γ : I →M be a smooth
curve. Then we say that γ is geodesic at t0 ∈ I if D

dt (
dγ
dt )(t0) = 0, where we are

using the Levi-Civita connection ∇. We say that γ is a geodesic if it is geodesic at
each point of its domain.

By Proposition 17.3, if γ is a geodesic, then |dγdt | is constant. Assume that

|dγdt | = c > 0. We may parametrize by arc length to get |dγdt | = 1. In terms of local
coordinates φ ◦ γ(t) = (x1(t), . . . , xn(t)), we get the equation

d2xk
dt2

+
∑
i,j

Γkij
dxi
dt

dxj
dt

= 0.

Example 17.7 (Euclidean space). M = Rn equipped with the Euclidean metric

g0 = dx2
1 + · · · + dx2

n. Then Γkij = 0. geodesic γ : I → R2 satisfies d2xk
dt2 = 0 and

hence xk(t) = ak + bkt for ak, bk ∈ R. It follows that γ is affine linear in each

coordinate. We conclude the following: for each ~a ∈ Rn and ~b ∈ T~aRn, the line

γ(t) = ~a+~bt is the unique geodesic such that γ(0) = ~a and γ′(0) = ~b.

Example 17.8 (round sphere). Geodesics in a round sphere are great circles. See
Assignment 9 (2).

18. Monday, November 16, 2015

Proposition 18.1. Let (M, g) be a Riemannian manifold. Let p be a point of M
and v ∈ TpM . Then

• (Existence) There is an open interval I = (a, b), where −∞ ≤ a < 0 < b ≤
+∞, and a geodesic γ : I →M , such that γ(0) = p and γ′(0) = v.
• (Uniqueness) If β : I ′ → M is another geodesic satisfying β(0) = p and
β′(0) = v then I ′ ⊂ I and β = γ|I′ .
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There is a reformulation using the notion of a geodesic field.

Geodesic field and geodesic flow

Definition 18.2. Given a smooth curve γ : I → M , we define γ̃ : I → TM by
γ̃(t) = (γ(t), γ′(t)). Then γ̃ is a smooth curve in TM .

Any smooth curve w : I → TM is of the form w(t) = (c(t), V (t)), where c : I →
M is a smooth curve in M and V (t) is a smooth vector field along c(t); w is equal
to γ̃ for some geodesic γ : I →M if and only if

(18.1) c′(t) = V (t),
DV

dt
(t) = 0.

Suppose that c(I) is contained in a coordinate neighborhood U ⊂M . Then w(I)

is contained in TU ⊂ TM . φ : U → φ(U) ⊂ Rn and φ̃ : TU → φ(U)×Rn ⊂ Rn×Rn,

φ ◦ c(t) = (x1(t), . . . , xn(t)),

V (t) =

n∑
i=1

yi(t)
∂

∂xi
|c(t),

φ̃ ◦ w(t) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t)).

Then (18.1) is equivalent to the following system of 2n 1st order ODE’s.

(18.2)
dxk
dt

(t) = yk(t),
dyk
dt

= −
∑
i,j

Γkij(x)yiyj , k = 1, . . . , n.

These are equations for the integral curve of the following smooth vector field on
TU :

G =
∑
k

yk
∂

∂xk
−
∑
i,j,k

Γkij(x1, . . . , xn)yiyj
∂

∂yk
.

G is independent of choice of coordinates. We obtain a smooth vector field G on
TM , known as the geodesic field. Proposition 18.1 follows from the existence and
uniqueness of integral curves of G ∈ X(TM).

Given (p, v) ∈ TM , where p ∈ M and v ∈ TpM , let γ : I → M be the unique
geodesic with γ(0) = p and γ′(0) = v in Proposition 18.1, and define γ̃ : I → TM
as in Definition 18.2. Then γ̃(0) = (p, v) and γ̃′(0) = G(p, v) ∈ T(p,v)(TM).

Applying the existence/uniqueness theorem for flows of vector fields on TM , we
find the following: for each (p, v) ∈ TM , where p ∈ M and v ∈ TpM , there is an
open neighborhood U of (p, v) in TM , a positive number δ > 0, and a smooth map

φ : (−δ, δ)× U → TM

such that {
∂φ
∂t (t, q, w) = G(φ(t, q, w))

φ(0, q, w) = (q, w)

Let γ = π ◦ φ : (−δ, δ)× U →M . Then for a fixed (q, w) ∈ U ⊂ TM , we find that

γq,w(t) := γ(t, q, w) = π(φ(t, q, w))

is a geodesic such that γq,w(0) = q and
dγq,w
dt (0) = w. For t ∈ (−δ, δ), we get

φt : U → TM , the flow of G, called the geodesic flow.
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Example 18.3. When (M, g) = (R, dx2), we can identify TR with R2 via the map
(x, y ∂

∂x ) 7→ (x, y). Then we see that

G = y
∂

∂x
.

The flow φt : TR→ TR is given by

φt(x, y) = (x+ ty, y)

where t ∈ R.

Example 18.4. More generally, when (M, g) = (Rn, g0), we find that

G =
∑
i

yi
∂

∂xi

and φt : R2n → R2n is given by

φt(x, y) = (x+ ty, y),

where x, y ∈ Rn.

Connections on vector bundles

Definition 18.5. Let M be a smooth manifold and let π : E → M be a smooth
vector bundle of rank r. A connection on E is an R-bilinear map ∇ : X(M) ×
C∞(M,E) → C∞(M,E) written (X, s) 7→ ∇Xs such that for any X ∈ X(M),
s ∈ C∞(M,E), and f ∈ C∞(M),

(i) ∇fXs = f∇Xs, i.e., ∇ is C∞(M)-linear in the first factor;
(ii) ∇X(fs) = X(f)s + f∇Xs, i.e., for fixed X ∈ X(M), the map ∇X :

C∞(M,E)→ C∞(M,E) sending s to ∇Xs satisfies the Leibniz rule.

Example 18.6. An affine connection on M is the same as a connection on TM .

We introduce the following notation. We denote by Ωp(M,E) the space of E-
valued p-forms on E, that is,

Ωp(M,E) = C∞(M,ΛpT ∗M ⊗ E).

With this notation, Definition 18.5 can be reformulated as follows.

Definition 18.7. A connection on E is an R-linear map∇ : Ω0(M,E)→ Ω1(M,E)
written s 7→ ∇s such that for each f ∈ C∞(M) and each s ∈ Ω0(M,E), we have

∇(fs) = df ⊗ s+ f∇s.

Lemma 18.8. If ∇1 and ∇2 are connections on E, then ∇1 −∇2 : Ω0(M,E) →
Ω1(M,E) is C∞(M)-linear.

Proof. For f : M → R a smooth function and s : M → E a smooth section, we
have

(∇1 −∇2)(fs) = ∇1(fs)−∇2(fs)

= df ⊗ s+ f∇1s− df ⊗ s− f∇2s

= f(∇1 −∇2)s.

�
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It follows that φ := ∇1 − ∇2 can be viewed as an element of Ω1(M,EndE).
The space of connections on E is an affine space whose associated vector space is
Ω1(M,EndE).

In general if E,F are smooth vector bundles and φ : C∞(M,E)→ C∞(M,F ) is
a C∞(M)-linear map, then we can view φ as an element of C∞(M,E∗ ⊗ F ):

φ(s)(p) = φ(p)s(p) ∈ Fp.
Now we want to express our connection in terms of local coordinates. Let (U, φ)

be a chart for M and write φ = (x1, . . . , xn). We get a smooth frame { ∂
∂xi
} for the

tangent bundle TM |U . We may suppose that we have a trivialization h : E|U →
U × Rr. We get a smooth frame e1, . . . , er for E|U . On U , we have

∇ ∂
∂xi

ej =

r∑
k=1

Γkijek

for some Γkij ∈ C∞(U). The element ∇ej is an E-valued one-form on U and we
note that

∇ej =

n∑
i=1

r∑
k=1

Γkijdxi ⊗ ek =

r∑
k=1

ωkj ek

where ωkj =
∑n
i=1 Γkijdxi are smooth 1-forms on U . To define the connection one-

forms ωkj ∈ Ω1(U) we only need a trivialization of E|U but not TM |U

∇ej =

j∑
k=1

ωkj ek

where ωkj ∈ Ω1(U).

Let {Uα : α ∈ I} be an open cover of M such that hα : π−1(Uα)→ Uα ×Rr are
local trivializations. Let {e1,α, . . . , er,α} be a C∞-frame of E|Uα , so that h−1

α is given
by h−1

α (x, (v1, . . . , vr)) = (x,
∑r
i=1 viei,α(x)), where x ∈ Uα and (v1, . . . , vr) ∈ Rr.

On Uα, define (ωα)kj ∈ Ω1(Uα) by

∇ej,α =

r∑
k=1

(ωα)kj ⊗ ek,α.

For a global smooth section s ∈ C∞(M,E), we can expand s on Uα as

s =

r∑
j=1

sjαej,α

for some sjα in C∞(Uα). By Leibniz rule,

∇s =

r∑
j=1

dsjαej,α +

r∑
j=1

sjα∇ej,α =

r∑
j=1

dsjαej,α +

r∑
j,k=1

sjα(ωα)kj ek,α.

On Uα, define (∇s)jα ∈ Ω1(Uα) by

∇s =

r∑
j=1

(∇s)jαej,α.

We see that

(∇s)jα = dsjα +

r∑
k=1

(ωα)jks
k
α,
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or equivalently,

(18.3)

(∇s)1
α

...
(∇s)rα

 =

ds
1
α

...
dsrα

+

(ωα)1
1 · · · (ωα)1

r
...

. . .
...

(ωα)r1 · · · (ωα)rr


s

1
α
...
srα

 .
We define

(18.4) sα :=

s
1
α
...
srα

 ∈ C∞(Uα,Rr), (∇s)α :=

(∇s)1
α

...
(∇s)rα

 ∈ Ω1(Uα,Rr),

and define a matrix-valued 1-form

(18.5) ωα :=

(ωα)1
1 · · · (ωα)1

r
...

. . .
...

(ωα)r1 · · · (ωα)rr

 ∈ Ω1(Uα, gl(r,R)).

Then (18.3) can be written as

(∇s)α = dsα + ωαsα

where (∇s)α and dsα are column vectors with components that are 1-forms, ωα is
a matrix with entries that are 1-forms, and sα is a column vector with components
that are smooth functions.

19. Wednesday, November 18, 2015

Let π : E →M be a smooth vector bundle of rank r over a smooth manifold M .
Suppose that {Uα : α ∈ I} is an open cover of M and hα : π−1(Uα) → Uα × Rr
are local trivializations. The local trivialization hα gives a smooth frame {ei,α :
i = 1, . . . , r} for E|Uα such that h−1

α (x,~v) = (x,
∑r
i=1 viei,α(x)). When Uα ∩ Uβ is

nonempty, we also have transition functions

hαβ = hα ◦ h−1
β : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr, (x, v) 7→ (x, tαβ(x)v)

where tαβ is a smooth map from Uα ∩ Uβ to GL(r,R). Then tαα(x) = Ir for all
x ∈ Uα, where Ir is the r × r identity matrix, and tαβ(x)tβγ(x)tγα(x) = Ir for all
x ∈ Uα ∩ Uβ ∩ Uγ .

Conversely, given an open cover {Uα : α ∈ I} of M and smooth maps tαβ : Uα ∩
Uβ → GL(r,R) satisfying tαα(x) = Ir for all x ∈ Uα and tαβ(x)tβγ(x)tγα(x) = Ir
for all x ∈ Uα ∩ Uβ ∩ Uγ , we may construct a smooth rank r vector bundle E over
M by gluing the rank r product vector bundles {Uα × Rr → Uα : α ∈ I} along
(Uα ∩ Uβ)× Rr using tαβ .

Let s ∈ C∞(M,E) be a global section, and let sα ∈ C∞(Uα,Rr) be defined as
the previous lecture. Then hα(x) = (x, sα(x)) for x ∈ Uα. On Uα ∩ Uβ ,

(x, sα(x)) = hα(x) = hα ◦ h−1
β ◦ hβ(x) = hα ◦ h−1

β (x, sβ(x)) = (x, tαβ(x)sβ(x)).

So we have

(19.1) sα = tαβsβ .

In a similar fashion, let (∇s)α ∈ Ω1(Uα,Rr) be defined as in the previous lecture.
The

(19.2) (∇s)α = tαβ(∇s)β .
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The left hand side of (19.2) is

dsα + ωαsα = d(tαβsβ) + ωαtαβsβ = (dtαβ)sβ + tαβ(dsβ) + ωαtαβsβ

and the right hand side of (19.2) is

tαβdsβ + tαβωβsβ .

Therefore,

(19.3) ωβ = t−1
αβdtαβ + t−1

αβωαtαβ

on Uα ∩ Uβ . A connection ∇ : Ω0(M,E) → Ω1(M,E) is equivalent to a collection
{ωα ∈ Ω1(Uα, gl(r,R))} satisfying (19.3) on Uα ∩ Uβ .

Pullback bundle

Let f : M → N be a smooth map between smooth manifolds, and let π : E → N
be a smooth vector bundle on N . Then we can define a bundle π̃ : f∗E →M called
the pullback bundle in the following manner. As a set

f∗E =
⋃
p∈M

Ef(p) = {(p, q) ∈M × E : f(p) = π(p)}.

The smooth structure is determined in the following manner. If s : N → E is a
smooth section of E, then f∗s : M → f∗E given by

f∗s(p) = s(f(p)) ∈ Ef(p) =: (f∗E)p

is a smooth section of f∗E. If e1, . . . , er are a smooth frame for E|U , where U is
an open set in N , then f∗e1, . . . , f

∗er are a smooth frame of f∗E|f−1(U). A section

s : f−1(U)→ f∗E|f−1(U) is smooth if and only if we can write

s =

r∑
j=1

ajf
∗ej

where the aj are smooth functions on f−1(U). We have a pullback map

f∗ : C∞(N,E)→ C∞(M,f∗E).

Suppose that {Uα : α ∈ I} is an open cover of N with local trivializations
hα : π−1(Uα)→ Uα×Rr, and define transition functions tαβ : Uα ∩Uβ → GL(r,R)
as before. Then

f∗tαβ := tαβ ◦ f : f−1(Uα ∩ Uβ) = f−1(Uα) ∩ f−1(Uβ)→ GL(r,R)

are the transition functions of f∗E.

Definition 19.1 (pullback connection). Let f : M → N be a smooth map between
smooth manifolds, and let π : E → N be a smooth vector bundle together with a
connection ∇. Then there is a unique connection f∗∇ on f∗E, called the pullback
connection, such that

(f∗∇)(f∗s) = f∗(∇s)
for a smooth section s : N → E.

In other words, if s : N → E is a smooth section, p is a point of M , and
X ∈ TpM , then

(f∗∇)X(f∗s) = f∗(∇dfp(X)s).
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In terms of local trivializations, we know that if e1, . . . , er are a smooth frame of
E|U , then f∗e1, . . . , f

∗er are a smooth frame for f∗E|f−1(U). On U , we know that

∇ej =

r∑
k=1

ωkj ⊗ ek.

Then

(f∗∇)(f∗ej) = f∗(∇ej) =

r∑
k=1

f∗ωkj ⊗ f∗ek.

Therefore, if {ωα ∈ Ω1(Uα, gl(r,R)) : α ∈ I} are connection 1-forms of the connec-
tion ∇ on E → N , then {f∗ωα ∈ Ω1(f−1(Uα), gl(r,R)) : α ∈ I} are connection
1-forms of the pullback connection f∗∇ on f∗E →M .

We next consider the special case E = TN .

Definition 19.2. Let F : M → N be a smooth map between smooth manifolds.
Define a pushforward map

F∗ : X(M) = C∞(M,TM)→ C∞(M,F ∗TN)

by

(F∗X)(p) = (dFp)(X(p)) ∈ TF (p)N = (F ∗TN)p,

and define a pullback map

F ∗ : X(N) = C∞(N,TN)→ C∞(M,F ∗TN)

by

(F ∗Y )(p) = Y (F (p)) ∈ TF (p)N = (F ∗TN)p

Remark 19.3. Let X ∈ X(M) be a smooth vector field on M , and let Y ∈ X(N) be
a smooth vector field on N . Then X and Y are F -related in the sense of Definition
13.10 if and only of

F∗X = F ∗Y ∈ C∞(M,F ∗TN).

Definition 19.4. An element in C∞(M,F ∗TN) is a smooth map V : M → F ∗TN
is such that the diagram

TN

π

��
M

V

==

F // N

commutes. Following [dC], we call V a smooth vector field along F : M → N .

As special cases of the above definition:

• In [dC, Chapter 2], we consider vector fields along a parametrized curve
γ : I → N , where I is an open interval in R and γ is a smooth map.
• In [dC, Chapter 3], we consider vector fields along a parametrized surface
s : A→ N , where A is an open set in R2 and s is a smooth map.

Proposition 19.5. Suppose that we have a smooth map F : M → N from a smooth
manifold M to a Riemannian manifold (N,h), so that we have a pushforward map
F∗ : X(M) → C∞(M,f∗TN). Let ∇ be an affine connection on N , and let D :=
F ∗∇ be the pull-back connection on F ∗TN .
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(i) If ∇ is compatible with the Riemannian metric h then

(19.4) X〈V,W 〉 = 〈DXV,W 〉+ 〈V,DXW 〉 ∀X ∈ X(M) ∀V,W ∈ C∞(M,F ∗TN).

Here the inner product 〈 , 〉 is defined by h.
(ii) If ∇ is symmetric then

(19.5) DXF∗Y −DY F∗X = F∗([X,Y ]) ∀X,Y ∈ X(M).

In particular, if ∇ is the Levi-Civita connection then the pullback connection D
satisfies (19.4) and (19.5).

Proof. Assignment 10 (1). �

Let N be a smooth manifold with an affine connection ∇.
Let γ : I → N be a smooth curve in N , and let V be a smooth vector field along

γ. The covariant derivative along γ is given by

DV

dt
= (γ∗∇) ∂

∂t
V.

The following proposition, which is the same as Proposition 17.3, is a special case
of part (i) of Proposition 19.5.

Proposition 19.6. If ∇ is compatible with a Riemannian metric h on N then the
covariant derivative along a parametrize curve γ : I → N satisfies

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉

for any vector fields V,W along γ, where the inner product 〈 , 〉 is defined by h.

Let s : A → N be a parametrized surface in N , where A is an open set in R2.
Let (u, v) be coordinates on R2. Then { ∂∂u ,

∂
∂v} is a smooth frame for TA. Let

∂s

∂u
:= s∗

∂

∂u
,
∂s

∂v
:= s∗

∂

∂v
∈ C∞(A, s∗TN).

Let W be a vector field along this parametrized surface, that is, W ∈ C∞(A, s∗TN).
Then we define

DW

∂u
:= (s∗∇) ∂

∂u
W,

DW

∂v
:= (s∗∇) ∂

∂v
W ∈ C∞(A, s∗TN).

Proposition 19.7. If ∇ is symmetric then the covariant derivative along the
parametrized surface s : A→ N satisfies

D

∂v

∂s

∂u
=

D

∂u

∂s

∂v
.

Proof. Let D := s∗∇ be the pullback connection on s∗TN . Then

D

∂v

∂s

∂u
− D

∂u

∂s

∂v
= D ∂

∂v

(
s∗

∂

∂u

)
−D ∂

∂u

(
s∗

∂

∂v

)
= s∗([

∂

∂v
,
∂

∂u
]) = 0

where the second equality follows from part (ii) of Proposition 19.5. �

We now study the homogeneity of the geodesics. Let

φ : (−δ, δ)× U → TM

be the geodesic flow defined on some open subset U ⊂ TM . Let γ = π ◦ φ :
(−δ, δ)× U →M . Then φ(t, q, v) = (γ(t, q, v), ∂γ∂t (t, q, v)).
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Lemma 19.8. If the map γ(t, q, v) is defined for t ∈ (−δ, δ), then for each a > 0,
the map γ(t, q, av) is defined for t ∈ (−δ/a, δ/a) and γ(t, q, av) = γ(at, q, v).

Proof. Observe that, if β : (−δ, δ) → M is a geodesic with β(0) = q ∈ M and

β′(0) = v ∈ TqM , then β̃ : (−δ/a, δ/a) → M defined by β̃(t) = β(at) is a geodesic

with β̃(t) = q and β̃′(0) = av. �

Remark 19.9. If M is compact, the tangent bundle TM is not compact, so the
flow may not exist for all time t. However, we can consider the sphere bundle
S(TM) = {(x, v) ∈ TM : |v| = 1}, which is compact. The geodesic field G on TM

is tangent to S(TM), so it restricts to a vector field G̃ on S(TM). By Lemma 7.8,

the flow of G̃ is defined on R× S(TM): φ̃ : R× S(TM)→ S(TM). By the above
Lemma 19.8, the geodesic flow φ is defined on R× TM .

20. Monday, November 23, 2015

Given p ∈M , there is an open neighborhood V of p in M , an ε > 0 and a δ > 0
such that γ(t, q, v) is defined for −δ < t < δ, q ∈ V , and |v| < ε. By Lemma 19.8,
γ(t, q, v) is defined for −2 < t < 2, q ∈ V , and |v| < εδ/2. So for any p ∈M , there
is an open neighborhood V of p in M and an ε > 0 such that γ(t, q, v) is defined
for −2 < t < 2, q ∈ V , and |v| < ε.

Definition 20.1 (Exponential Map). Let U(V,ε) = {(q, w) ∈ TM : q ∈ V, |w| < ε}.
Define

exp : U(V,ε) −→M, exp(q, w) = γ(1, q, w).

Also define

expp : Bε(0) −→M, expp(v) = γ(1, p, v),

where Bε(0) ⊂ TpM is the open ball with center at the origin and with radius ε > 0.
(Geometrically, this means that we find the unique geodesic passing through p with
velocity v and we flow for unit amount of time.)

Lemma 20.2. The map (d expp)0 : T0(TpM) = TpM → TpM is the identity map.

Proof.

(d expp)0(v) =
d

dt

∣∣∣
t=0

expp(tv) =
d

dt

∣∣∣
t=0

γ(1, p, tv) =
d

dt

∣∣∣
t=0

γ(t, p, v) = v.

�

Corollary 20.3. There is an open neighborhood U of 0 in TpM such that expp :
U → V := expp(U) is a diffeomorphism.

Definition 20.4. In Corollary 20.3, the open neighborhood V is called a normal
neighborhood of p in M . If Bε(0) ⊂ U , then Bε(p) := expp(Bε(0)) ⊂ M is called
a normal ball (or geodesic ball) of radius ε > 0 centered at p. The boundary
Sε(p) = ∂Bε(p) of this geodesic ball is called the normal sphere (or geodesic sphere)
of radius ε > 0 centered at p.

Example 20.5. The exponential expp : TpRn → Rn is given by expp(v) = p + v,
which is a global diffeomorphism.
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Example 20.6. The map expp : TpS
n → Sn is given by

expp(v) =

{
p, v = 0,

cos(|v|)p+ sin(|v|) v
|v| , v 6= 0

This is a diffeomorphism of Bπ(0) onto Sn \ {−p}.

Minimizing properties of geodesics

Lemma 20.7 (Gauss). Let p ∈ M and v ∈ TpM such that expp(v) is defined.
Identify TpM with Tv(TpM). Then for w ∈ TpM , we have

〈(d expp)v(v), (d expp)v(w)〉 = 〈v, w〉.

Proof. There exist δ, ε > 0 small enough such that f(s, t) := expp(t(v + sw)) is
defined for t ∈ (−δ, 1 + δ) and s ∈ (−ε, ε). For any s ∈ (−ε, ε), the curve fs :
(−δ, 1 + δ) → M defined by fs(t) := f(s, t) = expp(t(v + sw)) is a geodesic with
fs(0) = p and f ′s(0) = v + sw. So we have

(20.1)
D

∂t

∂f

∂t
(s, t) =

D

dt
f ′s(t) = 0

and |∂f∂t (s, t)| = |f ′s(t)| = |f ′s(0)| = |v + sw| ⇒

(20.2) 〈∂f
∂t
,
∂f

∂t
〉(s, t) = |v + sw|2 = |v|2 + 2s〈v, w〉+ s2|w|2.

We also have

∂f

∂s
(s, t) = (d expp)t(v+sw)(tw) ⇒ ∂f

∂s
(0, t) = (d expp)tv(tw);

∂f

∂t
(s, t) = (d expp)t(v+sw)(v + sw) ⇒ ∂f

∂t
(0, t) = (d expp)tv(v).

So

〈∂f
∂t
,
∂f

∂s
〉(0, 1) = 〈(d expp)v(v), (d expp)v(w)〉,

〈∂f
∂t
,
∂f

∂s
〉(0, 0) = 0.

〈(d expp)v(v), (d expp)v(w)〉

= 〈∂f
∂t
,
∂f

∂s
〉(0, 1)− 〈∂f

∂t
,
∂f

∂s
〉(0, 0) =

∫ 1

0

∂

∂t
〈∂f
∂t
,
∂f

∂s
〉(0, t)dt.

∂

∂t
〈∂f
∂t
,
∂f

∂s
〉 = 〈D

dt

∂f

∂t
,
∂f

∂s
〉+ 〈∂f

∂t
,
D

∂t

∂f

∂s
〉

= 〈∂f
∂t
,
D

∂t

∂f

∂s
〉 = 〈∂f

∂t
,
D

∂s

∂f

∂t
〉 =

1

2

∂

∂s
〈∂f
∂t
,
∂f

∂t
〉

=
1

2

∂

∂s
(|v|2 + 2s〈v, w〉+ s2|w|2)

= 〈v, w〉+ s|w|2.

The first equality follows from part (i) of Proposition 19.5; the second equality
follows from (20.1); the third equality follows from part (ii) of Proposition 19.5; the
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fourth equality follows from part (i) of Proposition 19.5; the fifth equality follows
from (20.2).

∂

∂t
〈∂f
∂t
,
∂f

∂s
〉(0, t) = 〈v, w〉 ⇒ 〈(d expp)v(v), (d expp)v(w)〉 =

∫ 1

0

〈v, w〉dt = 〈v, w〉.

�

Proposition 20.8. Let (M, g) be a Riemannian manifold, p ∈ M , and U a
normal neighborhood of p. Let B ⊂ U be a normal ball with center p, that is,
B = expp(Bδ(0)) for some δ > 0. Suppose that γ : [0, 1]→ B is a geodesic segment
such that γ(0) = p and γ(1) = q. Let c : [0, 1] → M be a piecewise smooth curve
such that c(0) = p and c(1) = q. Then l(γ) ≤ l(c), with equality if and only if the
curves c and γ have the same image.

Proof. We may assume that c([0, 1]) ⊂ B, since l(c) ≥ l(c|[0,t1]) where c(t1) ∈ ∂B
and c(t) ⊂ B for 0 ≤ t < t1. We may also assume that c(t) 6= p for t > 0, otherwise
consider c|[t2,1] where c(t2) = p and c(t) 6= p for t2 < t ≤ 1.

Define b : [0, 1]→ Bδ(0) ⊂ TpM by b(t) = exp−1
p (c(t)). Then b : [0, 1]→ TpM is

a piecewise smooth curve in TpM , and c(t) = expp(b(t)). Since c(t) 6= p for t > 0,
b(t) 6= 0 for t > 0, so for t ∈ (0, 1] we may write

b(t) = r(t)v(t)

where r(t) = |b(t)| > 0 and v(t) = b(t)/|b(t)| are piecewise smooth. We have

〈v(t), v(t)〉 = 1, 〈v(t), v′(t)〉 = 0.

dc

dt
(t) = (d expp)b(t)(b

′(t)) = r′(t)(d expp)b(t)(v(t)) + r(t)(d expp)b(t)(v
′(t)).

Therefore∣∣∣dc
dt

(t)
∣∣∣2 = r′(t)2|(d expp)(b(t))(v(t))|2 + r(t)2|(d expp)b(t)(v

′(t))|2

+2r′(t)r(t)〈(d expp)(b(t))(v(t)), (d expp)(b(t))(v
′(t))〉

Note that v(t) is a scalar multiple of b(t), so by Gauss’s lemma.

|(d expp)(b(t))(v(t))|2 = |v(t)|2 = 1,

〈(d expp)(b(t))(v(t)), (d expp)(b(t))(v
′(t))〉 = 〈v(t), v′(t)〉 = 0.

Therefore, ∣∣∣∣dcdt (t)

∣∣∣∣ =
√
r′(t)2 + r(t)2|(d expp)b(t)(v

′(t))|2 ≥ |r′(t)| ≥ r′(t).

So the length of c satisfies

l(c) =

∫ 1

0

∣∣∣∣dcdt (t)

∣∣∣∣ dt ≥ ∫ 1

0

r′(t)dt = r(1)− r(0) = l(γ).

Equality holds if and only if v′(t) = 0 and dr
dt ≥ 0. In this case, v(t) = v is a

constant unit vector, and

c(t) = expp(r(t)v)

which has the same image as γ(t) = expp(l(γ)tv). �
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21. Wednesday, November 25, 2015

Theorem 21.1. Let (M, g) be a Riemannian manifold and let p be a point of M .
Then there is an open neighborhood W of p in M and δ > 0 such that for any
q ∈ W , expq is a diffeomorphism from Bδ(0) ⊂ TqM onto the geodesic ball Bδ(q),
and W ⊂ Bδ(q).

In particular, W is a normal neighborhood of q for any q ∈ W . We call W a
totally geodesic neighborhood of p in M .

Proof. There is an open neighborhood V of p in M and an ε > 0 such that γ(t, q, v)
is defined for any t ∈ (−2, 2), q ∈ V , and |v| < ε. Then expq(v) = γ(1, q, v) is
defined for (q, v) ∈ U(V,ε) := {(q, v) ∈ TM : q ∈ V, |v| < ε}.

Define F : U(V,ε) →M ×M be

F (q, v) = (q, expq(v)).

We now compute

dF(p,0) : T(p,0)TM = TpM × TpM −→ T(p,p)(M ×M) = TpM × TpM.

For any q ∈ V , we have F (q, 0) = (q, expq(0)) = (q, q). This implies that

dF(p,0)(u, 0) = (u, u).

For any v ∈ TqM , we have F (p, v) = (p, expp v). This implies that

dF(p,0)(0, v) = (0, (d expp)0(v)) = (0, v).

Therefore

dF(p,0) =

[
I 0
I I

]
where I : TpM → TpM is the identity map. In particular, dF(p,0) is a linear
isomorphism. By the Inverse Function Theorem, there exists an open neighborhood
V ′ of p in M , V ′ ⊂ V , and δ ∈ (0, ε), such that F |U(V ′,δ) is a diffeomorphism onto

its image W ′ := F (U(V ′,δ)), which is an open neighborhood of (p, p) in M ×M .
There is an open neighborhood W of p in M such that

W ×W ⊂W ′ =
⋃
q∈V ′
{q} ×Bδ(q).

Therefore W ⊂ Bδ(q) for all q ∈W . �

Corollary 21.2. For any q1, q2 ∈ W , there is a unique geodesic γ joining q1 and
q2.

Corollary 21.3. Let γ : [a, b]→M be a piecewise smooth curve and write γ(a) = p
and γ(b) = q. Suppose that for any piecewise smooth curve β : [c, d] → M such
that β(c) = p and β(d) = q, the length of β is at least the length of γ. Then γ is a
geodesic.

Definition 21.4. Let (M, g) be a Riemannian manifold. We say that an open
subset S ⊂M is strongly convex if for each pair q1, q2 in the closure S of S, there is
a unique minimizing geodesic γ such that γ(0) = q1, γ(1) = q2, and γ((0, 1)) ⊂ S.

Example 21.5. Let (M, g) = (Rn, g0) be the Euclidean space. Then strongly
convex implies convex in the usual sense: S ⊂ Rn is convex if for any q1, q2 ∈ S,
the line segment q1q2 connecting q1 and q2 is contained in S. An open ball in
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(Rn, g0) is strongly convex, thus convex. The set (0, 1)n is convex but not strongly
convex.

Proposition 21.6. For each p ∈ M there is a β > 0 such that Bβ(p) is strongly
convex.

Proof. See [dC, Chapter 3, Section 4]. �

Example 21.7. Let p be any point in the Euclidean space (Rn, g0). Then the
geodesic ball Br(p) is strongly convex for r > 0.

Let p be a point in the round sphere (Sn, gcan) of radius 1. Then the geodesic
ball Br(p) is strongly convex when 0 < r < π/2, but not strongly convex when
π/2 ≤ r < π.

Curvature
Let (M, g) be a Riemannian manifold with ∇ the Levi-Civita connection. Let

X(M) be the space of smooth vector fields on M .

Definition 21.8. For X,Y ∈ X(M), define an R-linear map R(X,Y ) : X(M) →
X(M) by the rule

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z = [∇Y ,∇X ]Z −∇[Y,X]Z

Proposition 21.9. The map R : X(M) × X(M) × X(M) → X(M) given by
(X,Y, Z) 7→ R(X,Y )Z

(i) is anti-symmetric in X,Y
(ii) is C∞(M)-linear in X,Y, Z.

Therefore R can be viewed as an element of

Ω2(M,EndTM) := C∞(M,Λ2T ∗M ⊗ T ∗M ⊗ TM),

that is, R is an End(TM) valued 2-form on M . In particular, R is a (1, 3)-tensor.

Proof. (i) is clear from the definition. Given (i), it remains to show that for any
X,Y, Z ∈ X(M) and any f ∈ C∞(M),

(a) R(fX, Y )Z = fR(X,Y )Z, and
(b) R(X,Y )(fZ) = fR(X,Y )Z

R(fX, Y )Z = ∇Y∇fXZ −∇fX∇Y Z +∇[fX,Y ]Z

= ∇Y (f∇XZ)− f∇X∇Y Z +∇f [X,Y ]−Y (f)XZ

= Y (f)∇XZ + f∇Y∇XZ − f∇X∇Y Z + f∇[X,Y ]Z − Y (f)∇XZ
= fR(X,Y )Z

R(X,Y )(fZ) = ∇Y∇X(fZ)−∇X∇Y (fZ) +∇[X,Y ](fZ)

= ∇Y (X(f)Z + f∇XZ)−∇X(Y (f)Z + f∇Y Z) + ([X,Y ]f)Z + f∇[X,Y ]Z

= Y X(f)Z +X(f)∇Y Z + Y (f)∇XZ + f∇X∇Y Z
−XY (f)Z − Y (f)∇XZ −X(f)∇Y Z − f∇Y∇XZ
+(XY (f)− Y X(f))Z + f∇[X,Y ]Z

= fR(X,Y )Z

�
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Proposition 21.10 (Bianchi identity). We have

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Proof. See [dC] page 91. �

Definition 21.11. For X,Y, Z, T ∈ X(M), define

R(X,Y, Z, T ) := 〈R(X,Y )Z, T 〉.
Then R(X,Y, Z, T ) is C∞(M)-linear in each slot, so it is a (0, 4) tensor.

Proposition 21.12. The (0, 4) tensor R(X,Y, Z, T ) satisfies the following proper-
ties.

(a) R(X,Y, Z, T ) +R(Y,Z,X, T ) +R(Z,X, Y, T ) = 0. (the Bianchi identity)
(b) R ∈ C∞

(
M,Sym2(Λ2T ∗M)

)
, i.e.

(b1) R(X,Y, Z, T ) = −R(Y,X,Z, T )
(b2) R(X,Y, Z, T ) = −R(X,Y, T, Z)
(b3) R(X,Y, Z, T ) = R(Z, T,X, Y )

Proof. See [dC] page 91-92. �

22. Monday, November 30, 2015

The Riemannian curvature tensor in local coordinates
Let (U, φ) be a C∞ chart in M . Let (x1, . . . , xn) be local coordinates on U . Let

T be any (r, s) tensor on M . Then on U ,

T =
∑

i1,...,ir
j1,...,js

T i1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

where T i1···irj1···js ∈ C
∞(U).

As a (1, 3) tensor,

R =
∑
i,j,k,m

Rijk
mdxi ⊗ dxj ⊗ dxk ⊗

∂

∂xm
,

where Rijk
m ∈ C∞(U) is determined by

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
=
∑
l

Rijk
m ∂

∂xm
.

As a (0, 4) tensor,

R =
∑
i,j,k,l

Rijkldxi ⊗ dxj ⊗ dxk ⊗ dxl,

where

Rijkl = R(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
) = 〈R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂xl
〉 =

∑
m

Rijk
mgml ∈ C∞(U).

By Proposition 21.12,

Rijkl +Rjkil +Rkijl = 0, Rijkl = −Rjikl, Rijkl = −Rijlk, Rijkl = Rklij .

We now express Rijk
m in terms of the Christoffel symbol Γkij .

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
= ∇ ∂

∂xj

∇ ∂
∂xi

∂

∂xk
−∇ ∂

∂xi

∇ ∂
∂xj

∂

∂xk
+∇[ ∂

∂xi
, ∂
∂xj

]

∂

∂xk
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where [ ∂
∂xi

, ∂
∂xj

] = 0, and

∇ ∂
∂xj

∇ ∂
∂xi

∂

∂xk
= ∇ ∂

∂xj

(
∑
l

Γlik
∂

∂xl
)

=
∑
l

∂Γlik
∂xj

∂

∂xl
+
∑
l

Γlik∇ ∂
∂xj

∂

∂xl

=
∑
m

∂Γmik
∂xj

∂

∂xm
+
∑
l,m

ΓlikΓmjl
∂

∂xm

So

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
=
∑
m

(
∂Γmik
∂xj

−
∂Γmjk
∂xi

+
∑
l

ΓlikΓmjl −
∑
l

ΓljkΓmil )
∂

∂xm
.

Rijk
m =

∂Γmik
∂xj

−
∂Γmjk
∂xi

+
∑
l

ΓlikΓmjl −
∑
l

ΓljkΓmil

Sectional Curvature
If we fix a point p in a Riemannian manifold (M, g), then V = TpM is an inner

product space.
In general, an inner product on a vector space V ∼= Rn induces an inner product

on Λ2V as follows: if {e1, . . . , en} be an orthonormal basis of V then {ei ∧ ej : 1 ≤
i < j ≤ n} is an orthonormal basis of Λ2V . Equivalently, if x, y ∈ V then

|x ∧ y|2 = 〈x, x〉〈y, y〉 − 〈x, y〉2.

Definition 22.1. Let (M, g) be a Riemannian manifold with p a point of M and
σ a 2 dimensional subspace of TpM . Define the sectional curvature of σ, denoted
K(σ, p), to be

K(σ, p) =
R(p)(x, y, x, y)

|x ∧ y|2
where {x, y} is a basis of σ.

This is well-defined because if {x′, y′} is another basis of σ then x′ = ax + by
and y′ = cx+ dy for some (

a b
c d

)
∈ GL(2,R).

The by (b1) and (b2) of Proposition 21.12,

R(p)(x′, y′, x′, y′) = (ad− bc)2R(p)(x, y, x, y).

We also have

x′ ∧ y′ = (ad− bc)x ∧ y ⇒ |x′ ∧ y′|2 = (ad− bc)2|x ∧ y|2.

Lemma 22.2. Let V be an inner product space. Suppose that r, r′ : V ×V ×V ×V →
R are R-linear in each factor and satisfy

(a) r(x, y, z, t) + r(y, z, x, t) + r(z, x, y, t) = 0.
(b1) r(x, y, z, t) = −r(y, x, z, t).
(b2) r(x, y, z, t) = −r(x, y, t, z).
(b3) r(x, y, z, t) = r(z, t, x, y).
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Define K,K ′ : Gr(2, V )→ R by

K(σ) =
r(x, y, x, y)

|x ∧ y|2
, K ′(σ) =

r′(x, y, x, y)

|x ∧ y|2

where {x, y} is any basis of the 2-dimensional subspace σ of V ; this is well-defined
by (b1) and (b2). If K = K ′, then r = r′.

Proof. Let ∆ = r − r′ : V × V × V × V → R. Then

(1) ∆ is R-linear in each factor.
(2) ∆ satisfies (a), (b1), (b2), (b3).
(3) ∆(x, y, x, y) = 0 for any x, y ∈ V .

We want to show that ∆ ≡ 0.
For each x, y, z ∈ V , by (3), we have

0 = ∆(x+ z, y, x+ z, y)−∆(x, y, x, y)−∆(z, y, z, y)

= ∆(x, y, z, y) + ∆(z, y, x, y) by linearity

= 2∆(x, y, z, y) by (b3).

For any x, y, z, t ∈ V , we have

0 = ∆(x, y + t, z, y + t)−∆(x, y, z, y)−∆(x, t, z, t) by last paragraph

= ∆(x, y, z, t) + ∆(x, t, z, y) linearity

= ∆(x, y, z, t) + ∆(z, y, x, t) (b3)

= ∆(x, y, z, t)−∆(y, z, x, t) (b1).

Therefore,

∆(x, y, z, t) = ∆(y, z, x, t) = ∆(z, x, y, t).

By (a),

∆(x, y, z, t) + ∆(y, z, x, t) + ∆(z, x, y, t) = 0.

We conclude that

∆(x, y, z, t) = 0

for all x, y, z, t ∈ V . This completes the proof. �

Corollary 22.3. The sectional curvature determines the Riemannian curvature
tensor.

Definition 22.4. We say that (M, g) has constant sectional curvature K0 if for
each p ∈M and for any σ ∈ Gr(2, TpM), we have K(σ) = K0.

Lemma 22.5. Define r′ : V × V × V × V → R by

r′(x, y, z, t) = 〈x, z〉〈y, t〉 − 〈x, t〉〈y, z〉.

Then

(1) r′ is R-linear in each factor
(2) r′ satisfies (a), (b1), (b2), (b3) in Lemma 22.2.
(3) For any x, y ∈ V , we have r′(x, y, x, y) = |x ∧ y|2.

Corollary 22.6. The Riemannian manifold (M, g) has constant sectional curvature
K0 if and only if for each X,Y, Z, T ∈ X(M), we have

R(X,Y, Z, T ) = K0 (〈X,Z〉〈Y, T 〉 − 〈X,T 〉〈Y, Z〉)
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Definition 22.7. We say a Riemannian manifold (M, g) is flat if its Riemannian
curvature tensor is identically zero.

Remark 22.8. By Corollary 22.6, (M, g) is flat if and only if M has constant
sectional curvature equal to zero.

Example 22.9. Euclidean space (Rn, g0 = dx2
1 + · · · + dx2

n) is flat, since the
Christoffel symbols are zero and hence Rijkl are zero. Hence (Rn, g0) has constant
sectional curvature equal to zero.

Lemma 22.10. Let f : (M1, g1)→ (M2, g2) be a local isometry, that is, f is a local
diffeomorphism and f∗g2 = g1. Let R1 be the curvature tensor of (M1, g1) and let
R2 be the curvature tensor of (M2, g2). Then R1 = f∗R2.

Proof. In terms of local coordinates, we see that the local coordinates are equal
and the gij are equal, hence so are the curvature tensors. �

Example 22.11 (Flat n-torus). There is a local isometry from (Rn, g0) to (Tn =
(S1)n, g := (gcan)n). Therefore (Tn, g) is flat.

Example 22.12. • At a future time, we will see that (Sn, gcan) has constant
sectional curvature equal to +1. As a consequence, (Sn, r2gcan) (the round
sphere of radius r > 0) has constant sectional curvature equal to K = 1/r2.
• We will also see that Hn = {(y1, . . . , yn) ∈ Rn : yn > 0} (upper half space)

equipped with

gn =
dy2

1 + · · ·+ dy2
n

y2
n

has constant sectional curvature K = −1.

Two-dimensional case
Let (M, g) be a 2-dimensional Riemannian manifold. Let (U, φ) be a C∞ chart

on M , and let (x1, x2) be local coordinates on U . Then on U we have

g = g11dx
2
1 + g12dx1dx2 + g21dx2dx1 + g22dx

2
2 = g11dx

2
1 + 2g12dx1dx2 + g22dx

2
2.

R =

2∑
i,j,k,l=1

Rijkldxi ⊗ dxj ⊗ dxk ⊗ dxl = R1212(dx1 ∧ dx2)⊗ (dx1 ∧ dx2).

The only 2-dimensional subspace of TpM is itself. So in this case the sectional
curvature K is a smooth function on M : K(p) = K(p, TpM) for p ∈M .

K =
R1212

g11g22 − g2
12

Example 22.13. (M, g) = (S2, gcan = dφ2 + sin2 φdθ2). By Example 17.5,

∇ ∂
∂φ

∂

∂φ
= 0, ∇ ∂

∂φ

∂

∂θ
= ∇ ∂

∂θ

∂

∂φ
= cot θ

∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= − sinφ cosφ

∂

∂φ
.

Let (x1, x2) = (φ, θ). Then

R1212 = 〈R(
∂

∂φ
,
∂

∂θ

∂

∂φ
,
∂

∂θ
〉
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where

R(
∂

∂φ
,
∂

∂θ
)
∂

∂φ
= ∇ ∂

∂θ
∇ ∂

∂φ

∂

∂φ
−∇ ∂

∂φ
∇ ∂

∂θ

∂

∂φ
+∇[ ∂∂φ ,

∂
∂θ ]

∂

∂φ

= 0−∇ ∂
∂φ

(cotφ
∂

∂θ
) + 0 = csc2 φ

∂

∂θ
− cot2 φ

∂

∂θ
=

∂

∂θ
.

R1212 = 〈 ∂
∂θ
,
∂

∂θ
〉 = sin2 φ

g11g22 − g2
12 = sin2 φ.

So

K =
R1212

g11g22 − g2
12

= 1.

Ricci curvature

Definition 22.14. For any p ∈ M , define a symmetric bilinear form Qp on TpM
by

Qp(x, y) := Trace(TpM 3 v 7→ R(x, v, y) ∈ TpM)

=

n∑
i=1

R(x, ei, y, ei)

for an orthonormal basis {ei} of TpM . We then define

Ricp =
1

n− 1
Qp

which is a symmetric (0, 2)-tensor on (M, g). (Note that this is the same type of
tensor as g.)

Why do we use 1
n−1? Suppose that (M, g) has constant sectional curvature K0.

Then

Qp(x, y) =

n∑
i=1

K0 (〈x, y〉〈ei, ei〉 − 〈x, ei〉〈y, ei〉) = K0(n〈x, y〉−〈x, y〉) = (n−1)K0〈x, y〉.

So then Ricp(x, y) = K0〈x, y〉.
In terms of local coordinates, we let

R(
∂

∂xi
,
∂

∂xk
)
∂

∂xj
=
∑
l

Rikj
l ∂

∂xl
.

We let

Rij := Q(
∂

∂xi
,
∂

∂xj
) = Trace(

∂

∂xk
7→ R(

∂

∂xi
,
∂

∂xk
)
∂

∂xj
) =

∑
k

Rikj
k =

∑
k,l

Rikjlg
kl.

Then Q =
∑
i,j Rijdxi ⊗ dxj , where Rij = Rji. So

Ric =
1

n− 1

∑
i,j

Rijdxi ⊗ dxj , where Rij =
∑
k,l

Rikjlg
kl.
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23. Wednesday, December 2, 2015

Scalar curvature

Definition 23.1. Let (M, g) be a Riemannian manifold. The scalar curvature S of
(M, g) is a smooth function on M defined as follows. For each point p ∈M , define
a linear map Kp : TpM → TpM by

〈Kp(x), y〉 = Qp(x, y).

Then Kp is self-adjoint, meaning 〈Kp(x), y〉 = 〈x,Kp(y)〉. We then define

S(p) :=
1

n(n− 1)
Trace(Kp) =

1

n(n− 1)

n∑
i=1

Qp(ei, ei)

=
1

n(n− 1)

∑
i,j

R(p)(ei, ej , ei, ej) =
1

n

n∑
i=1

Ricp(ei, ei).

where {e1, . . . , en} is any orthonormal basis of TpM .

We see that if (M, g) has constant sectional curvature K0, we have Ric = K0g
and hence S(p) = K0 for all p ∈M .

In terms of local coordinates, we have

n(n− 1)S = Rii = Rijg
ij = Rijklg

ikgjl

In the special case, when n = 2, we have

R = R1212(dx1 ∧ dx2)⊗ (dx1 ∧ dx2)

and

S =
1

2
(R1212g

11g22 +R2112g
21g12 +R1221g

12g21 +R2121g
22g11)

=
1

2
R1212(2g11g22 − 2(g12)2) = R1212(g22g11 − (g12)2) =

R1212

g11g22 − g2
12

= K.

Covariant derivatives for tensors
References: [dC, Chapter 4 Section 5], [GHL, 2B.3])

Proposition 23.2. Let ∇ be an affine connection on a smooth manifold M . Let
X be a smooth vector field on M and let ∇X : X(M)→ X(M) denote the covariant
derivative along X. Then ∇X has a unique extension

∇X : C∞(M,T rsM)→ C∞(M,T rsM)

such that

(i) ∇X(c(S)) = c(∇X(S)) for any tensor S and any contraction c
(ii) ∇X(S ⊗ T ) = (∇XS)⊗ T + S ⊗∇XT for any tensors S, T .

Proof. For f ∈ C∞(M), we must define ∇Xf = X(f) by the Leibniz rule and (ii).
For a (0, 1)-tensor α ∈ Ω1(M) and a vector field Y , we must have

X(α(Y )) = ∇X(α(Y )) = ∇X(c(Y ⊗ α)) = c(∇X(Y ⊗ α))

= c(∇XY ⊗ α+ Y ⊗∇Xα) = α(∇XY ) + (∇Xα)(Y ).

This implies that

(∇Xα)(Y ) = X(α(Y ))− α(∇XY ).
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By (ii) the covariant derivative ∇X along X on (r, s) tensors is uniquely deter-
mined by the covariant derivative on (1, 0) tensors (vector fields) and (0, 1) tensors
(1-forms). In particular, if T is a (0, s)-tensor and Y1, . . . , Ys ∈ X(M) then

∇XT (Y1, . . . , Ys) = X(T (Y1, . . . , Ys))−
s∑
i=1

T (Y1, . . . , Yi−1,∇XYi, Yi+1, . . . , Ys).

�

Recall that the Lie derivative behaved similarly. In particular, we had

LXT (Y1, . . . , Ys) = X(T (Y1, . . . , Ys))−
s∑
i=1

T (Y1, . . . , LXYi, . . . , Ys).

This definition does not depend on the connection. However, the definition of ∇XT
does.

Remark 23.3. Geometrically, the Lie derivative LX is the derivative of the pull-
back of a tensor under a flow φt of a vector field X. Also, there is a geometric in-
terpretation of ∇X . We take an integral curve γ of X and we look at D

dtT (γ(t))|t=0.
The map X 7→ ∇XT is C∞(M)-linear in X, but the map X 7→ LXT is R-linear

but not C∞(M)-linear in X.
We may view ∇ as a map

∇ : C∞(M,T rsM)→ C∞(M,T rs+1M)

by the map T 7→ ∇T where

∇T (X1, . . . , Xs+1) = (∇Xs+1
T )(X1, . . . , Xs).

On a coordinate neighborhood U , let Γkij ∈ C∞(U) be defined by

∇ ∂
∂xi

∂

∂xj
= Γkij

∂

∂xk

(The right hand side is a sum over k. We will continue to use this summation
convention.)

(∇ ∂
∂xi

dxj)(
∂

∂xk
) =

∂

∂xi

(
dxj(

∂

∂xk
)
)
− dxj

(
Γlik

∂

∂xl

)
= −Γjik.

So we find that

∇ ∂
∂xi

dxj = −Γjikdx
k

If T is an (r, s) tensor, then on U we can write

T = T i1...irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs .

On U we may write

∇T = (∇T )i1···irj1···js+1

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs+1 .

Our goal is to find (∇T )i1···irj1···js+1
. We introduce the notation

T i1···irj1···js,js+1
= (∇T )i1···irj1···js+1

= (∇ ∂
∂xjs+1

T )i1···irj1···js .
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By this notation, we find that

∇ ∂
∂xk

T = T i1···irj1···js,k
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs .

On the other hand, we can apply Leibniz rule, and the above boxed equations to
find that (see Assignment 12 Problem 4):

T i1···irj1···js,k =
∂

∂xk
(T i1...irj1···js ) +

r∑
α=1

ΓiαklT
i1···iα−1liα+1···ir
j1···js −

s∑
β=1

ΓlkiβT
i1···ir
j1···jβ−1liβ+1···is

Proposition 23.4. Let ∇ be an affine connection on a Riemannian manifold
(M, g). Then ∇ is compatible with g if and only if ∇g = 0.

Proof. If ∇g = 0, then ∇g(X,Y, Z) = 0 for all X,Y, Z ∈ X(M). But this implies
that

0 = ∇g(X,Y, Z) = (∇Zg)(X,Y ) = Z(g(X,Y ))− g(∇ZX,Y )− g(X,∇ZY ),

which implies that ∇ is compatible with g. This argument is reversible. �

Proposition 23.5. Let ∇ be an affine connection. Then ∇ is symmetric (that is,
∇XY −∇YX = [X,Y ]) if and only if for any 1-form α on M and any vector fields
X,Y ∈ X(M), we have

(dα)(X,Y ) = (∇α)(Y,X)− (∇α)(X,Y ).

Proof. We have

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])

and

(∇α)(Y,X) = (∇Xα)(Y ) = X(α(Y ))− α(∇XY ).

The claim now follows easily. �

Let ∇ be the Levi-Civita connection on (M, g). For a smooth function f , we get
a one-form ∇f ∈ Ω1(M), defined by

(∇f)(X) = ∇Xf = X(f),

so

∇f = df.

In particular, we find that

df = f,idx
i f,i =

∂f

∂xi

Gradient, Divergence, Hessian, and Laplacian

Definition 23.6. For a smooth function f ∈ C∞(M), we define a vector field
grad(f) ∈ X(M), called the gradient of f , by the rule

〈grad(f), X〉 = df(X).
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Write grad(f) = grad(f)j ∂
∂xj

. Then

f,j =
∂f

∂xj
= df(

∂

∂xj
) = 〈grad(f),

∂

∂xj
〉 = grad(f)igij

Therefore,

gradf = f,
i ∂

∂xi
f,
i = f,jg

ij =
∂f

∂xj
gij .

Definition 23.7. For a vector field Y on M , we define a smooth function divY ,
called the divergence of Y by the rule

divY = c(∇Y )

where c denotes contraction.

Write Y = Y i ∂
∂xi

. Then

∇Y = Y i,j
∂

∂xi
⊗ dxj , Y i,j =

∂Y i

∂xj
+ ΓijkY

k.

Therefore,

divY = Y i,i =
∂Y i

∂xi
+ ΓiikY

k

where Y = Y i ∂
∂xi

.

Definition 23.8. For a smooth function f , we define a (0, 2)-tensor, called the
Hessian of f by the rule

Hessf = ∇∇f = ∇df = ∇(f,idx
i) = f,ijdx

i ⊗ dxj .

We compute that

f,ij =
∂f,i
∂xj
− Γkjif,k =

∂2f

∂xj∂xi
− Γkji

∂f

∂xk
= f,ji.

It follows that Hessf is a symmetric (0, 2)-tensor.
We also compute that

Hess(f)(X,Y ) = (∇df)(X,Y ) = (∇Y df)(X)

= Y (df(X))− df(∇YX) = Y (X(f))− (∇YX)(f).

Definition 23.9. For a smooth function f , we define a smooth function ∆f , called
the Laplacian of f , by the rule

∆f = div(gradf) = div(f,
i ∂

∂xi
) = f,i

i = f,ijg
ij .

Locally the Laplacian is given by

∆f = gij
(

∂2f

∂xi∂xj
− Γkij

∂f

∂xk

)
.
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In normal coordinates at p ∈ M , we know that gij(p) = gij(p) = δij and
Γkij(p) = 0. So we can compute that

(gradf)(p) =

n∑
i=1

∂f

∂xi
(p)

∂

∂xi
|p

(divY )(p) =

n∑
i=1

∂Y i

∂xi
(p)

(Hessf)(p) =
∑
i,j

∂2f

∂xi∂xj
(p)dxi|p ⊗ dxj |p

(∆f)(p) =

n∑
i=1

∂2f

∂x2
i

(p)

24. Monday, December 7, 2015

Curvature of a connection on a vector bundle
Let E →M be a smooth vector bundle. Recall that a connection ∇ on E is an

R-linear map

∇ : Ω0(M,E)→ Ω1(M,E)

s 7→ ∇s

such that for f ∈ C∞(M) and s ∈ Ω0(M,E),

∇(fs) = df ⊗ s+ f∇s.

Given a vector field X ∈ X(M) and a section s ∈ Ω0(M,E), write ∇Xs =
∇s(X) ∈ Ω0(M,E). For vector fields X,Y ∈ X(M), define

R∇(X,Y ) : C∞(M,E)→ C∞(M,E)

by the rule

R∇(X,Y )s = ∇X∇Y s−∇X∇Y s−∇[X,Y ]s.

Then

(i) R∇(X,Y ) = −R∇(Y,X)
(ii) R∇(X,Y ) is C∞(M)-linear in X,Y, and s.

We may therefore view R∇ as an element of

Ω2(M,EndE) = C∞(M,Λ2T ∗M ⊗ EndE)

We call R∇ the curvature of ∇.
For a smooth map f : N →M , we get a pullback connection f∗∇ on the pullback

bundle f∗E → N . Then the curvature Rf∗∇ of the pull back connection f∗∇ is
the pull back of the curvature R∇ of ∇:

Rf∗∇ = f∗R∇ ∈ Ω2(N,Endf∗E)

Jacobi Fields
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Let (M, g) be a Riemannian manifold. A Jacobi field J(t) is a smooth vector
field along a geodesic γ : I → M which arises in the following way. Consider a
smooth map

f : (−ε, ε)× [0, a]→M

(s, t) 7→ fs(t) = f(s, t)

(which we think of as a family of geodesics parametrized by s ∈ (−ε, ε)) such that
for any s ∈ (−ε, ε), the map fs : [0, a]→M is a geodesic and such that f0 = γ. We
then set

J(t) =
∂f

∂s
(0, t).

Lemma 24.1. Let A = (−ε, ε)× [0, a] ⊂ R2. Let f : A→ M be any smooth map.
Then ∂

∂s ,
∂
∂t are global vector fields on A. Recall that we have defined

∂f

∂s
:= f∗(

∂

∂s
),

∂f

∂t
:= f∗(

∂

∂s
) ∈ C∞(A, f∗TM).

Let ∇ be the Levi-Civita connection on (M, g) and let D = f∗∇ be the pullback
connection on f∗TM . Then

(24.1)
D

∂s

∂f

∂t
− D

∂t

∂f

∂s
= 0

(24.2)
D2

dt2
∂f

∂s
− D

ds

(
D

dt

∂f

∂t

)
+R(

∂f

∂t
,
∂f

∂s
)
∂f

∂t
= 0

Proof. By the symmetric of the pullback connection, we have

(24.3) 0 = f∗[
∂

∂s
,
∂

∂t
] = D ∂

∂s
f∗
∂

∂t
−D ∂

∂t
f∗

∂

∂s
.

which can be rewritten as (24.1).
We also have

(24.4) D ∂
∂t
D ∂

∂s
f∗
∂

∂t
−D ∂

∂s
D ∂

∂t
f∗
∂

∂t
+D[ ∂∂s ,

∂
∂t ]f∗

∂

∂t
= f∗R(

∂

∂s
,
∂

∂t
)(f∗

∂

∂t
).

where [ ∂∂s ,
∂
∂t ] = 0. By (24.3) and (24.4),

D2

dt2
∂f

∂s
− D

ds

(
D

dt

∂f

∂t

)
= R(

∂f

∂s
,
∂f

∂t
)
∂f

∂t
,

which is equivalent to (24.2). �

We now note that: fs : [0, a]→M is a geodesic for any s ∈ (−ε, ε) if and only if

D

dt

∂f

∂t
(s, t) = 0 for any s, t.

Therefore, for a family of geodesics fs, (24.2) becomes

D2

dt2
∂f

∂s
+R(

∂f

∂t
,
∂f

∂s
)
∂f

∂t
= 0

In particular, for s = 0, if we set

∂f

∂t
(0, t) = γ′(t) and

∂f

∂s
(0, t) = J(t),
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then we see that

(24.5)
D2J

dt2
+R(γ′, J)γ′ = 0.

Definition 24.2. A vector field J(t) along a geodesics γ : [0, a] → M is called a
Jacobi field if it satisfies the Jacobi equation (24.5).

Proposition 24.3. Let γ : [0, a] → M be a geodesic, with γ(0) = p and γ′(0) =
v ∈ TpM (so that γ(t) = expp(tv). Then

(a) For any u,w ∈ TpM , there is a unique Jacobi field J(t) along γ(t) with

J(0) = u and DJ
dt (0) = w.

(b) If J(t) is a Jacobi field along γ(t), then there is a smooth map f : (−ε, ε)×
[0, a]→M written f(s, t) = fs(t) such that
(i) for each s ∈ (−ε, ε), the map fs : [0, a]→M is a geodesic,
(ii) f0 = γ, and

(iii) ∂f
∂s (0, t) = J(t).

Example 24.4. In Proposition 24.3, suppose that (M, g) = (Rn, g0) is the Eu-

clidean space, then γ(t) = p+ tv. The Jacobi equation is reduced to D2J
dt2 = 0. The

unique solution in part (a) is given by J(t) = u + tw, and the smooth map f in
part (b) can be given by f(s, t) = (p+ su) + t(v + sw).

Proof of Proposition 24.3.
(a) Let e1, . . . , en be an orthonormal basis of TpM and let ei(t) be parallel transport
of ei along γ(t), that is, ei(t) is the unique parallel vector field along γ(t) such that
ei(0) = ei. Then for any t ∈ [0, a], we see that {ei(t)} is an orthonormal basis of
Tγ(t)M . If J(t) is a smooth vector field along γ(t), then we may write

J(t) =

n∑
i=1

fi(t)ei(t)

for some smooth fi : [0, a]→ R. We see that J(t) is a Jacobi field along γ(t) if and
only if the Jacobi equation holds, which holds if and only if

n∑
i=1

f ′′i (t)ei(t) +

n∑
j=1

fj(t)R(γ′(t), ej(t))γ
′(t) = 0.

Taking inner product of the above equation and ei, we see that the above equation
is equivalent to

f ′′i (t) +

n∑
j=1

fj(t)R(γ′(t), ej(t), γ
′(t), ei(t)) = 0, i = 1, . . . , n.

Define aij(t) ∈ C∞([0, a]) by

aij(t) = R(γ′(t), ej(t), γ
′(t), ei(t)).

Then aij(t) = aij(t). We see that J(t) is a Jacobi field along γ(t) if and only if

f ′′i (t) +

n∑
j=1

aij(t)fj(t) = 0 for i = 1, . . . , n

if and only if
d2

dt2
~f(t) +A(t)~f(t) = 0
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where ~f(t) =

 f1(t)
...

fn(t)

, and A(t) is the matrix (aij(t)). We also have

{
J(0) = u
DJ
dt (0) = w

⇔

{
~f(0) = ~u
d~f
dt (0) = ~w

where

~u =

 〈u, e1〉
...

〈u, en〉

 , ~w =

 〈w, e1〉
...

〈w, en〉


The uniqueness of ODE’s implies there is a unique solution satisfying these condi-
tions.

(b) (cf. [dC] Chapter 5 Exercise 2)
(Idea of the proof: set u := J(0), w := DJ

dt (0) ∈ TpM . When (M, g) = (Rn, g0),
we have f(s, t) = (p + su) + t(v + sw) = expp+su(t(v + sw)). This motivates the
construction of f(s, t) in the general case: f(s, t) = expλ(s)(t(v(s) + sw(s))), where

λ(s) = expp(su) and v(s), w(s) ∈ Tλ(s)M are the parallel tranports of v, w ∈ TpM
along the curve λ(s).)

Let J(t) be a Jacobi field along γ(t) = expp(tv). Let u := J(0), w := DJ
dt (0) ∈

TpM . Define λ : (−ε, ε) → M by λ(s) = expp(su). Then λ(0) = 0 and λ′(0) = u.
Let v(s) (resp. w(s)) be the unique parallel vector field along the curve λ(s) such
that v(0) = v (resp. w(0) = w). Define a smooth map f : (−ε, ε)× [0, a]→M by

f(s, t) = expλ(s)

(
t(v(s) + sw(s))

)
.

Then

(i) For any s ∈ (−ε, ε), fs : [0, a]→M defeind by fs(t) = f(s, t) is the unique
geodesic with fs(0) = λ(s) and f ′s(0) = v(s) + sw(s).

(ii) f0(t) = expp(tv) = γ(t).

(iii) J̄(t) := ∂f
∂s (0, t) is a Jacobi field along γ(t).

It remains to show that J̄(0) = u and DJ̄
dt (0) = w (⇒ J̄(t) = J(t)).

f(s, 0) = λ(s)⇒ J̄(0) =
∂f

∂s
(0, 0) = λ′(0) = u.

∂f

∂t
(s, 0) = f ′s(0) = v(s) + sw(s)⇒ D

∂s

∂f

∂t
(s, 0) = w(s).

DJ̄

dt
(0, 0) =

D

∂t

∂f

∂s
(0, 0) =

D

∂s

∂f

∂t
(0, 0) = w(0) = w.

�

We now consider the special case u = 0 in part (b) of the above proof. Say that
J(t) is a Jacobi field along γ(t) = expp(tv) such that J(0) = 0 and DJ

dt (0) = w.
Applying the construction from part (b) of the proof, we see that λ(s) = p (the
constant map) and f(s, t) = expp(t(v + sw)). We see that

∂f

∂s
(s, t) = (d expp)t(v+sw)(tw)

and hence
J(t) = (d expp)tv(tw).
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Proposition 24.5. Let γ : [0, a] → M be a geodesic with γ(0) = p and γ′(0) =
v ∈ TpM (so that γ(t) = expp(tv)). Let J(t) be a Jacobi field along γ(t) such that

J(0) = 0 and DJ
dt (0) = w. Then

J(t) = (d expp)tv(tw)

for t ∈ [0, a].

Lemma 24.6. Let γ : [0, a]→M be a geodesic and J(t) a Jacobi field along γ(t).
Then

〈J(t), γ′(t)〉 = 〈J(0), γ′(0)〉+ t〈J ′(0), γ′(0)〉
where J ′(0) = DJ

dt (0).

Proof. Define a smooth function f : [0, a] → R by f(t) = 〈J(t), γ′(t)〉. The lemma
says f(t) = f(0) + f ′(0)t. It suffices to show that f ′′(t) = 0.

Recall that because γ is a geodesic, we have D
dtγ
′(t) = 0. Let J ′ = DJ

dt and

J ′′ = D2J
dt2 . Then

f ′ = 〈J ′, γ′(t)〉
f ′′ = 〈J ′′, γ′〉 = −〈R(γ′, J)γ′, γ′〉 = R(γ′, J, γ′, γ′) = 0,

where we use the Jacobi equation J ′′ +R(γ′, J)γ = 0. �

Remark 24.7. Note that γ′(t) and tγ′(t) are Jacobi fields along γ(t) (by the Jacobi
equation). By Lemma 24.6, for any Jacobi field J(t) along γ(t), we have

J(t) = (〈J(0), γ′(0)〉+ t〈J ′(0), γ′(0)〉) γ′(t)

|γ′(0)|2
+ J⊥(t)

where J⊥(t) is also a Jacobi field along γ(t) and

〈J⊥, γ′〉 = 0.

25. Wednesday, December 9, 2015

Jacobi fields on a manifold with constant sectional curvature
Let (M, g) be a Riemannian manifold with constant sectional curvature K. Let

γ : [0, a] → M be a normalized geodesic (i.e. |γ′| = 1). Let p = γ(0) ∈ M and
v = γ′(0) ∈ TpM . Let J(t) be a Jacobi field along γ(t) such that

J(0) = 0,
DJ

dt
(0) = w, 〈w, v〉 = 0.

Then 〈J(t), γ′(t)〉 = 0 for all t ∈ [0, a]. For any smooth vector field V (t) along γ(t),

〈R(γ′, J)γ′, V 〉 = K(〈γ′, γ′〉〈J, V 〉 − 〈γ′, V 〉〈γ′, J〉) = 〈KJ, V 〉.
Therefore R(γ′, J)γ′ = KJ . So J satisfies

D2

dt2
+KJ = 0.

Let J(t) = f(t)w(t), where f is a smooth function on [0, a] and w(t) is the unique
parallel vector field along γ(t) with w(0) = w. Then

D2J

dt2
+KJ = 0, J(0) = 0,

DJ

dt
(0) = w,

are equivalent to
f ′′ +Kf = 0, f(0) = 0, f ′(0) = 0.
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f(t) =


sin(
√
Kt)√
K

, K > 0;

t, K = 0;
sinh(

√
−Kt)√
−K , K < 0.

Therefore, the unique Jacobi field J(t) along γ(t) with J(0) = 0, DJ
dt (0) = w,

where 〈w, γ′(0)〉 = 0, is given by

J(t) =


sin(
√
Kt)√
K

w(t), K > 0,

tw(t), K = 0,
sinh(

√
−Kt)√
−K w(t), K < 0,

where w(t) is the unique parallel vector field along γ(t) with w(0) = w.
Similarly, the unique Jacobi field J(t) along γ(t) with J(0) = u, DJ

dt (0) = 0,
where 〈u, γ′(0)〉 = 0, is given by

J(t) =


cos(
√
Kt)u(t), K > 0,

u(t), K = 0,

cosh(
√
−Kt)u(t), K < 0,

where u(t) is the unique parallel vector field along γ(t) with u(0) = u.

Taylor Expansion of gij in local coordinates

Proposition 25.1. Let (M, g) be a Riemannian manifold and p a point M . Let
γ : [0, a] → M be a geodesic with γ(0) = p and γ′(0) = v. (This means that
γ(t) = expp(tv).) Let J(t) be a Jacobi field along γ(t) with J(0) = 0 and DJ

dt (0) =
w ∈ TpM . (This means that J(t) = (d expp)tv(tw).) Then

|J(t)|2 = 〈w,w〉t2 − 1

3
R(v, w, v, w)t4 − 1

6
(∇vR)(v, w, v, w)t5

+

[
2

45
〈R(v, w)v,R(v, w)v〉 − 1

20
(∇v∇vR)(v, w, v, w)

]
t6 + o(t6).

Corollary 25.2. If v and w are orthonormal, then

|J(t)|2 = t2 − 1

3
K(p, σ)t4 + o(t4)

where σ is the span of v and w. As a result, we also have (when t > 0)

|J(t)| = t− 1

6
K(p, σ)t3 + o(t3).

We now prove the proposition.

Proof of Proposition 25.1. Let f = 〈J, J〉. Need to compute f (k)(0) for 0 ≤ k ≤ 6.
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Note that

f ′ = 2〈J ′, J〉
f ′′ = 2〈J ′′, J〉+ 2〈J ′, J ′〉

f (3) = 2〈J (3), J〉+ 6〈J ′′, J ′〉

f (4) = 2〈J (4), J〉+ 8〈J (3), J ′〉+ 6〈J ′′, J ′′〉

f (5) = 2〈J (5), J〉+ 10〈J (4), J ′〉+ 20〈J (3), J ′′〉

f (6) = 2〈J (6), J〉+ 12〈J (5), J ′〉+ 30〈J (4), J ′′〉+ 20〈J (3), J (3)〉.

We now know that J(0) = 0 and J ′(0) = w. We need to compute J (k)(0) for
2 ≤ k ≤ 5. But we have the Jacobi equation, so we know that

J ′′ = −R(γ′, J)γ′ ⇒ J ′′(0)

J (3) = −R′(γ′, J)γ′ −R(γ′, J ′)γ′ ⇒ J (3)(0) = −R(v, w)v

J (4) = −R′′(γ′, J)γ′ − 2R′(γ′, J ′)γ′ −R(γ′, J ′′)γ′ ⇒ J (4)(0) = −2(∇vR)(v, w)v

J (5) = −R′′′(γ′, J)γ′ − 3R′′(γ′, J ′)γ′ − 3R′(γ′, J ′′)γ′ −R(γ′, J (3))γ′

⇒ J (5)(0) = −3(∇v∇vR)(v, w)v +R(v,R(v, w)v)v

We then plug these results into the above expressions for f (k) to find

f(0) = 0

f ′(0) = 0

f ′′(0) = 2〈w,w〉

f (3)(0) = 0

f (4)(0) = −8〈R(v, w)v, w〉

f (5)(0) = −20〈(∇vR)(v, w)v, w〉

f (6)(0) = 12〈−3(∇v∇vR)(v, w)v +R(v,R(v, w)v)v, w〉+ 20〈R(v, w)v,R(v, w)v〉
= −36〈(∇v∇vR)(v, w)v, v〉+ 32〈R(v, w)v,R(v, w)v〉.

Using the usual Taylor expansion, we find the desired result. �

Proposition 25.1 implies

〈(d expp)tv(u), (d expp)tvw〉

=〈u,w〉 − 1

3
R(v, u, v, w)t2 − 1

6
(∇vR)(v, u, v, w)t3

+

[
2

45
〈R(v, u)v,R(v, w)v〉 − 1

20
(∇v∇vR)(v, u, v, w)

]
t4 +O(t5)

Let {e1, . . . , en} be an orthonormal basis of TpM . Then

〈(d expp)v(ei), (d expp)vej〉

=〈ei, ej〉 −
1

3
R(v, ei, v, ej)−

1

6
(∇vR)(v, ei, v, ej)

+

[
2

45
〈R(v, ei)v,R(v, ej)v〉 −

1

20
(∇v∇vR)(v, ei, v, ej)

]
+O(|v|5)
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Suppose that Bε(p) is a geodesic ball with center p and radius ε > 0. Then

q = expp(

n∑
k=1

xkek) ∈ Bε(q).

where (x1, . . . , xn) are the normal coordinates determined by (e1, . . . , en). Then

∂

∂xi

∣∣∣
q

= (d expp)
∑n
k=1 xkek

(ei).

So

gij(x1, . . . , xn) = 〈(d expp)
∑n
k=1 xkek

(ei), (d expp)
∑n
l=1 xlel

(ej)〉
On Bε(p),

∇R =
∑

i,j,k,l,m

Rijkl,mdx
i ⊗ dxj ⊗ dxk ⊗ dxl ⊗ dxm

and

∇∇R =
∑

i,j,k,l,m,r,s

Rijkl,rsdx
i ⊗ dxj ⊗ dxk ⊗ dxl ⊗ dxr ⊗ dxs

We obtain the following Taylor expansion of gij :

gij(x) = δij −
1

3

∑
k,l

Rikjl(p)xkxl −
1

6

∑
k,l,m

Rijkl,m(p)xkxlxm

− 1

20

∑
k,l,r,s

Rikjl,rs(p)xkxlxrxs +
2

45

∑
k,l,r,s,m

Riklm(p)Rjrsm(p)xkxlxrxs +O(|x|5)

Taylor Expansion of
√

det(gij)

Let g(x) = (gij(x)). Then

g(x) = I + g(2)(x) + g(3)(x) + g(4)(x) +O(|x|5)

where I is the n× n identity matrix.√
det(g(x)) = exp(

1

2
Tr log(g(x)))

where

log(g(x)) = g(2)(x) + g(3)(x) + g(4)(x)− 1

2
g(2)(x)2 +O(|x|5).

−1

2

(
g(2)(x)2

)
ij

= − 1

18

∑
k,l,r,s,m

Rikml(p)Rjrms(p)xkxlxrxs

= − 1

18

∑
k,l,r,s,m

Riklm(p)Rjrsm(p)xkxlxrxs

Tr log(g(x)) = −1

3

∑
k,l

Rkl(p)xkxl −
1

6

∑
k,l,m

Rkl,m(p)xkxlxm

− 1

20

∑
k,l,r,s

Rkl,rs(p)xkxlxrxs −
1

90

∑
i,k,l,r,s,m

Riklm(p)Rirsm(p)xkxlxrxs +O(|x|5)
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√
det(g(x)) = 1− 1

6

∑
k,l

Rkl(p)xkxl −
1

12

∑
k,l,m

Rkl,m(p)xkxlxm

∑
k,l,r,s

(
− 1

40

∑
k,l,r,s

Rkl,rs(p)−
1

180

∑
i,m

Riklm(p)Rirsm(p) +
1

72
Rkl(p)Rrs(p)

)
xkxlxrxs +O(|x|5)

26. Monday, December 14, 2015

Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the round sphere of radius 1, and
let p = (0, 0, 1) be the north pole. The exponential map expp : TpS

2 → S2 sends a
circle of radius ρ > 0 centered at the origin to the circle

{(x, y, z) ∈ R3 : x2 + y2 = sin2 ρ, z = cos ρ}.

Let (ρ, θ) be the polar coordinates on TpS
2 = R2. Then

exp∗p(dx
2 + dy2 + dz2) = dρ2 + sin2 ρdθ2.

More generally, given K > 0, let S2( 1√
K

) = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1
K }

be the round sphere of radius 1√
K

, which has constant sectional curvature K > 0.

Let p = (0, 0, 1√
K

) be the north pole. The exponential map expp : TPS
2( 1√

K
) →

S2( 1√
K

) sends a circle of radius ρ > 0 centered at the origin to the circle

{(x, y, z) ∈ R3 : x2 + y2 =
sin2(

√
Kρ)

K
, z =

cos(
√
Kρ)√
K

}.

Let (ρ, θ) be the polar coordinates on TpS
2( 1√

K
) = R2. Then

exp∗p(dx
2 + dy2 + dz2) = dρ2 +

( sin(
√
Kρ)√
K

)2

dθ2.

Let (M, g) be a Riemannnian manifold with constant sectional curvature K. Let
γ : [0, a] → M be a normalized geodesic, and let J(t) be a Jacobi field along γ(t)
with J(0) = 0, DJ

dt (0) = w, where 〈w, γ′(0)〉. Then

J(t) = fK(t)w(t),

where

fK(t) =


sin(
√
Kt)√
K

, K > 0,

t, K = 0,
sinh(

√
−Kt)√
−K , K < 0,

Let Bδ(p) be the geodesic ball with center p and radius δ > 0. Define a C∞ map

F : (0, δ)× Sn−1 → Bδ(p), (ρ, v) 7→ expp(ρv).

Then

dF(ρ,v) : T(ρ,v)

(
(0, δ)× Sn−1

)
= R

∂

∂ρ
⊕ TvSn−1 → Texpp(ρv)M

is given by

dF(ρ,v)(
∂

∂ρ
) = (d expp)ρv(v)

dF(ρ,v)(w) = (d expp)ρv(ρw)
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where w ∈ TvSn−1 = {w ∈ Rn : 〈v, w〉 = 0}. By Gauss’s lemma,

〈(d expp)ρv(v), (d expp)ρv(v)〉 = 〈v, v〉 = 1,

〈(d expp)ρv(v), (d expp)ρv(ρw)〉 = ρ〈v, w〉 = 0.

We have
(d expp)ρv(ρw) = fK(ρ)w(ρv)

where w(ρv) ∈ Texpp(ρv)M is the parallel transport of w ∈ TpM along the geodesic

t 7→ expp(tv). So

|(d expp)ρv(ρw)|2 = fK(ρ)2|w|2.
Therefore,

F ∗g = dρ2 + fK(ρ)2gS
n−1

can =



dρ2 +
( sin(

√
Kρ)√
K

)2

gS
n−1

can , K > 0;

dρ2 + ρ2gS
n−1

can , K = 0;

dρ2 +
( sinh(

√
−Kρ)√
−K

)2

gS
n−1

can , K < 0.

Conjugate points
See [dC] Chapter 5 Section 3.

Divergence and Laplacian Revisited
Let (M, g) be a Riemannian manifold.
Given a vector field Y ∈ X(M), we may write Y = Y i ∂

∂xi
in a coordinate

neighborhood U with local coordinates (x1, . . . , xn), where Y i ∈ C∞(U). Then

divY = Y i,i =
∂Y i

∂xi
+ ΓiikY

k.

Lemma 26.1.

divY =
1√

det(g)

∑
i

∂

∂xi
(
√

det(g)Y i).

Proof.∑
i

Γiik =
1

2

∑
i,j

gij(
∂

∂xi
gkj +

∂

∂xk
gji −

∂

∂xj
gik) =

1

2

∑
i,j

gij
∂

∂xk
gji

=
1

2
Tr(g−1 ∂

∂xk
g) =

∂

∂xk
log
√

det(g) =
1√

det(g)

∂

∂xk
(
√

det(g)).

divY = Y i,i =
∑
i

∂Y i

∂xi
+
∑
k

( 1√
det(g)

∂

∂xk
(
√

det(g))
)
Y k

=
1√

det(g)

∑
i

∂

∂xi
(
√

det(g)Y i).

�

Corollary 26.2. Let (M, g) be an oriented Riemannian manifold, and let ω be the
volume form determined by the Riemannian metric g and the orientation. Then

(26.1) d(iY ω) = div(Y )ω.
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Proof. It suffice to verify this in each coordinate neighborhood U . Choose local
coordinates (x1, . . . , xn) compatible with the orientation. Then

ω =
√

det(g)dx1 ∧ · · · ∧ dxn,

iY ω =

n∑
i=1

(−1)i−1Y i
√

det(g)dx1 ∧ · · · dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

(26.2) d(iY ω) =

n∑
i=1

∂

∂xi
(Y i
√

det(g))dx1 ∧ · · · ∧ dxn

(26.3) (divY )ω = divY
√

det(g)dx1 . . . dxn.

Equation (26.1) follows from (26.2), (26.3), and Lemma 26.1. �

Corollary 26.3. In local coordinates, the Laplacian of a smooth function f is given
by

∆f =
1√

det(g)

∑
i,j

∂

∂xi

(√
det(g)gij

∂f

∂xj

)
,
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