Mathematics G4402. Modern Geometry I, Fall 2015 Lecture Notes

These notes are prepared by the instructor Melissa Liu and the teaching assistant Mitchell Faulk.
(Last updated by Melissa Liu on January 11, 2021. Many thanks to Myeonhu Kim for correcting numerous errors in an earlier version.)

Contents

1. Wednesday, September 9, 2015 1
2. Monday, September 14, 2015 4
3. Wednesday, September 16, 2015 7
4. Monday, September 21, 2015 10
5. Wednesday, September 23, 2015 12
6. Monday, September 28, 2015 16
7. Wednesday, September 30, 2015 19
8. Monday, October 5, 2015 23
9. Wednesday, October 7, 2015 27
10. Monday, October 12, 2015 30
11. Wednesday, October 14, 2015 34
12. Monday, October 19, 2015 38
13. Wednesday, October 21, 2015 40
14. Wednesday, October 28, 2015 44
15. Wednesday, November 4, 2015 47
16. Monday, November 9, 2015 51
17. Wednesday, November 11, 2015 55
18. Monday, November 16, 2015 57
19. Wednesday, November 18, 2015 61
20. Monday, November 23, 2015 65
21. Wednesday, November 25, 2015 68
22. Monday, November 30, 2015 70
23. Wednesday, December 2, 2015 75
24. Monday, December 7, 2015 79
25. Wednesday, December 9, 2015 83
26. Monday, December 14, 2015 87
References 89

1. Wednesday, September 9, 2015

Abstract manifolds

Definition 1.1 (topological manifolds). A topological n-manifold (or a topological manifold of dimension n) is a topological space M which is locally homeomorphic to \mathbb{R}^{n}, that is, for each $p \in M$, there is an open neighborhood U of p in M and a homeomorphism ϕ from U to an open set Ω in \mathbb{R}^{n}. We call such a pair (U, ϕ) a chart (or coordinate system) for M around p, and U is called a
coordinate neighborhood at p.

Remark 1.2 (cf. [Bo page 6], dC, page 29-30]). Some textbooks require that the topology of M satisfy the following additional two properties.
(i) The topology of M is Hausdorff. Recall that, a topologial space M is Hausdorff if for any two distinct points p and q in M, there exist open sets U and V in M such that $p \in U, q \in V$, and $U \cap V$ is empty.
(ii) The topology of M has a countable basis of open sets.

Recall that a collection \mathcal{B} of open subsets in a topological space M is a basis of open sets of M if every open subset of M can be written as a union of elements of \mathcal{B}.

Example 1.3 (a non-Hausdorff manifold). Let $M=\mathbb{R} \sqcup\{p\}$ be the disjoint union of the real line \mathbb{R} and a point p. Define a topology on M by the topology generated by open subsets of \mathbb{R} and sets of the form $(U \backslash\{0\}) \cup\{p\}$, where U is an open neighborhood of 0 in \mathbb{R}. Note that any neighborhoods of p and 0 intersect, so M is a non-Hausdorff topological space.

For any $q \in \mathbb{R}=M \backslash\{p\}, \mathbb{R} \subset M$ is an open neighborhood of q in M, and the identity map $\mathbb{R} \rightarrow \mathbb{R}$ is a homemorphism from \mathbb{R} to \mathbb{R}. The set $U=(\mathbb{R} \backslash\{0\}) \cup\{p\}$ is an open neighbhorhood of p in M, and[]../Lecture01.pdf
the $\operatorname{map} \phi: U \rightarrow \mathbb{R}$ given by $\phi(x)=x$ for $x \in \mathbb{R} \backslash\{0\}$ and $\phi(p)=0$ is a homeomorphism. Therefore, M is a topological 1-manifold.
Example 1.4. An example of a topological manifold which does not have a countable basis is the long line. A proper discussion of this manifold would be quite lengthy and would require a digression on set theory, so we choose not to discuss this example further here.

Definition 1.5 (atlas). An atlas of a topological n-manifold M is a collection $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ of charts such that the collection $\left\{U_{\alpha}: \alpha \in I\right\}$ is an open cover of M. The maps $\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ are called transition functions.

Remark 1.6. - I is some index set, which can be finite, countably infinite, or uncountably infinite.

- If follows from the definitions that the transition functions are homeomorphisms.
- If M has a countable atlas, then M has a countable basis of open sets.

Definition 1.7 (C^{k} atlas). Let k be a positive integer or ∞. A C^{k}-atlas for an n-manifold M is an atlas $\Phi=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ such that all transition functions are C^{k} diffeomorphisms of open subsets of \mathbb{R}^{n}.

Definition 1.8. We say that two C^{k}-atlases $\Phi=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ and $\Psi=$ $\left\{\left(\psi_{\beta}, V_{\beta}\right): \beta \in J\right\}$ for a topological manifold M are equivalent if their union is a C^{k}-atlas. A C^{k} differentiable structure on a topological manifold M is a choice of an equivalence class of C^{k}-atlases. A C^{k} manifold is a topological manifold equipped with a C^{k}-structure.

A C^{∞} differentiable structure is also called a smooth structure, and a C^{∞} manifold is also called a smooth manifold.

Example 1.9. Let k be a positive integer. We endow $M=\mathbb{R}$ with two nonequivalent C^{k} atlases. For the first atlas, take $\Phi=\{(\mathbb{R}, \phi)\}$ where $\phi(x)=x$. For the second atlas, take $\Psi=\{(\mathbb{R}, \psi)\}$ where $\psi(x)=x^{3}$. Let k be any postive integer,
or ∞. Both Φ and Ψ are C^{k}-atlases since all of their transition functions (which consist of simply the identity map) are C^{k}-differentiable. However, their union $\Phi \cup \Psi$ is not a C^{k}-atlas, since the transition function $\phi \circ \psi^{-1}(x)=x^{1 / 3}$ is not C^{k}-differentiable.

Example 1.10 (The real projective space $P_{n}(\mathbb{R})$).

1. As a set, $P_{n}(\mathbb{R})$ is the set of one-dimensional \mathbb{R}-linear subspace of \mathbb{R}^{n+1}.
2. Topology.

Define a surjective map $\pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow P_{n}(\mathbb{R})$ by sending a nonzero vector in \mathbb{R}^{n+1} to the one-dimensional \mathbb{R}-linear subspace of \mathbb{R}^{n+1} spanned by that vector. For any nonzero vector $x=\left(x_{1}, \ldots, x_{n+1}\right)$ in \mathbb{R}^{n+1} we let $\left[x_{1}, \ldots, x_{n+1}\right]$ denote its image in $P_{n}(\mathbb{R})$. Note that $\left[x_{1}, \ldots, x_{n+1}\right]=\left[y_{1}, \ldots, y_{n+1}\right]$ if and only if $\left(y_{1}, \ldots, y_{n+1}\right)=$ $\lambda\left(x_{1}, \ldots, x_{n+1}\right)$ for some nonzero $\lambda \in \mathbb{R}$. Equip the set $P_{n}(\mathbb{R})$ with the quotient topology determined by the map π. This means that a subset U of $P_{n}(\mathbb{R})$ is open if and only if $\pi^{-1}(U)$ is open in $\mathbb{R}^{n+1} \backslash\{0\}$.

Let $S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\} \subset \mathbb{R}^{n+1}$ be the unit sphere with center at the origin, equipped with the subset topology. Then $\left.\pi\right|_{S^{n}}: S^{n} \rightarrow$ $P_{n}(\mathbb{R})$ is a covering map of degree 2 . The quotient topology determined by $\left.\pi\right|_{S^{n}}$: $S^{n} \rightarrow P_{n}(\mathbb{R})$ agrees with the quotient topology determined by $\pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow$ $P_{n}(\mathbb{R})$. It is easy to see that the quotient topology determined by $\left.\pi\right|_{S^{n}}$ is compact and Hausdorff.
3. Atlas.

For each positive integer i satisfying $1 \leq i \leq n+1$, let U_{i} denote the subset of $P_{n}(\mathbb{R})$ given by

$$
U_{i}=\left\{\left[x_{1}, \ldots, x_{n+1}\right] \in P_{n}(\mathbb{R}): x_{i} \neq 0\right\}
$$

Note that U_{i} is an open subset of $P_{n}(\mathbb{R})$ since the set $\pi^{-1}\left(U_{i}\right)$ is open in $\mathbb{R}^{n+1} \backslash\{0\}$. Also note that the collection $\left\{U_{i}: 1 \leq i \leq n+1\right\}$ forms an open cover of $P_{n}(\mathbb{R})$. Let $\widetilde{\phi}_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow \mathbb{R}^{n}$ denote the map given by

$$
\widetilde{\phi}_{i}\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right) .
$$

Note that $\widetilde{\phi}_{i}$ satisfies $\widetilde{\phi}_{i}(\lambda x)=\widetilde{\phi}_{i}(x)$ for each $x \in \pi^{-1}\left(U_{i}\right)$ and each scalar $\lambda \in \mathbb{R}$. It follows that $\widetilde{\phi}_{i}$ induces a well-defined $\operatorname{map} \phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ described by $\widetilde{\phi}_{i}=\phi_{i} \circ \pi$. Since $\widetilde{\phi}_{i}$ is continuous, we see that ϕ_{i} is continuous as well. The map $\phi_{i}^{-1}: \mathbb{R}^{n} \rightarrow U_{i}$ given by

$$
\phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n}\right]
$$

is the inverse of $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$. The map ϕ_{i}^{-1} is also continuous since it can be written as the composition $\phi_{i}^{-1}=\pi \circ s_{i}$ where $s_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ is the continuous map given by

$$
s_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n}\right)
$$

It follows that $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a homeomorphism.
Therefore the topogical space $P_{n}(\mathbb{R})$ is a topological n-manifold, and $\Phi=\left\{\left(U_{i}, \phi_{i}\right)\right.$: $i=1, \ldots, n+1\}$ is an atalas on $P_{n}(\mathbb{R})$.
4. Transition functions.

$$
\phi_{2} \circ \phi_{1}^{-1}\left(y_{1}, \ldots, y_{n}\right)=\phi_{1}\left(\left[1, y_{1}, \ldots, y_{n}\right]\right)=\left(\frac{1}{y_{1}}, \frac{y_{2}}{y_{1}}, \ldots, \frac{y_{n}}{y_{1}}\right)
$$

$\phi_{2} \circ \phi_{1}^{-1}: \phi_{1}\left(U_{1} \cap U_{2}\right)=(\mathbb{R} \backslash\{0\}) \times \mathbb{R}^{n-1} \rightarrow \phi_{2}\left(U_{1} \cap U_{2}\right)=(\mathbb{R} \backslash\{0\}) \times \mathbb{R}^{n-1}$ is a C^{∞} diffeomorphism.
The general case $\phi_{j} \circ \phi_{i}^{-1}(i \neq j)$ is similar.
Therefore $\Phi=\left\{\left(U_{i}, \phi_{i}\right): i=1, \ldots, n+1\right\}$ is a C^{∞} atlas on $P_{n}\left(\mathbb{R}^{n}\right)$, an defines a C^{∞} differentible structure on $P_{n}\left(\mathbb{R}^{n}\right) .\left(P^{n}(\mathbb{R}), \Phi\right)$ is a $C^{\infty} n$-manifold.
Remark 1.11. Note that the transition functions $\phi_{j} \circ \phi_{i}^{-1}$ are real analytic $\left(C^{\omega}\right)$, so Φ is indeed a real analytic atlas, and $\left(P^{n}(\mathbb{R}), \Phi\right)$ is a real analytic manifold of dimension n.

Remark 1.12. Replacing \mathbb{R} by \mathbb{C} in Example 1.10 , we obtain the definition of the n-dimensional complex projective space $P_{n}(\mathbb{C})$, equipped with the quotient topology determined by $\pi: \mathbb{C}^{n+1}-\{0\} \rightarrow P_{n}(\mathbb{C}) . P_{n}(\mathbb{C})$ is locally homeomorphic to $\mathbb{C}^{n}=\mathbb{R}^{2 n}$, so it is a topological $2 n$-manifold. $\Phi=\left\{\left(U_{i}, \phi_{i}\right): i=1, \ldots, n+1\right\}$, where $\phi_{i}: U_{i} \rightarrow \mathbb{C}^{n}=\mathbb{R}^{2 n}$, is a C^{∞} atlas on $P_{n}(\mathbb{C})$, and $\left(P_{n}(\mathbb{C}), \Phi\right)$ is a C^{∞} $2 n$-manifold.

The transition functions $\phi_{j} \circ \phi_{i}^{-1}$ are indeed complex analytic, so Φ defines a complex struture on $P_{n}(\mathbb{C})$, and $\left(P_{n}(\mathbb{C}), \Phi\right)$ is a complex manifold of dimensiona n. (cf. Phong's class "Complex Analysis and Riemann Surfaces")
2. Monday, September 14, 2015

C^{k}-differentiable maps

Definition 2.1. Let M and N be C^{l}-manifolds of dimension m and n respectively. A continuous map $f: M \rightarrow N$ is called C^{k}-differentiable for some $k \leq l$ if for any $p \in M$, there is a coordinate chart (U, ϕ) around p in some atlas representing the C^{l}-structure on M and a coordinate chart (V, ψ) around $f(p)$ in some atlas representing the C^{l}-structure on N such that

- $f(U) \subset V$
- the composition $g=\psi \circ f \circ \phi^{-1}: \phi(U) \rightarrow \psi(V)$ is C^{k}-differentiable.

Remark 2.2. There are two subtleties to this definition.

- The definition seems to depend on choices of coordinate charts in fixed atlases for M and N respectively. Indeed, one might worry that while the $g=\psi \circ f \circ \phi^{-1}$ is C^{k}-differentiable, there is another such composition $\widetilde{g}=\widetilde{\psi} \circ f \circ \widetilde{\phi}^{-1}$ that is not. However, because the transition maps in a C^{l} atlas are C^{l}-differentiable and $k \leq l$, the chain rule forbids this from happening. It follows that the definition does not depend on the choices of coordinate charts in fixed atlas for M and N.
- One might worry, nevertheless, that the definition depends on the choice of atlases representing the given C^{l}-structures. But again, because of the equivalence condition we placed on C^{l}-atlases, we see that the chain rule guarantees that the definition does not depend on the choice of atlases representing the given C^{l}-structures.
These subtleties will appear in forthcoming definitions as well, but we will neglect to remark on them and leave the details to the interested reader.

Definition 2.3. A C^{∞}-differentiable map $f: M \rightarrow N$ is also called a smooth map.
Example 2.4. As an example, let us view $\mathbb{R}^{n+1} \backslash\{0\}$ as a smooth manifold where the C^{∞}-structure is the one determined by the atlas consisting only of the identity
map, and let us equip $P_{n}(\mathbb{R})$ with the C^{∞}-structure described in Example 1.10 . Then the natural map $\pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow P_{n}(\mathbb{R})$ is a smooth map. This can be seen because the compositions
$g_{i}:=\phi_{i} \circ \pi \circ \mathrm{id}^{-1}: \pi^{-1}\left(U_{i}\right) \rightarrow \mathbb{R}^{n}, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right)$
are smooth at each point of their domains.
Remark 2.5. If M is a C^{l} manifold and U is an open subset of M, then the C^{l}-differentiable structure on M restricts to a C^{l}-differentiable structure on U.

Definition 2.6. Let M, N be smooth manifolds. We say that $f: M \rightarrow N$ is a diffeomorphism if

- f is a homeomorphism, and
- f and f^{-1} are smooth.

We say that f is a local diffeomorphism at $p \in M$ if there is an open neighborhood U of p in M and an open neighborhood V of $f(p)$ in N such that $f(U)=V$ and $\left.f\right|_{U}: U \rightarrow V$ is a diffeomorphism.

Example 2.7. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be the $\operatorname{map} \phi(x)=x$ and let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be the $\operatorname{map} \psi(x)=x^{3}$. We have seen that $\Phi=\{(\mathbb{R}, \phi)\}$ and $\Psi=\{(\mathbb{R}, \psi)\}$ are two C^{∞} atlases on \mathbb{R} which are not equivalent. Let $f:(\mathbb{R}, \Phi) \rightarrow(\mathbb{R}, \Psi)$ denote the map $f(x)=x^{1 / 3}$. Then f is a diffeomorphism since $\psi \circ f \circ \phi^{-1}: \phi(\mathbb{R})=\mathbb{R} \rightarrow \Psi(\mathbb{R})=\mathbb{R}$ is the identity map.
Definition 2.8. Given an open subset U of \mathbb{R}^{m} and a smooth map $f: U \rightarrow \mathbb{R}^{n}$, we say that f is a submersion (resp. immersion) at $x \in U$ if the differential $d f_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a surjective (resp. injective) linear map.
Example 2.9 (Canonical submersion). Let m and n be positive integers satisfying $m \geq n$. Consider the map $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ given by

$$
\pi\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{n}\right)
$$

Since π is a linear map, we see that $d \pi_{x}=\pi$ for each $x \in \mathbb{R}^{m}$. It follows that π is a submersion at any $x \in \mathbb{R}^{m} ; \pi$ is called the canonical submersion.
Example 2.10 (Canonical immersion). Let m and n be positive integers satisfying $m \leq n$. Consider the map $i: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ given by

$$
i\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)
$$

Since i is a linear map, we have $d i_{x}=i$ for each $x \in \mathbb{R}^{m}$. It follows that i is an immersion at any $x \in \mathbb{R}^{m} ; i$ is called the canonical immersion.
Definition 2.11. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds and let p be a point of M. We say that f is a submersion (resp. immersion) at p if there is a chart (U, ϕ) for M around p and a chart (V, ψ) for N around $f(p)$ such that

- $f(U) \subset V$, and
- the composition $g=\psi \circ f \circ \phi^{-1}: \phi(U) \rightarrow \psi(V)$ is a submersion (resp. immersion) at $\phi(p)$.
Proposition 2.12. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds of dimension m and n respectively.
(1) (Canonical form for submersions and immersions) If f is a submersion (resp. immersion) at $p \in M$, so that $m \geq n$ (resp. $m \leq n$), there is a chart (U, ϕ) for M around p and a chart (V, ψ) for N around $f(p)$ such that
- $\phi(p)=0 \in \mathbb{R}^{m}$,
- $\psi(f(p))=0 \in \mathbb{R}^{n}$, and
- the composition $\psi \circ f \circ \phi^{-1}$ is the restriction of the canonical submersion (resp. immersion) to $\phi(U) \subset \mathbb{R}^{m}$.
(2) If f is a submersion and an immersion at $p \in M$, then f is a local diffeomorphism at p.

Proof. Roundtable on September 18. Reference: [Bo, II.7, III.4].
Definition 2.13. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds. We say that f is a submersion (resp. immersion) if f is a submersion (resp. immersion) at each point $p \in M$.
Definition 2.14. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds. We say that f is an embedding if

- f is an immersion
- $f: M \rightarrow f(M)$ is a homeomorphism onto $f(M)$, where $f(M)$ is equipped with the subspace topology.
In this case, we say that $f(M)$ is a submanifold of N.
From Proposition 2.12 (1), We also have the following alternative definition of a submanifold.

Definition 2.15. Let N be a smooth n-dimensional manifold, and let M be a subset of N. We say that M is a submanifold of N of dimension m (which is not greater than n) if for each p in M, there is a chart (U, ϕ) for N around p such that $\phi(p)=0$ and $\phi(U \cap M)=\phi(U) \cap\left(\mathbb{R}^{m} \times\{0\}\right)$.

Example 2.16. These examples are to illuminate the definition of an embedding. Given a smooth map $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, d f_{t}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is given by $d f_{t}(u)=f^{\prime}(t) u$. So f is an immersion at $t \in \mathbb{R}$ iff $f^{\prime}(t)$ is nonzero.
(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ denote the parabola given by $f(t)=\left(t, t^{2}\right)$. Then $f^{\prime}(t)=$ $(1,2 t)$ is nonzero for any $t \in \mathbb{R}$, and hence f is an immersion. We see also that f is a homeomorphism from \mathbb{R} onto the image $f(\mathbb{R})$, so f defines an embedding.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ denote the covering of the unit circle given by $f(t)=$ $(\cos (t), \sin (t))$. Then $f^{\prime}(t)=(-\sin t, \cos t)$ is nonzero for any $t \in \mathbb{R}$, so f is an immersion, but f is not an embedding because it is not injective.
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the nodal cubic defined by $f(t)=\left(t^{3}-4 t, t^{2}-4\right)$. Then $f^{\prime}(t)=\left(3 t^{2}-4,2 t\right)$ is always nonzero, so f is an immersion. However, f is not an embedding since it is not injective: $f(2)=f(-2)=(0,0)$.
(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the cuspidal cubic defined by $f(t)=\left(t^{3}, t^{2}\right)$. Then we see that f is injective and a homeomorphism onto its image, but f is not an immersion at $t=0$, because the derivative vanishes there.

Definition 2.17. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds and assume that the dimension of M is greater than or equal to the dimension of N. A point $p \in M$ is a critical point of f if f is not a submersion at p. In this case, $f(p)$ is called a critical value of f, that is, a point $q \in N$ is a critical value if there
is a point $p \in f^{-1}(q)$ such that p is a critical point. We say that $q \in N$ is a regular value if q is not a critical value.
Theorem 2.18. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds of dimensions m and n respectively, with $m \geq n$. If $q \in N$ is a regular value of f then the preimage $f^{-1}(q)$ is a closed submanifold of M of dimension $m-n .\left(f^{-1}(q)\right.$ can be empty.)
Proof. Roundtable on September 18. Reference: [Bo, III.5]. Idea: use canonical form of submersion.
Example 2.19. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be the smooth map given by

$$
f\left(x_{1}, \ldots, x_{n+1}\right)=x_{1}^{2}+\cdots+x_{n+1}^{2}
$$

Then $d f_{x}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is given by $d f_{x}=\left[2 x_{1} \cdots 2 x_{n+1}\right]$, which is surjective iff $x \neq 0$. So the only critical point of f is $0 \in \mathbb{R}^{n+1}$ and the only critical value of f is $0 \in \mathbb{R}$. It follows that every nonzero real number is a regular value of f. If $a>0$, then we see that $f^{-1}(a)$ is a n-dimensional smooth submanifold of \mathbb{R}^{n+1}. Note that $f^{-1}(a)$ is the n-dimensional sphere of radius \sqrt{a}. We have $f^{-1}(0)=\{0\}$, and $f^{-1}(a)$ is empty when $a<0$.
Example 2.20. Let p denote the composition $S^{n} \hookrightarrow \mathbb{R}^{n+1} \backslash\{0\} \rightarrow P_{n}(\mathbb{R})$. Then p is a covering map of degree 2 . Moreover, p is a local diffeomorphism.

3. Wednesday, September 16, 2015

Example 3.1. Let $O(n)$ denote the set of all $n \times n$ orthognal matrices:

$$
O(n)=\left\{A \in M_{n}(\mathbb{R}): A A^{T}=I_{n}\right\}
$$

where $M_{n}(\mathbb{R})$ is the set of real $n \times n$ matrics, A^{T} is the transpose of A, and I_{n} denotes the $n \times n$ identity matrix. We may identify $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$ as an n^{2} dimensional real vector space. We claim that $O(n)$ is a submanifold of $M_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$ of dimension $\frac{n(n-1)}{2}$. To prove this, we will use the preimage theorem.

Let $S_{n}(\mathbb{R})$ denote the set of all real symmetric $n \times n$ matrices:

$$
S_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}): A=A^{T}\right\}
$$

Then $S_{n}(\mathbb{R})$ is an $\frac{n(n+1)}{2}$-dimensional subspace of $M_{n}(\mathbb{R})$. Define a map

$$
f: M_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}} \longrightarrow S_{n}(\mathbb{R}) \cong \mathbb{R}^{\frac{n(n+1)}{2}}, \quad A \mapsto A A^{T}
$$

Then f is a smooth map, since it is a polynomial map in the entries of A : if $A=\left(a_{i j}\right)$ then $\left(A A^{T}\right)_{k l}=\sum_{m=1}^{n} a_{k m} a_{l m}$.

By the preimage theorem, it remains to show that I_{n} is a regular value of f. For $A \in M_{n}(\mathbb{R})$, the differential $d f_{A}: M_{n}(\mathbb{R}) \rightarrow S_{n}(\mathbb{R})$ at A is given by
$d f_{A}(B)=\lim _{h \rightarrow 0} \frac{f(A+h B)-f(A)}{h}=\lim _{h \rightarrow 0} \frac{(A+h B)\left(A^{T}+h B^{T}\right)-A A^{T}}{h}=A B^{T}+B A^{T}$.
If $A \in f^{-1}\left(I_{n}\right)=O(n)$ and $C \in S_{n}(\mathbb{R})$ are arbitrary, then $B=\frac{1}{2} C A=\frac{1}{2} C^{T} A$ satisfies

$$
d f_{A}(B)=C
$$

showing that $d f_{A}$ is surjective for all $A \in f^{-1}\left(I_{n}\right)$. It follows that I_{n} is a regular value of f as desired.

Orientation

Definition 3.2. Let M be a C^{k} manifold, where $k \geq 1$. We say that M is orientable if there is a C^{k}-atlas $\Phi=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ representing the C^{k}-structure on M such that
(\star) For each $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \varnothing$, the transition function $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ satisfies $\operatorname{det}\left(d\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\right)_{x}\right)>0$ for each $x \in \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$.
If M is orientable, an orientation of M is a choice of a C^{k}-atlas satisfying (\star). If Φ and Ψ are two C^{k}-atlases satisfying (\star), then they determine the same orientation if their union $\Phi \cup \Psi$ satisfies (\star)
Example 3.3. Suppose that $\Phi=\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ is a C^{k}-atlas of a C^{k}-manifold M such that the intersection $U_{1} \cap U_{2}$ is connected. We claim that M is orientable. Indeed, since the determinant of $\operatorname{det}\left(d\left(\phi_{2} \circ \phi_{1}^{-1}\right)_{x}\right)$ is a continuous map from the connected set $\phi_{1}\left(U_{1} \cup U_{2}\right)$ to $\mathbb{R} \backslash\{0\}$, it is either always positive or always negative on $\phi_{1}\left(U_{1} \cup U_{2}\right)$. If it is always positive then Φ determines an orientation; if it is always negative, then we can change the sign of one of the coordinates of ϕ_{2} to make it always positive.

By Assignment 1 (1) and the above observation, S^{n} is orientable for any $n \geq 2$. It is easy to see that S^{1} is also orientable.

Lemma 3.4. Let $L: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a \mathbb{C}-linear isomorphism given by $v \mapsto C v$ for some complex $n \times n$ matrix $C \in M_{n}(\mathbb{R})$. Write $C=A+i B$ for some $A, B \in M_{n}(\mathbb{R})$. Let $i: \mathbb{R}^{2 n} \rightarrow \mathbb{C}^{n}$ be the \mathbb{R}-linear map given by $(x, y) \mapsto x+i y$. Let $L^{\prime}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ denote the \mathbb{R}-linear map such that $L \circ i=i \circ L^{\prime}$. Then we see that L^{\prime} is given by

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

and

$$
\operatorname{det}\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]=|\operatorname{det} C|^{2}
$$

Example 3.5. We may form complex projective space $P_{n}(\mathbb{C})$ in a similar fashion to real projective space. We claim that this $2 n$-dimensional manifold is orientable. Indeed, for each $x \in \phi_{i}\left(U_{i}\right)$, the differential $d\left(\phi_{j} \circ \phi_{i}^{-1}\right)_{x}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a \mathbb{C}-linear isomorphism. By the Lemma, it follows that if we view the differential as an \mathbb{R} linear map from $\mathbb{R}^{2 n}$ to $\mathbb{R}^{2 n}$, then it has positive determinant.

This argument shows that a complex n-manifold is an orientable $C^{\infty} 2 n$-manifold; indeed, the orientation is determined by the complex structure, so it is an oriented $C^{\infty} 2 n$-manifold.

Example 3.6. We will see later the real projective space $P_{n}(\mathbb{R})$ is orientable iff n is odd. In particular, the real projective line $P_{1}(\mathbb{R}) \cong S^{1}$ is orientable, and the real projective plane $P_{2}(\mathbb{R})$ is nonorientable.

Tangent spaces and tangent bundles

Let M be a C^{k} manifold of dimension n, where $k \geq 1$.
Definition 3.7 (tangent space, tangent vector). Let (U, ϕ) and (V, ψ) be two charts for M around $p \in M$. For vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, we write $(U, \phi, \vec{u}) \sim_{p}(V, \psi, \vec{v})$ if

$$
d\left(\psi \circ \phi^{-1}\right)_{\phi(p)}(\vec{u})=\vec{v}
$$

This defines an equivalence relation on such triples, and we let $[(U, \phi, \vec{u})]$ denote the equivalence class of such a triple under this relation. We define the tangent space to M at p to be the set

$$
T_{p} M=\left\{[(U, \phi, \vec{u})]:(U, \phi) \text { is a chart around } p, \vec{u} \in \mathbb{R}^{n}\right\} .
$$

For a fixed chart (U, ϕ) around p, the map $\theta_{U, \phi, p}: \mathbb{R}^{n} \rightarrow T_{p} M$ described by

$$
\theta_{U, \phi, p}(\vec{u})=[(U, \phi, \vec{u})]
$$

is a bijection (Assignment $3(1)$). This implies that we may endow the space $T_{p} M$ with an \mathbb{R}-linear structure. Moreover, this structure does not depend on the choice of chart: Indeed if (V, ψ) is another chart around p, then the following diagram commutes

and the map $d\left(\psi \circ \phi^{-1}\right)_{\phi(p)}$ is an \mathbb{R}-linear isomorphism.
A tangent vector at p is a vector in the n-dimensional real vector space $T_{p} M$.
We construct now a $2 n$-dimensional manifold called the tangent bundle of M, denoted $T M$.

1. As a set, the tangent bundle of M is given by

$$
T M=\left\{(p, v): p \in M, v \in T_{p} M\right\}
$$

There is a surjective map $\pi: T M \rightarrow M$ sending (p, v) to p.
2. Topology: For a chart (U, ϕ) for M, let $\tilde{\phi}: \pi^{-1}(U) \rightarrow \phi(U) \times \mathbb{R}^{n}$ be the map described by

$$
\tilde{\phi}(p, v)=\left(\phi(p), \theta_{U, \phi, p}^{-1}(v)\right)
$$

Equip the set $T M$ with the topology such that $\tilde{\phi}$ is a homeomorphism for each chart (U, ϕ). This means that a subset A of $T M$ is open if and only if for each chart (U, ϕ) for M, the set $\tilde{\phi}\left(\pi^{-1}(U) \cap A\right)$ is open in $\phi(U) \times \mathbb{R}^{n}$. With this topology, $T M$ is a topological manifold of dimension $2 n$.

It can be shown that that if M is Hausdorff (resp. has a countable basis), then $T M$ is Hausdorff (resp. has a countable basis) as well.
3. Transition functions: Note that if U is an open subset of M then $\pi^{-1}(U)$ can be identified with $T U$. We have $\pi^{-1}(U) \cap \pi^{-1}(V)=T U \cap T V=T(U \cap V)=$ $\pi^{-1}(U \cap V)$. Given two charts (U, ϕ) and (V, ψ) for $M,(T U, \widetilde{\phi})$ and $(T V, \widetilde{\psi})$ are charts for $T M$, and the transition function

$$
\tilde{\psi} \circ \widetilde{\phi}^{-1}: \tilde{\phi}(T U \cap T V)=\tilde{\phi}(T(U \cap V)) \rightarrow \tilde{\psi}(T U \cap T V)=\tilde{\psi}(T(U \cap V))
$$

is given by

$$
\widetilde{\psi} \circ \widetilde{\phi}^{-1}(\vec{x}, \vec{u})=\left(\psi \circ \phi^{-1}(\vec{x}), d\left(\psi \circ \phi^{-1}\right)_{\vec{x}}(\vec{u})\right)
$$

where $\psi \circ \phi^{-1}(\vec{x})$ is C^{k} in \vec{x} and the map $\vec{x} \mapsto d\left(\psi \circ \phi^{-1}\right)_{\vec{x}}$ is C^{k-1} in \vec{x}. So $\widetilde{\psi} \circ \widetilde{\phi}^{-1}$ is a C^{k-1} diffeomorphism. It follows that $T M$ is a C^{k-1}-manifold. In particular, if M is a C^{∞} manifold then $T M$ is a C^{∞} manifold.

Lemma 3.8. The projection map $\pi: T M \rightarrow M$ is a C^{k-1} map. In particular, when $k=\infty, \pi: T M \rightarrow M$ is a smooth map and a submersion.

Proof. Given a point (p, v) in $T M$, where $p \in M$ and $v \in T_{p} M$, let (U, ϕ) be a C^{k} chart for M around $p=\pi(p, v)$. Then $\left(\pi^{-1}(U)=T U, \widetilde{\phi}\right)$ is a C^{k-1} chart around (p, v), and we have the following commutative diagram

where $g(\vec{x}, \vec{u})=\vec{x}$ is the restriction of the canonical submersion $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$.
Assignment 2 (2): $T M$ is orientable, even though M may not be.
4. Monday, September 21, 2015

The differential of a C^{k} map

Definition 4.1. Let $f: M \rightarrow N$ be a C^{k} map between C^{k} manifolds of dimension m and n respectively, where $k \geq 1$. The differential of f at p is the linear map

$$
d f_{p}: T_{p} M \rightarrow T_{f(p)} N
$$

defined as follows: Given a chart (U, ϕ) for M around p and a chart (V, ψ) for N around $f(p)$ such that $f(U) \subset V$, let $g:=\psi \circ f \circ \phi^{-1}: \phi(U) \rightarrow \psi(V)$, and let $d f_{p}$ denote the composition

$$
d f_{p}=\theta_{V, \psi, f(p)} \circ d g_{\phi(p)} \circ \theta_{U, \phi, p}^{-1}
$$

In terms of diagrams, this is the map given below

Remark 4.2. At first glance, it seems that the differential $d f_{p}$ may be ill-defined: a different choice of charts seems to lead to a different definition of $d f_{p}$. However, the chain rule again comes to our rescue, and one can indeed show that $d f_{p}$ is a well-defined map that is independent of the choice of charts.

Note that $d f_{p}$ is indeed a linear map since the θ and $d g_{\phi(p)}$ are.
Finally, note that this definition is consistent with the case when M is an open subset of \mathbb{R}^{m} and N is an open subset of \mathbb{R}^{n}.

Theorem 4.3 (Chain Rule). Let $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ be C^{k} maps between C^{k} manifolds, where $k \geq 1$. Then
(1) The composition $g \circ f: M_{1} \rightarrow M_{3}$ is a C^{k} map.
(2) For each point p in M_{1}, the differential of the composition is given by

$$
d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p} .
$$

The following definition is equivalent to Definition 2.11 when $k=\infty$.
Definition 4.4. Let $f: M \rightarrow N$ be a C^{k} map between C^{k} manifolds, where $k \geq 1$. We say f is a submersion at p (resp. immersion at p) if $d f_{p}$ is surjective (resp. injective).

Remark 4.5. Suppose that M is a submanifold of N. Then for each p in M, the tangent space $T_{p} M$ can be viewed as a subspace of $T_{p} N$. Indeed, if $i: M \rightarrow N$ denotes the inclusion, then $d i_{p}: T_{p} M \rightarrow T_{p} N$ is injective.
Remark 4.6. Suppose that $f: M \rightarrow N$ is a smooth map. Let $q \in N$ be a regular value. By Theorem 2.18 (the preimage theorem), $S=f^{-1}(q)$ is a submanifold of M of dimension $m-n$, where $m=\operatorname{dim} M$ and $n=\operatorname{dim} N$. For each $p \in S$, the tangent space $T_{p} S$ is given by $T_{p} S=\operatorname{ker}\left(d f_{p}: T_{p} M \rightarrow T_{f(p)} N\right)$. That is, we have the following short exact sequence of real vector spaces

$$
0 \longrightarrow T_{p} S \longrightarrow T_{p} M \longrightarrow T_{q} N \longrightarrow 0
$$

Remark 4.7. For every point $p \in \mathbb{R}^{n}$, we have an isomorphism $T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ given by $v \mapsto \theta_{\mathbb{R}^{n}, \mathrm{id}, p}^{-1}(v)$. We also have id $: T \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$.

Example 4.8. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be the map $f\left(x_{1}, \ldots, x_{n+1}\right)=x_{1}^{2}+\cdots+x_{n+1}^{2}$. We have already seen that 1 is a regular value of f, and thus the unit sphere $S^{n}=f^{-1}(1)$ is a submanifold of \mathbb{R}^{n+1}. For each $p \in S^{n}$, we compute

$$
T_{p} S^{n}=\left\{v \in \mathbb{R}^{n+1}: d f_{p}(v)=0\right\}=\left\{v \in \mathbb{R}^{n+1}: p \cdot v=0\right\}
$$

Example 4.9. Let $f: M_{n}(\mathbb{R}) \rightarrow S_{n}(\mathbb{R})$ be the map of Example 3.1, that is, $f(A)=A A^{T}$. Recall that the orthogonal group $O(n)$ is the preimage of the regular value I_{n}. For $A \in O(n)$, we compute

$$
T_{A} O(n)=\left\{B \in M_{n}(\mathbb{R}): d f_{A}(B)=0\right\}=\left\{B \in M_{n}(\mathbb{R}): B A^{T}+A B^{T}=0\right\}
$$

In particular, $T_{I_{n}} O(n)=\left\{B \in M_{n}(\mathbb{R}): B+B^{T}=0\right\} \cong \mathbb{R}^{\frac{n(n-1)}{2}}$ is the set of real $n \times n$ skew-symmetric matrices.
Definition 4.10. Let $f: M \rightarrow N$ be a C^{k} map between C^{k} manifolds. Define $d f: T M \rightarrow T N$ by the rule

$$
d f(p, v)=\left(f(p), d f_{p}(v)\right)
$$

Proposition 4.11. Let $f: M \rightarrow N$ be a C^{k} map between C^{k} manifolds. Then $d f: T M \rightarrow T N$ is a C^{k-1} map between C^{k-1} manifolds.
Proposition 4.12. If M is a smooth submanifold of N of dimension m, then $T M$ is a smooth submanifold of $T N$ of dimension $2 m$.
Example 4.13. The tangent bundle of the sphere S^{n} is given by

$$
T S^{n}=\left\{(x, v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}:|x|^{2}=1, x \cdot v=0\right\} \subset \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}
$$

Example 4.14. The tangent bundle of the orthogonal group $O(n)$ is given by
$T O(n)=\left\{(A, B) \in M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R}): A A^{T}=I_{n}, B A^{T}+A B^{T}=0\right\} \subset M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R})$.

Vector bundles

Roughly speaking, a real vector bundle of rank r over a manifold M consists of a family of r-dimensional real vector spaces parametrized by M.

Definition 4.15. Let M be a C^{k} manifold. A real C^{k} vector bundle of rank r over M consists of

- a C^{k} manifold E called the total space and
- a C^{k} surjective map $\pi: E \rightarrow M$
such that
(i) (local trivialization) There is an open cover $\left\{U_{\alpha}: \alpha \in I\right\}$ of M (where U_{α} is not necessarily a coordinate neighborhood) and C^{k} diffeomorphisms $h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ (called local trivializations) such that the following diagram commutes

where π_{α} is the restriction of π to $\pi^{-1}\left(U_{\alpha}\right)$, and pr_{1} is the projection to the first factor.
(ii) (transition functions) If the intersection $U_{\alpha} \cap U_{\beta}$ is nonempty, then the map

$$
h_{\beta} \circ h_{\alpha}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}
$$

is a C^{k} diffeomorphism of the form $h_{\beta} \circ h_{\alpha}^{-1}(x, v)=\left(x, g_{\beta \alpha}(x) v\right)$ where $g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow G L(r, \mathbb{R})$ is a C^{k} map. (Note that $G L(r, \mathbb{R})=\{A \in$ $\left.M_{r}(\mathbb{R}): \operatorname{det}(A) \neq 0\right\}$ is an open subset of $\left.M_{r}(\mathbb{R}) \cong \mathbb{R}^{r^{2}}.\right)$
Remark 4.16. From condition (i), we know that $h_{\beta} \circ h_{\alpha}^{-1}$ is a C^{k} diffeomorphism of the form $(x, v) \mapsto\left(x, g_{\beta \alpha}(x) v\right)$ where $g_{\beta \alpha}(x): \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ is a C^{k} diffeomorphism (depending on $x \in U_{\alpha} \cap U_{\beta}$). However, in condition (ii), we require something stronger: namely that $g_{\beta \alpha}(x)$ is a linear isomorphism. If we only had the weaker condition, then we would say that $\pi: E \rightarrow M$ is a fiber bundle with total space E and fiber \mathbb{R}^{r}.

Example 4.17 (product vector bundle). The product vector bundle of rank r consists of $\pi=\operatorname{pr}_{1}: E=M \times \mathbb{R}^{r} \rightarrow M$ where pr_{1} denotes the projection onto the first factor.

Definition 4.18 (trivial vector bundle). We say that $\pi: E \rightarrow M$ is a trivial vector bundle of rank r if there is a C^{k} diffeomorphism (when $k \geq 1$) or a homeomorphism (when $k=0$) $h: E \rightarrow M \times \mathbb{R}^{r}$ such that

- h commutes with the projection maps in the sense that $\pi=\mathrm{pr}_{1} \circ h$
- the restriction of h to each fiber $h_{x}: E_{x} \rightarrow\{x\} \times \mathbb{R}^{r}$ is a linear isomorphism. In other words, $\pi: E \rightarrow M$ is a trivial vector bundle of rank r if there exists a global trivialization $h: E \rightarrow M \times \mathbb{R}^{r}$.

5. Wednesday, September 23, 2015

Vector bundles (continued)

Example 5.1 (tangent bundle). Suppose that M is a C^{k} manifold with dimension n. Then $\pi: T M \rightarrow M$ is a C^{k-1} vector bundle of rank n over M.

To see this, let $\Phi=\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ be a C^{k}-atlas of the C^{k} manifold M, define local trivializations $h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ by

$$
h_{\alpha}(p, v)=\left(p, \theta_{U_{\alpha}, \phi_{\alpha}, p}^{-1}(v)\right)
$$

where $p \in U_{\alpha}$ and $v \in T_{p} M$. Then each h_{α} is C^{k-1} diffeomorphism which satisfies (i) in Definition 4.15. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition function

$$
h_{\beta} \circ h_{\alpha}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n}
$$

is given by

$$
h_{\beta} \circ h_{\alpha}^{-1}(p, \vec{u})=\left(p, d\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\right)_{\phi_{\alpha}(p)}(\vec{u})\right) .
$$

Note that $p \mapsto d\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\right)_{\phi_{\alpha}(p)}$ defines a $C^{k-1} \operatorname{map}$ from $U_{\alpha} \cap U_{\beta}$ to $G L(n, \mathbb{R})$. So the transition functions satisfy (ii) in Definition 4.15.

Example 5.2 (universal line bundle over $P_{n}(\mathbb{R})$). See Assignment 3 (2).
Definition 5.3. Let $\pi: E \rightarrow M$ be a C^{k} vector bundle over a C^{k} manifold M. A C^{k} section of π is a C^{k} map $s: M \rightarrow E$ such that $\pi \circ s=\operatorname{id}_{M}$.
Lemma 5.4. Let $\pi: E \rightarrow M$ be a C^{k} vector bundle of rank r over a C^{k} manifold M. Then $\pi: E \rightarrow M$ is trivial if and only if there are C^{k} sections s_{1}, \ldots, s_{r} of $\pi: E \rightarrow M$ such that for each point $x \in M$, the collection $\left\{s_{1}(x), \ldots, s_{r}(x)\right\}$ forms a basis of E_{x}.

Proof. (\Rightarrow) Suppose that $\pi: E \rightarrow M$ is trivial and let $h: E \rightarrow M \times \mathbb{R}^{r}$ be a trivialization as in Definition 4.18, Let $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{r}=$ $(0, \ldots, 0,1)$ be the standard basis of \mathbb{R}^{r}. Define $s_{i}: M \rightarrow E$ by $s_{i}(x)=h^{-1}\left(x, e_{i}\right)$, $i=1, \ldots, r$. Then s_{i} are C^{k} sections of $\pi: E \rightarrow M$, and for each $x \in M$ the collection $\left\{s_{1}(x), \ldots, s_{r}(x)\right\}$ forms a basis of $E_{x} \cong \mathbb{R}^{r}$.
(\Leftarrow) Conversely, if we are given C^{k} sections s_{1}, \ldots, s_{r} of $\pi: E \rightarrow M$ such that the collection $\left\{s_{1}(x), \ldots, s_{r}(x)\right\}$ forms a basis of $E_{x} \cong \mathbb{R}^{r}$ for all $x \in M$, we define $\psi: M \times \mathbb{R}^{r} \rightarrow E$ by

$$
\left(x,\left(v_{1}, \ldots, v_{r}\right)\right) \mapsto\left(x, \sum_{i=1}^{r} v_{i} s_{i}(x)\right) .
$$

where $x \in M,\left(v_{1}, \ldots, v_{r}\right) \in \mathbb{R}^{r}$, and $\sum_{i=1}^{r} v_{i} s_{i}(x) \in E_{x}$. Then ψ is a C^{k} diffeomorphism (when $k \geq 1$) or a homeomorphism (when $k=0$), and $h:=\psi^{-1}$: $E \rightarrow M \times \mathbb{R}^{r}$ is a global trivialization as in Definition 4.18,
Definition 5.5. Let M be a smooth manifold. A smooth vector field on M is a smooth section of $T M$.

Derivations

Definition 5.6. Let M be a C^{k} manifold and let p be a point of M. Let U and V be open neighborhoods of p in M and let $f: U \rightarrow \mathbb{R}$ and $g: V \rightarrow \mathbb{R}$ be C^{k} functions. We define an equivalence relation \sim_{p} by the rule $(f: U \rightarrow \mathbb{R}) \sim_{p}(g: V \rightarrow \mathbb{R})$ if and only if there is an open neighborhood W of p such that $W \subset U \cap V$ and $\left.\left.f\right|_{W} \equiv g\right|_{W}$.

A germ of C^{k} functions at p is an equivalence class under this equivalence relation. Let $[f: U \rightarrow \mathbb{R}]$ denote the equivalence class represented by $f: U \rightarrow \mathbb{R}$. We let $C_{p}^{k}(M)$ denote the collection of all such equivalence classes:
$C_{p}^{k}(M):=\left\{(f: U \rightarrow \mathbb{R}): U\right.$ is an open neighborhood of p in M, f is a C^{k} function on $\left.U\right\} / \sim_{p}$.
Lemma 5.7. The set $C_{p}^{k}(M)$ of germs of C^{k}-functions at p has the natural structure of a ring:

$$
\begin{aligned}
{[f: U \rightarrow \mathbb{R}]+[g: V \rightarrow \mathbb{R}] } & =[f+g: U \cap V \rightarrow \mathbb{R}] \\
{[f: U \rightarrow \mathbb{R}] \cdot[g: V \rightarrow \mathbb{R}] } & =[f \cdot g: U \cap V \rightarrow \mathbb{R}]
\end{aligned}
$$

where $(f+g)(q)=f(q)+g(q)$ and $(f \cdot g)(q)=f(q) g(q)$ for $q \in U \cap V$.

Remark 5.8. In the definition of $C_{p}^{k}(M)$ in Definition 5.6. we may assume that U is contained in some fixed coordinate chart $\left(U_{0}, \phi_{0}\right)$ for M around p, and hence we get a map

$$
\begin{aligned}
C_{p}^{k}(M) & \rightarrow C_{0}^{k}\left(\mathbb{R}^{n}\right) \\
{[f: U \rightarrow \mathbb{R}] } & \mapsto\left[f \circ \phi_{0}^{-1}: \phi_{0}(U) \rightarrow \mathbb{R}\right] .
\end{aligned}
$$

which is a ring isomorphism. Therefore, it is sufficient to study germs of C^{k} functions at 0 in \mathbb{R}^{n}.

Lemma 5.9. Let $C^{k}(M)$ be the set of all C^{k}-functions on M. The natural map $C^{k}(M) \rightarrow C_{p}^{k}(M)$ given by $f \mapsto[f: M \rightarrow \mathbb{R}]$ is surjective.

Proof. Suppose we have a C^{k} function $f: U \rightarrow \mathbb{R}$ defined on a open neighborhood U of p. We claim that there is a neighborhood U^{\prime} containing p and a C^{k}-map $\beta: U^{\prime} \rightarrow \mathbb{R}$ such that

- $U^{\prime} \subset U$
- $\overline{U^{\prime}}$ is compact
- $\beta(x)=1$ for each $x \in U^{\prime}$
- $\operatorname{supp}(\beta)$ is relatively compact in U
- $\beta(x)=0$ for all $x \notin U$.

Then the multiplication $(\beta f: U \rightarrow \mathbb{R}) \sim_{p}(f: U \rightarrow \mathbb{R})$. But βf extends to a C^{k} function defined on all of M. The result now follows.

Definition 5.10. A derivation on $C_{p}^{k}(M)$ is an \mathbb{R}-linear map $\delta: C_{p}^{k}(M) \rightarrow \mathbb{R}$ such that

$$
\delta(f g)=\delta(f) g(p)+f(p) \delta(g) \quad(\text { Leibniz rule })
$$

for each $f, g \in C_{p}^{k}(M)$.
Remark 5.11. The set of derivations on $C_{p}^{k}(M)$ is an \mathbb{R}-linear space.
Example 5.12. Suppose that $k \geq 1$. For $i=1, \ldots, n$,

$$
\frac{\partial}{\partial x_{i}}(0): C_{0}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, \quad f \mapsto \frac{\partial f}{\partial x_{i}}(0)
$$

is a derivation on $C_{0}^{k}\left(\mathbb{R}^{n}\right)$. For any $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}(0): C_{0}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}, \quad f \mapsto \sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}(0)
$$

is a derivation on $C_{0}^{k}(\mathbb{R})$.
Lemma 5.13. This lemma has three parts.
(a) If δ is a derivation on $C_{0}^{k}\left(\mathbb{R}^{n}\right)$ and f is constant near 0 , then $\delta(f)=0$.
(b) If δ is a derivation on $C_{0}^{0}\left(\mathbb{R}^{n}\right)$, then $\delta \equiv 0$.
(c) If δ is a derivation on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then we may write

$$
\delta=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}(0)
$$

where $a_{i}=\delta\left(x_{i}\right)$.

Proof. (a) Since δ is linear, it suffices to show that $\delta(1)=0$, but this is indeed the case as

$$
\delta(1)=\delta(1 \cdot 1)=\delta(1) 1+1 \delta(1)=2 \delta(1)
$$

(b) Assignment 3 (3).
(c) Let f be a smooth function on \mathbb{R}^{n} defined on a neighborhood of 0 . Take x small enough such that the map $g:(-2,2) \rightarrow \mathbb{R}$ defined by $g(t)=f(t x)$ is defined. Then $g(t)$ is a smooth function on $(-2,2)$.
$f(x)-f(0)=g(1)-g(0)=\int_{0}^{1} g^{\prime}(t) d t=\int_{0}^{1}\left(\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}(t x)\right) d t=\sum_{i=1}^{n} x_{i} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) d t$
Let $h_{i}(x)=\int_{0}^{1} \frac{\partial f}{\partial x_{i}}(t x) d t$. Then $h_{i} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and

$$
h_{i}(0)=\int_{0}^{1} \frac{\partial f}{\partial x_{i}}(0) d t=\frac{\partial f}{\partial x_{i}}(0)
$$

It then follows that
$\delta(f)=\delta(f-f(0))=\delta\left(\sum_{i=1}^{n} x_{i} h_{i}(x)\right)=\sum_{i=1}^{n}\left(\delta\left(x_{i}\right) h_{i}(0)+x_{i}(0) \delta\left(h_{i}\right)\right)=\sum_{i=1}^{n} \delta\left(x_{i}\right) \frac{\partial f}{\partial x_{i}}(0)$
as desired.
Let $D_{p} M$ denote the space of derivations on $C_{p}^{\infty}(M)$. We claim that there is a linear isomorphism

$$
\begin{aligned}
T_{p} M & \longrightarrow D_{p} M \\
{[(U, \phi, \vec{u})] } & \mapsto \sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}(p) .
\end{aligned}
$$

where the derivation $\frac{\partial}{\partial x_{i}}(p): C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ is defined by $f \mapsto \frac{\partial\left(f \circ \phi^{-1}\right)}{\partial x_{i}}(\phi(p))$. Indeed, if this is well-defined, it is clearly a linear isomorphism, so it suffices to show that it is well-defined.

Let (V, ψ) be another chart for M around p. Let $v \in \mathbb{R}^{n}$ be such that $[(U, \phi, \vec{u})]=$ $[(V, \psi, \vec{v})]$. Then this means that $\vec{v}=d\left(\psi \circ \phi^{-1}\right)_{\phi(p)}(\vec{u})$. Write $\phi=\left(x_{1}, \ldots, x_{n}\right)$ and $\psi=\left(y_{1}, \ldots, y_{n}\right)$. Then the fact that $\vec{v}=d\left(\psi \circ \phi^{-1}\right)_{\phi(p)} \vec{u}$ implies that

$$
v_{j}=\sum_{i=1}^{n} \frac{\partial y_{j}}{\partial x_{i}}(\phi(p)) u_{i}
$$

We then apply the chain rule to see that

$$
\sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}(p)=\sum_{i, j=1}^{n} u_{i} \frac{\partial y_{j}}{\partial x_{i}}(\phi(p)) \frac{\partial}{\partial y_{j}}(p)=\sum_{j=1}^{n} v_{j} \frac{\partial}{\partial y_{j}}(p)
$$

$\sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}(p)$ is the notation of a tangent vector at $p \in M$ in do Carmo's book.

Let (U, ϕ) be a coordinate chart for M and write $\phi=\left(x_{1}, \ldots, x_{n}\right)$. Recall that $\widetilde{\phi}: T U \rightarrow \phi(U) \times \mathbb{R}^{n}$ is defined by $\widetilde{\phi}(p, v)=\left(\phi(p), \theta_{U, \phi, p}^{-1}(v)\right)$, and the linear
isomorphism $T_{p} M \xrightarrow{\cong} D_{p} M$ is given by $\theta_{U, \phi, p}(\vec{u}) \mapsto \sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}(p)$. So $\widetilde{\phi}^{-1}$: $\phi(U) \times \mathbb{R}^{n} \rightarrow T U$ is given by

$$
\widetilde{\phi}^{-1}(x, \vec{u})=\left(\phi^{-1}(x), \sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}(p)\right)
$$

where $x \in \phi(U) \subset \mathbb{R}^{n}$ and $\vec{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$. For $i=1, \ldots, n$

$$
\frac{\partial}{\partial x_{i}}: U \rightarrow T U, \quad p \mapsto\left(p, \frac{\partial}{\partial x_{i}}(p)\right)
$$

are smooth sections of $T U \rightarrow U$. Moreover, for each point $p \in U$, the collection $\left\{\frac{\partial}{\partial x_{i}}(p): i=1 \ldots, n\right\}$ forms a basis for $T_{p} U$, and hence the collection $\left\{\frac{\partial}{\partial x_{i}}: i=\right.$ $1, \ldots, n\}$ forms a C^{∞} frame for $T U \rightarrow U$. We let $C^{\infty}(U, T U)$ denote the space of C^{∞} sections of $T U \rightarrow U$. We have an isomorphism

$$
T_{p} M=\bigoplus_{i=1}^{n} \mathbb{R} \frac{\partial}{\partial x_{i}}(p)
$$

as real vector spaces, and an isomorphism

$$
C^{\infty}(U, T U)=\bigoplus_{i=1}^{n} C^{\infty}(U) \frac{\partial}{\partial x_{i}}
$$

as $C^{\infty}(U)$-modules. Therefore, any C^{∞} vector field on U is of the form

$$
\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}, \quad a_{i} \in C^{\infty}(U)
$$

6. Monday, September 28, 2015

Lie derivative and Lie bracket

Last time we defined derivations on the germs of smooth functions of M at p. We also identified the set of derivations $D_{p} M$ with the tangent space $T_{p} M$.

Definition 6.1. Let M be a smooth manifold. A derivation on $C^{\infty}(M)$ is an \mathbb{R}-linear map $\delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying the Leibniz rule

$$
\delta(f g)=\delta(f) g+f \delta(g)
$$

Let $D(M)$ denote the set of derivations on $C^{\infty}(M)$.
Remark 6.2. This is a sort of global extension of the previous definition.
Remark 6.3. Note that $D(M)$ is a $C^{\infty}(M)$-module: Indeed if $\delta \in D(M)$ and $h \in C^{\infty}(M)$, then we can define $h \delta \in D(M)$ by the rule

$$
(h \delta)(f)=h \delta(f)
$$

Now we relate this notion to vector fields, via Lie derivatives.
Definition 6.4. Let X be a smooth vector field on a smooth manifold M. Define a map $L_{X}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ called the Lie derivative by the rule

$$
\left(L_{X} f\right)(p)=X(p) f
$$

for any $p \in M$. Recall that a smooth vector field is a smooth section $M \rightarrow T M$, so that means that $X(p) \in T_{p} M=D_{p} M$, so we may apply $X(p)$ to the germ determined by f at p. We sometimes denote $L_{X} f$ by $X f$.

To see $X f$ is a smooth function on a coordinate neighborhood U of p, recall that X restricted to U is given by $X=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$ where $a_{i} \in C^{\infty}(U)$. Then we see that

$$
(X f)(p)=\sum_{i=1}^{n} a_{i}(p) \frac{\partial}{\partial x_{i}}\left(f \circ \phi^{-1}\right)(\phi(p))
$$

In do Carmo's notation, we write

$$
(X f)(p)=\sum_{i=1}^{n} a_{i}(p) \frac{\partial f}{\partial x_{i}}(p)
$$

Theorem 6.5. The assignment

$$
\begin{aligned}
C^{\infty}(M, T M) & \rightarrow D(M) \\
X & \mapsto L_{X}
\end{aligned}
$$

is an isomorphism of $C^{\infty}(M)$-modules.
Proof. We provide an outline of the proof. First it is clear that the map is $C^{\infty}(M)$ linear.

To see that the map is surjective, suppose we are given $\delta \in D(M)$, we will define $X \in C^{\infty}(M, T M)$ such that $L_{X}=\delta$. For any $p \in M$, we let (U, ϕ) be a coordinate chart for M around p and we let $X(p)=\sum_{i=1}^{n} \delta_{p}\left(x_{i}\right) \frac{\partial}{\partial x_{i}}(p)$. Here the notation δ_{p} means that we restrict the derivation δ to the germs of functions at p.

To see that the map is injective, we want to show that if $X \in C^{\infty}(M, T M)$ is not identically zero, then L_{X} is not identically zero. If $X \neq 0$, then there is a point $p \in M$ such that $X(p) \neq 0 \in T_{p} M=D_{p} M$. So there is an $f \in C_{p}^{\infty}(M)$ such that $X(p) f \neq 0$. We may assume that $f \in C^{\infty}(M)$. Then $\left(L_{X} f\right)(p)=X(p) f \neq 0$.

Definition 6.6 (Lie bracket). Let X, Y be smooth vector fields on M. We define $[X, Y]: C^{\infty}(M) \rightarrow C^{\infty}(M)$ by the rule

$$
[X, Y](f)=X Y f-Y X f=L_{X} L_{Y} f-L_{Y} L_{X} f
$$

Lemma 6.7. The map $[X, Y]$ is a derivation.
Proof. It is clear that $[X, Y]$ is \mathbb{R}-linear. We need to check the Leibniz rule. But this is straightforward and left as an exercise.

By the Lemma and the Theorem, we may view $[X, Y]$ as a smooth vector field. In local coordinates (U, ϕ), suppose that $X=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}$ and $Y=\sum_{i} b_{i} \frac{\partial}{\partial x_{i}}$. Then in terms of local coordinates we find that

$$
[X, Y]=\sum_{i, j}\left(a_{i} \frac{\partial b_{j}}{\partial x_{i}}-b_{i} \frac{\partial a_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}
$$

Proposition 6.8. The map $[-,-]: C^{\infty}(M, T M) \times C^{\infty}(M, T M) \rightarrow C^{\infty}(M, T M)$ defines a map which satisfies the following properties:
(i) $[-,-]$ is \mathbb{R}-bilinear.
(ii) $[-,-]$ is anti-commutative in the sense that $[X, Y]=-[Y, X]$.
(iii) $[-,-]$ satisfies the Jacobi identity in the sense that

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

(iv) If $f, g \in C^{\infty}(M)$, then

$$
[f X, g Y]=f g[X, Y]+f X(g) Y-g Y(f) X
$$

Remark 6.9. The first three properties show that $\left(C^{\infty}(M, T M),[-,-]\right)$ is a Lie algebra over \mathbb{R}.

Proof of Proposition 6.8. (i) and (ii) are clear from definition. It is straightforward to check (iii) and (iv); you will be asked to verify (iii) in Assignment 4 (1).

We now discuss the differential in terms of derivations.
Definition 6.10. Let $F: M \rightarrow N$ be a C^{k} map between C^{k} manifolds. Let l be a positive integer satisfying $l \leq k$. Then F induces a map $F^{*}: C^{l}(N) \rightarrow C^{l}(M)$ called the pullback defined by the rule $f \mapsto f \circ F$. If p is a point in M, we get a $\operatorname{map} F_{p}^{*}: C_{F(p)}^{l}(N) \rightarrow C_{p}^{l}(M)$ defined by $[(V, f)] \mapsto\left[\left(F^{-1}(V), f \circ F\right)\right]$.

Remark 6.11. If M and N are C^{k} manifolds and $F: M \rightarrow N$ is a continuous map, then for each $p \in M$, we get a map $F_{p}^{*}: C_{F(p)}^{0}(N) \rightarrow C_{p}^{0}(M)$. Then F is a C^{k} map if and only if for each p in M, the image $F_{p}^{*}\left(C_{F(p)}^{k}(N)\right)$ is a subring of $C_{p}^{k}(M)$. We may use this to define C^{k} maps. (cf. Roundtable on September 25, and Well's Differential Analysis on Complex Manifolds, Chapter I)

Lemma 6.12. Let $F: M \rightarrow N$ be a smooth map between smooth manifolds. For each point p in M, the map $d F_{p}: T_{p} M=D_{p} M \rightarrow T_{F(p)} N=D_{F(p)} N$ is given by

$$
\begin{equation*}
d F_{p}(X) f=X\left(F^{*} f\right) \tag{6.1}
\end{equation*}
$$

for any $X \in T_{p} M=D_{p} M$ and $f \in C_{F(p)}^{\infty}(N)$.
Proof. This follows from the chain rule. Passing to local coordinates, we may assume that M is an open subset of \mathbb{R}^{m}, N is an open subset of $\mathbb{R}^{n}, p=0$, and $F(p)=0$. We write $F(x)=\left(y_{1}(x), \ldots, y_{n}(x)\right)$. Then any derivation $X \in D_{0} \mathbb{R}^{m}$ is given by $X=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial x_{i}}(0)$. Note that

$$
d F_{p}(X)=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} \frac{\partial y_{j}}{\partial x_{i}}(0) a_{i}\right) \frac{\partial}{\partial y_{j}}(0) .
$$

The LHS and RHS of 6.1 are

$$
\text { LHS }=d F_{p}(X) f=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} \frac{\partial y_{j}}{\partial x_{i}}(0) \frac{\partial f}{\partial y_{j}}(0), \quad \text { RHS }=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial x_{i}}(f \circ F)(0) .
$$

which are equal by the chain rule.
Remark 6.13. We may use (6.1) to define $d F_{p}$.
Definition 6.14. Let M be a smooth manifold. A smooth curve in M is a smooth map $\gamma:(a, b) \rightarrow M$ where $-\infty \leq a<b \leq+\infty$.

Notation 6.15. For any $t \in(a, b)$, let $\gamma^{\prime}(t)\left(\right.$ or $\left.\frac{d \gamma}{d t}(t)\right)$ denote the tangent vector $d \gamma_{t}\left(\frac{\partial}{\partial t}\right) \in T_{\gamma(t)} M$.

Example 6.16. If $M=\mathbb{R}^{n}$, then a smooth map $\gamma:(a, b) \rightarrow M$ is given by

$$
\gamma(t)=\left(x_{1}(t), \ldots x_{n}(t)\right)
$$

where $x_{i}:(a, b) \rightarrow \mathbb{R}$ are C^{∞} function on (a, b).

$$
\gamma^{\prime}(t)=\left(x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)=\sum_{i=1}^{n} x_{i}^{\prime}(t) \frac{\partial}{\partial x_{i}}(\gamma(t)) .
$$

Lemma 6.17. Let M be a smooth manifold and let $\gamma:(-\epsilon, \epsilon) \rightarrow M$ be a smooth curve. Let $\gamma(0)=p$. Then $\gamma^{\prime}(0)$ is a derivation at p given by

$$
\begin{equation*}
\gamma^{\prime}(0) f=\left.\frac{d}{d t}(f \circ \gamma)\right|_{t=0} \tag{6.2}
\end{equation*}
$$

Proof. This is a special case of Lemma 6.12.
Remark 6.18. do Carmo uses (6.2) to define a derivation $\gamma^{\prime}(0): C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ for each smooth curve passing through $p \in M$ at $t=0$. The tangent space $T_{p} M$ is defined to be the collection of such $\gamma^{\prime}(0)$. Under this definition, the differential $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ of a smooth map $F: M \rightarrow N$ at $p \in M$ is defined by

$$
\gamma^{\prime}(0) \mapsto(F \circ \gamma)^{\prime}(0)
$$

7. Wednesday, September 30, 2015

Integral Curves

Definition 7.1. Let X be a smooth vector field on a smooth manifold M and let $\gamma: I \rightarrow M$ be a smooth curve. We say that γ is an integral curve of X if $\gamma^{\prime}(t)=X(\gamma(t))$ for all $t \in I$.

Example 7.2. $M=\mathbb{R}^{n}$

$$
\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)
$$

where $x_{i}: I \rightarrow \mathbb{R}$ are smooth functions on I. A smooth vector field on \mathbb{R}^{n} is of the form

$$
X(x)=\left(a_{1}(x), \ldots, a_{n}(x)\right)=\sum_{i} a_{i}(x) \frac{\partial}{\partial x_{i}}
$$

where a_{i} are smooth functions on \mathbb{R}^{n}, so X can be viewed as a smooth map from \mathbb{R}^{n} to \mathbb{R}^{n}. The statement that γ is an integral curve of X is equivalent to a system of ODE's given by

$$
\frac{d x_{i}}{d t}(t)=a_{i}\left(x_{1}(t), \ldots, x_{n}(t)\right), \quad i=1, \ldots, n
$$

Theorem 7.3. Let M be a smooth manifold and let X be a smooth vector field on M.
(i) For any point $p \in M$, there is an open interval $I_{p} \subset \mathbb{R}$ containing 0 and an integral curve $\phi_{p}: I_{p} \rightarrow M$ of X such that $\phi_{p}(0)=p$ and I_{p} is a maximal interval for such a ϕ_{p}. Moreover, this integral curve is unique in the following sense. If $\gamma: I^{\prime} \rightarrow M$ is an integral curve of X on an open interval I^{\prime} containing 0 such that $\gamma(0)=p$, then $I^{\prime} \subset I_{p}$ and $\gamma=\left.\phi_{p}\right|_{I^{\prime}}$.
(ii) For any $p \in M$ there is

- an open neighborhood U of p in M
- an open interval I of 0 in \mathbb{R}
- a smooth map $\phi: I \times U \rightarrow M$
such that

$$
\begin{cases}\frac{\partial \phi}{\partial t}(t, q)= & X(\phi(t, q)) \\ \phi(0, q)= & q\end{cases}
$$

Proof. We may assume $M=\mathbb{R}^{n}$ and $p=0$. Then the proof becomes one in ODE's. Reference: Boothby Chapter IV.

Example 7.4. If $M=\mathbb{R}^{n}$ and $p=\left(a_{1}, \ldots, a_{n}\right)$. Suppose that X is the identity vector field, i.e. $X(\vec{x})=\vec{x}$ for all $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Then the integral curves are straight lines emanating from the origin. In terms of local coordinates,

$$
\left\{\begin{array}{ll}
\frac{d x_{i}}{d t} & =x_{i} \\
x_{i}(0) & =a_{i}
\end{array} \quad i=1, \ldots, n,\right.
$$

which implies $x_{i}(t)=a_{i} e^{t}$. And $\phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $\phi\left(t, x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1} e^{t}, \ldots, x_{n} e^{t}\right)$, or equivalently, $\phi(t, \vec{x})=e^{t} \vec{x}$.

Example 7.5. Let $M=\left\{\vec{x} \in \mathbb{R}^{n}:|\vec{x}|<1\right\}$ and again X is the identity vector field. If $p=\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ then $\phi_{p}: I_{p} \rightarrow \mathbb{R}^{n}$ is given by $\phi_{p}(t)=e^{t} \vec{a}$, where $I_{p}=(-\infty,-\log |\vec{a}|)$.

Remark 7.6. If $q=\phi_{p}\left(t_{0}\right)$, then $\phi_{q}(t)=\phi_{p}\left(t+t_{0}\right)$.
Now we change our point of view. Instead of fixing p, we fix time t in the function $\phi(t, p)$. Define $\phi_{t}: U \rightarrow M$ by the rule $\phi_{t}(q)=\phi(t, q)$. We should think of this as telling us where points in M get mapped after flowing a certain time t. Because of this, we call ϕ_{t} the local flow of X.

Remark 7.7. By the previous remark (Remark 7.6), we find that $\phi_{t_{1}} \circ \phi_{t_{2}}=\phi_{t_{1}+t_{2}}$ when both hand sides of the equality are defined.

Lemma 7.8. Let X be a smooth vector field on a smooth manifold M such that the support of X is compact. Recall that the support of X is

$$
\operatorname{Supp}(X)=\overline{\{p \in M: X(p) \neq 0\}}
$$

Then there exists a unique smooth map $\phi: \mathbb{R} \times M \rightarrow M$ such that

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}(t, q)=X(\phi(t, q)), \quad \phi(0, q)=q \tag{7.1}
\end{equation*}
$$

(In other words, we have a global flow $\phi_{t}: M \rightarrow M$ which exists for all time $t \in \mathbb{R}$.)
Proof. It suffices to prove the existence; the uniqueness follows from part (i) of Theorem 7.3. Let $K=\operatorname{Supp}(X)$.

1. The set $V:=M \backslash K$ is open, and $X(q)=0$ for $q \in V$. Define $\phi: \mathbb{R} \times V \rightarrow M$ by $\phi(t, q)=q$. Then ϕ is smooth, and it satisfies

$$
\frac{\partial \phi}{\partial t}(t, q)=0=X(q)=X(\phi(t, q)), \quad \phi(0, q)=q
$$

2. Given any $p \in K$, by Theorem 7.3 (ii), there exists an open neighbhood U_{p} of p in M and a positive number $\epsilon_{p}>0$ such that there is a $C^{\infty} \operatorname{map} \psi_{p}:\left(-\epsilon_{p}, \epsilon_{p}\right) \times U_{p} \rightarrow$ M satisfying

$$
\frac{\partial \psi_{p}}{\partial t}(t, q)=X\left(\psi_{p}(t, q)\right), \quad \psi_{p}(0, q)=q
$$

Moreover, if $p_{1}, p_{2} \in K$ and $U_{p_{1}} \cap U_{p_{2}} \neq \emptyset$ then part (i) of Theorem 7.3 implies

$$
\left.\psi_{p_{1}}\right|_{(-\epsilon, \epsilon) \times\left(U_{p_{1}} \cap U_{p_{2}}\right)}=\left.\psi_{p_{2}}\right|_{(-\epsilon, \epsilon) \times\left(U_{p_{1}} \cap U_{p_{2}}\right)}
$$

where $\epsilon=\min \left\{\epsilon_{p_{1}}, \epsilon_{p_{2}}\right\}>0$. So we obtain a smooth map $\psi(t, q)$ defined on $(-\epsilon, \epsilon) \times\left(U_{p_{1}} \cup U_{p_{2}}\right)$.
K is compact and $K \subset \cup_{p \in K} U_{p}$, so there are finitely many $p_{1}, \ldots, p_{N} \in K$ such that $K \subset \cup_{i=1}^{N} U_{p_{i}}$. Let $\epsilon:=\min \left\{\epsilon_{p_{1}}, \ldots, \epsilon_{p_{N}}\right\}>0$, and define $U:=\cup_{i=1}^{N} U_{p_{i}}$. Then we obtain a smooth map $\psi:(-\epsilon, \epsilon) \times U \rightarrow M$ satisfying

$$
\frac{\partial \psi}{\partial t}(t, q)=X(\psi(t, q)), \quad \psi(0, q)=q
$$

3. By part (i) of Theorem 7.3, $\left.\phi\right|_{(-\epsilon, \epsilon) \times(U \cap V)}=\left.\psi\right|_{(-\epsilon, \epsilon) \times(U \cap V)}$, where $\phi: \mathbb{R} \times V \rightarrow$ M is defined in Step 1 above and $\psi:(-\epsilon, \epsilon) \times U \rightarrow M$ is defined in Step 2 above. We also have $U \cup V=M$, so we obtain a smooth map $\phi:(-\epsilon, \epsilon) \times M \rightarrow M$ satisfying (7.1).
4. For any $t \in \mathbb{R}$, there exists a positive integer n such that $|t|<n \epsilon$. Define

$$
\phi(t, q):=\underbrace{\phi\left(\frac{t}{n}, \phi\left(\frac{t}{n}, \cdots \phi\left(\frac{t}{n}\right.\right.\right.}_{n \text { times }}, q \underbrace{)) \cdots)}_{n \text { times }}
$$

where $q \in M$; the definition is independent of choice of $n>|t|$. Then $\phi: \mathbb{R} \times M \rightarrow$ M is a smooth map satisfying 7.1.

If ϕ_{t} is defined on all of M and for all $t \in \mathbb{R}$, then we have a group homomorphism $(\mathbb{R},+) \rightarrow(\operatorname{Diff}(M), \circ)$ defined by $t \mapsto \phi_{t}$. In particular, ϕ_{0} is the identity map. The inverse of ϕ_{t} is the map ϕ_{-t}. The image of this group homomorphism lies in the connected component of the identity diffeomorphism, since \mathbb{R} is connected.

Flow and Lie derivative

Let M be a smooth manifold and let X be a smooth vector field. We have defined the Lie derivative of X by the rule $L_{X}(f)(p)=X(p)(f)$. Recall that $L_{X}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is \mathbb{R}-linear and satisfies the Leibniz rule. Now we want to extend L_{X} to a map $L_{X}: C^{\infty}(M, T M) \rightarrow C^{\infty}(M, T M)$.

Definition 7.9. We define $L_{X}: C^{\infty}(M, T M) \rightarrow C^{\infty}(M, T M)$ by the rule

$$
L_{X}(Y)=[X, Y] .
$$

Then L_{X} is an \mathbb{R}-linear map. Moreover, it satisfies the following Leibniz rule:

$$
L_{X}(f Y)=L_{X}(f) Y+f\left(L_{X}(Y)\right)
$$

for any smooth function f and any vector fields Y on M.
Remark 7.10. We have a few remarks.

- If we consider $L_{X}: C^{\infty}(M) \rightarrow C^{\infty}(M)$, then we can see that $L_{f X}=f L_{X}$ if $f \in C^{\infty}(M)$ and $X \in C^{\infty}(M, T M)$. So the operator L_{X} on $C^{\infty}(M)$ is $C^{\infty}(M)$-linear in X.
- If we consider $L_{X}: C^{\infty}(M, T M) \rightarrow C^{\infty}(M, T M)$, then we can see that

$$
L_{f X}(Y)=[f X, Y]=f[X, Y]-Y(f) X=f L_{X}(Y)-Y(f) X
$$

So the operator L_{X} on $C^{\infty}(M, T M)$ is \mathbb{R}-linear but not $C^{\infty}(M)$-linear in X.

We now discuss the pushforward and pullback of a vector field under a diffeomorphism.

Definition 7.11. Let $F: M \rightarrow N$ be a smooth diffeomorphism and let X be a smooth vector field on M. Then we define the pushforward $F_{*} X$ to be the smooth vector field on N defined by

$$
F_{*} X(p)=(d F)_{F^{-1}(p)}\left(X\left(F^{-1}(p)\right)\right)
$$

Given a smooth vector field Y on N, we define the pullback of Y to be $F^{*} Y=$ $\left(F^{-1}\right)_{*}(Y)$, which is a smooth vector field on M.

Proposition 7.12. Let X be a smooth vector field on a smooth manifold M. Let p be a point of M. By Theorem 7.3 (ii), there is an open neighborhood U of p in M and a local flow $\phi_{t}: U \rightarrow M$ of X for t in some small neighborhood $(-\epsilon, \epsilon)$ of 0. Then
(a) For each $f \in C_{p}^{\infty}(M)$, we compute that

$$
\left(L_{X} f\right)(p)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} f\right)(p)=\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \phi_{t}\right)(p)
$$

(b) For a smooth vector field Y defined an on open neighborhood V of p in U, we compute that

$$
\left(L_{X} Y\right)(p)=-\left.\frac{d}{d t}\right|_{t=0}\left(\left(\phi_{t}\right)_{*} Y\right)(p)=\lim _{t \rightarrow 0} \frac{Y(p)-\left(\left(\phi_{t}\right)_{*} Y\right)(p)}{t}
$$

Proof. (a) We compute

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \phi_{t}\right)(p) & =\left.\frac{d}{d t}\right|_{t=0} f\left(\phi_{t}(p)\right)=\left.\frac{d}{d t}\right|_{t=0} f\left(\phi_{p}(t)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \phi_{p}\right)(t)=\phi_{p}^{\prime}(0) f=X(p) f
\end{aligned}
$$

(b) It suffices to show that for any $f \in C_{p}^{\infty}(M)$, we have

$$
[X, Y](p) f=-\left.\frac{d}{d t}\right|_{t=0}\left(\left(\phi_{t}\right)_{*} Y\right)(p) f
$$

We then compute

$$
\left(\left(\phi_{t}\right)_{*} Y\right)(p) f=\left(d \phi_{t}\right)_{\phi_{-t}(p)}\left(Y\left(\phi_{-t}(p)\right)\right) f=Y\left(\phi_{-t}(p)\right)\left(f \circ \phi_{t}\right)
$$

where the second equality follows from Lemma 6.12. Let $h(t, q)=f \circ \phi_{t}(q)-f(q)$. Then note that h is a smooth map from $(-\delta, \delta) \times V \rightarrow \mathbb{R}$ for some small δ and some open neighborhood V of p in M. Then $h(0, q)=0$ for all $q \in V$. By Lemma 7.13 below, we may write

$$
h(t, q)=\operatorname{tg}(t, q)
$$

where $g:(-\delta, \delta) \times V \rightarrow \mathbb{R}$ is some smooth function. Define $g_{t}: V \rightarrow \mathbb{R}$ by the rule $g_{t}(q)=g(t, q)$. Then $g_{t} \in C^{\infty}(V)$. By part (a),
$\left(L_{X} f\right)(q)=\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \phi_{t}\right)(q)=\lim _{t \rightarrow 0} \frac{f \circ \phi_{t}(q)-f(q)}{t}=\lim _{t \rightarrow 0} g(t, q)=g(0, q)=g_{0}(q)$.
It follows that $g_{0}=X f \in C_{p}^{\infty}(M)$. Then we find that

$$
Y\left(\phi_{-t}(p)\right)\left(f \circ \phi_{t}\right)=Y\left(\phi_{-t}(p)\right)\left(f+t g_{t}\right)=Y\left(\phi_{-t}(p)\right)(f)+t Y\left(\phi_{-t}(p)\right)\left(g_{t}\right)
$$

Let $r(t)=Y\left(\phi_{-t}(p)\right)\left(g_{t}\right)$, which is a smooth function in one variable t. Then we find

$$
Y\left(\phi_{-t}(p)\right)\left(f \circ \phi_{t}\right)=(Y f)\left(\phi_{-t}(p)\right)+t \cdot r(t)
$$

We now differentiate to find

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(\left(\phi_{t}\right)_{*} Y\right)(p) f & =\left.\frac{d}{d t}\right|_{t=0}(Y f) \circ \phi_{-t}(p)+r(0)=-X(p)(Y f)+Y(p) g_{0} \\
& =-X(p)(Y f)+Y(p)(X f)=-[X, Y](p) f
\end{aligned}
$$

as desired.
Lemma 7.13. Let δ be a small positive number, let U be an open subset of M, and let $h:(-\delta, \delta) \times U \rightarrow \mathbb{R}$ be smooth. Suppose that $h(0, q)=0$ for any $q \in U$. Then $h(t, q)=t g(t, q)$ for some smooth function $g:(-\delta, \delta) \times U \rightarrow \mathbb{R}$.

Proof. Fix t, q. Let $u(s)=h(s t, q)$. Then $u(s)$ is C^{∞} function of one variable s.

$$
\begin{aligned}
h(t, q) & =h(t, q)-h(0, q)=u(1)-u(0)=\int_{0}^{1} u^{\prime}(s) d s=\int_{0}^{1} t \frac{\partial h}{\partial t}(s t, q) d s \\
& =t \int_{0}^{1} \frac{\partial h}{\partial t}(s t, q) d s=t g(t, q)
\end{aligned}
$$

where

$$
g(t, q):=\int_{0}^{1} \frac{\partial h}{\partial t}(s t, q) d s
$$

is a C^{∞} function in (t, q) since h is.
8. Monday, October 5, 2015

Definition 8.1 (Subbundle). Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r over M. A subset F of E is called a smooth subbundle of rank k if for any $p \in M$, there is an open neighborhood U of p in M and a local trivialization $h: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{r}$ such that $h\left(F \cap \pi^{-1}(U)\right)=U \cap\left(\mathbb{R}^{k} \times\{0\}\right)$.

Remark 8.2. We have some remarks.
(i) For any $p \in M$, the fiber $F_{p}=F \cap E_{p}$ is a k-dimensional subspace of E_{p}. Moreover, F_{p} depends smoothly on the choice of p.
(ii) The map $\left.\pi\right|_{F}: F \rightarrow M$ is a smooth vector bundle of rank k over M. Moreover, the transition functions $g_{\beta \alpha}^{F}$ for this vector bundle are found by restricting the transition functions $g_{\beta \alpha}^{E}$ for E : for $x \in U_{\alpha} \cap U_{\beta}$,

$$
g_{\beta \alpha}^{E}(x)=\left[\begin{array}{cc}
g_{\beta \alpha}^{F}(x) & \star \\
0 & \star
\end{array}\right] \in G L(r, \mathbb{R})
$$

where $g_{\beta \alpha}^{F}(x) \in G L(k, \mathbb{R})$.
Proposition 8.3. Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r over a smooth manifold M. Let $\left\{F_{p}: p \in M\right\}$ be a collection of k-dimensional linear subspaces F_{p} of E_{p} and set $F=\cup_{p} F_{p} \subset E$. Then F is a smooth subbundle of E of rank k if and only if for each $p \in M$, there is an open neighborhood U of p in M and smooth sections s_{1}, \ldots, s_{k} of $\pi: \pi^{-1}(U)=\left.E\right|_{U} \rightarrow U$ such that for each $q \in U$, the collection $\left\{s_{i}(q)\right\}_{i=1}^{k}$ form a basis of F_{q}.

Example 8.4. The universal line bundle

$$
E=\left\{(l, v): l \in P_{n}(\mathbb{R}), v \in l\right\} \subset P_{n}(\mathbb{R}) \times \mathbb{R}^{n+1}
$$

is a smooth subbundle of the product bundle. For any $l \in P_{n}(\mathbb{R}), l \in U_{i}$ for some $i \in\{1, \ldots, n+1\}$, where $U_{i}=\left\{\left[x_{1}, \ldots, x_{n+1}\right] \in P_{n}(\mathbb{R}): x_{i} \neq 0\right\}$. On U_{i}, we define $s_{i}:\left.U_{i} \rightarrow E\right|_{U_{i}}$ by
$s_{i}\left(\left[y_{1}, \ldots, y_{i-1}, 1, y_{i}, \ldots, y_{n}\right]\right)=\left(\left[y_{1}, \ldots, y_{i-1}, 1, y_{i}, \ldots, y_{n}\right],\left(y_{1}, \ldots, y_{i-1}, 1, y_{i}, \ldots, y_{n}\right)\right.$.
Then s_{i} is a smooth section of $U_{i} \times \mathbb{R}^{n+1} \rightarrow U_{i}$, and $E_{l}=\mathbb{R} s_{i}(l)$ for any $l \in U_{i}$. By Proposition 8.3, E is a rank 1 smooth subbundle of $P_{n}(\mathbb{R}) \times \mathbb{R}^{n+1}$.
Definition 8.5 (Distribution). Let M be a smooth manifold. A smooth distribution of dimension k on M is a collection $\left\{F_{p} \subset T_{p} M: p \in M\right\}$ of k-dimensional subspaces F_{p} of $T_{p} M$ such that $F=\cup_{p} F_{p}$ is a smooth subbundle of rank k of $T M$.
Remark 8.6. By Proposition 8.3, a collection $\left\{F_{p} \subset T_{p} M: p \in M\right\}$ of k dimensional subspaces F_{p} of $T_{p} M$ is a smooth distribution if and only if for each $p \in M$, there is an open neighborhood U of p and smooth vector fields X_{1}, \ldots, X_{k} on U such that for each $q \in U$, the list $\left\{X_{1}(q), \ldots, X_{k}(q)\right\}$ forms a basis for F_{q}.
Remark 8.7. Let $C^{\infty}(M, F)$ denote the space of smooth sections of the subbundle $F \rightarrow M$. Note that $C^{\infty}(M, F)$ is a $C^{\infty}(M)$-submodule of the space $C^{\infty}(M, T M)$ of smooth sections of $T M$, that is, the space of smooth vector fields on M.
Definition 8.8. Let F be a smooth distribution of dimension k on a smooth manifold M of dimension n.
(i) We say that F is involutive if $C^{\infty}(M, F)$ is a Lie subalgebra of $\left(C^{\infty}(M, T M),[-,-]\right)$.
(ii) We say that F is completely integrable if for each p in M, there is a chart (U, ϕ) for M around p such that for each $q \in U$, the subspace F_{q} is spanned by the list $\left\{\frac{\partial}{\partial x_{1}}(q), \ldots, \frac{\partial}{\partial x_{k}}(q)\right\}$, where $\left(x_{1}, \ldots, x_{n}\right)$ are local coordinates on U.

Remark 8.9. Note that F is completely integrable if and only if for each $p \in M$, there is a k-dimensional submanifold $S \subset M$ such that $p \in S$ and for any $q \in S$, the subspace $T_{q} S=F_{q}$.
Example 8.10. We see that a smooth distribution F has the same dimension as M if and only if $F=T M$. And of course F is involutive and completely integrable.
Example 8.11. If the dimension of F is 1 , then F is both involutive and completely integrable. For each point $p \in M$, there is an open neighborhood U of p in M and a smooth vector field X on U such that $F_{q}=\mathbb{R} X(q)$ for each $q \in U$. There is an integral curve of X on this neighborhood showing that F is completely integrable. Moreover, to see that F is involutive, we note that any smooth section of F is locally a multiple of X and hence

$$
[f X, g X]=(f X(g)-g X(f)) X .
$$

Lemma 8.12. If F is completely integrable then F is involutive.
Proof. Suppose that X and Y are smooth sections of F. On a coordinate chart (U, ϕ), we may write

$$
\begin{aligned}
X & =\sum_{i=1}^{k} a_{i} \frac{\partial}{\partial x_{i}} \\
Y & =\sum_{i=1}^{k} b_{i} \frac{\partial}{\partial x_{i}}
\end{aligned}
$$

for some smooth functions $a_{i}, b_{i} \in C^{\infty}(U)$. Then we compute that

$$
[X, Y]=\sum_{i, j=1}^{k}\left(a_{i} \frac{\partial b_{j}}{\partial x_{i}}-b_{i} \frac{\partial a_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}
$$

belongs to the span of $\left\{\frac{\partial}{\partial x_{1}}(q), \ldots, \frac{\partial}{\partial x_{k}}(q)\right\}$.
The converse is also true:
Theorem 8.13 (Frobenius). A smooth distribution F on a smooth manifold is completely integrable if and only if F is involutive.

Proof. A reference is [Bo, Chapter IV, Section 8].

Operations on vector bundles

Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r over a smooth manifold M. We will construct a smooth vector bundle $\pi^{*}: E^{*} \rightarrow M$ called the dual bundle, whose fibers are given by $E_{p}^{*}=\left(E_{p}\right)^{*}$.

Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r over a smooth manifold M. Let E^{*} denote the set

$$
E^{*}=\bigcup_{p \in M} E_{p}^{*}
$$

Define $\pi^{*}: E^{*} \rightarrow M$ such that $\pi^{*}\left(E_{p}^{*}\right)=\{p\}$. We wish to equip E^{*} with the structure of a smooth manifold.

1. Suppose that $\left\{U_{\alpha}: \alpha \in I\right\}$ is an open cover of M and $h_{\alpha}^{E}: \pi^{-1}\left(U_{\alpha}\right)=\left.E\right|_{U_{\alpha}} \rightarrow$ $U_{\alpha} \times \mathbb{R}^{r}$ are local trivializations of E. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be the standard basis of \mathbb{R}^{r}, and define $s_{\alpha i}: U_{\alpha} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ by $h_{\alpha}^{-1}\left(x, e_{i}\right)$. Then $\left\{s_{\alpha 1}, \ldots, s_{\alpha r}\right\}$ is a C^{∞} frame of $\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha}$. Suppose that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then there exists a C^{∞} map $g_{\beta \alpha}^{E}: U_{\alpha} \cap U_{\beta} \rightarrow G L(r, \mathbb{R})$ such that

$$
s_{\alpha j}(x)=\sum_{i=1}^{r} s_{\beta i}(x) g_{\beta \alpha}^{E}(x)_{i j} .
$$

The transition function $h_{\beta}^{E} \circ\left(h_{\alpha}^{E}\right)^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}$ is given by

$$
\begin{aligned}
h_{\beta}^{E} \circ\left(h_{\alpha}^{E}\right)^{-1}(x, v) & =\left(h_{\beta}^{E}\right)\left(x, \sum_{j=1}^{r} v_{j} s_{\alpha j}(x)\right)=h_{\beta}^{E}\left(x, \sum_{i, j=1}^{r} v_{j} s_{\beta i}(x) g_{\beta \alpha}^{E}(x)_{i j}\right) \\
& =h_{\beta}^{E}\left(x, \sum_{i=1}^{r} u_{i} s_{\beta i}(x)\right)=\left(x, u_{i}\right)
\end{aligned}
$$

where $u_{i}=\sum_{j=1}^{r} g_{\beta \alpha}^{E}(x)_{i j} v_{j}$. So the transition function is given by

$$
h_{\beta}^{E} \circ\left(h_{\alpha}^{E}\right)^{-1}(x, v)=\left(x, g_{\beta \alpha}^{E}(x) v\right)
$$

2. Let $\Gamma\left(U_{\alpha},\left.E^{*}\right|_{U_{\alpha}}\right)$ denote the set of maps $s: U_{\alpha} \rightarrow\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right)=\cup_{x \in U_{\alpha}} E_{x}^{*}$ such that $s(x) \in E_{x}^{*}$. For any $x \in U_{\alpha}$, let $\left\{s_{\alpha 1}^{*}(x), \ldots, s_{\alpha r}^{*}(x)\right\}$ be the basis of E_{x}^{*} dual to the basis $\left\{s_{\alpha 1}(x), \ldots, s_{\alpha r}(x)\right\}$ of E_{x} :

$$
\left\langle s_{\alpha i}^{*}(x), s_{\alpha j}(x)\right\rangle=\delta_{i j} .
$$

Then $s_{\alpha 1}^{*}, \ldots, s_{\beta r}^{*} \in \Gamma\left(U_{\alpha},\left.E^{*}\right|_{U_{\alpha}}\right)$, and there is a bijection

$$
\Phi_{\alpha}: U_{\alpha} \times \mathbb{R}^{r} \rightarrow\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right), \quad(x, v) \mapsto\left(x, \sum_{i=1}^{r} v_{i} s_{\alpha i}^{*}(x)\right)
$$

We equip $\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right)$ with the topological structure and C^{∞} structure such that the bijection Φ_{α} is a C^{∞} diffeomorphism. Define $h_{\alpha}^{E^{*}}:=\Phi_{\alpha}^{-1}:\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$. Then $\left.\pi^{*}\right|_{\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right)}=\operatorname{pr}_{1} \circ h_{\alpha}^{E^{*}}$ and $\left.h_{\alpha}^{E^{*}}\right|_{E_{x}^{*}}$ is a linear isomorphism from E_{x} to $\{x\} \times \mathbb{R}^{r} \cong \mathbb{R}^{r}$ for all $x \in U_{\alpha}$
3. Suppose that $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

$$
s_{\beta i}^{*}(x)=\sum_{i=1}^{r}\left\langle s_{\beta i}^{*}(x), s_{\alpha j}(x)\right\rangle s_{\alpha j}^{*}(x)=\sum_{j=1}^{r} g_{\beta \alpha}^{E}(x)_{i j} s_{\alpha j}^{*}(x)=\sum_{j=1}^{r} s_{\alpha j}^{*}(x)\left(g_{\beta \alpha}^{E}(x)^{T}\right)_{j i}
$$

where A^{T} denote the transpose of A. Therefore,

$$
h_{\alpha}^{E^{*}} \circ\left(h_{\beta}^{E^{*}}\right)^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}
$$

is given by $h_{\alpha}^{E^{*}} \circ\left(h_{\beta}^{E^{*}}\right)^{-1}(x, v)=\left(x, g_{\beta \alpha}^{E}(x)^{T} v\right)$. Its inverse map

$$
h_{\beta}^{E^{*}} \circ\left(h_{\alpha}^{E^{*}}\right)^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}
$$

is given by

$$
\begin{equation*}
h_{\beta}^{E^{*}} \circ\left(h_{\alpha}^{E^{*}}\right)^{-1}(x, v)=\left(x,\left(g_{\beta \alpha}^{E}(x)^{T}\right)^{-1} v\right) \tag{8.1}
\end{equation*}
$$

which is a C^{∞} diffeomorphism. This shows that the topological structures and C^{∞} structures on $\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right)$ and $\left(\pi^{*}\right)^{-1}\left(U_{\beta}\right)$ defined in Step 2 coincide on their intersection $\left(\pi^{*}\right)^{-1}\left(U_{\alpha} \cap U_{\beta}\right)$, so we obtain the structure of a C^{∞} manifold on E^{*}. Indeed, by shrinking U_{α} we may assume that there is a C^{∞} atlas on M of the form $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$. Define

$$
\tilde{\phi}_{\alpha}:\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right) \rightarrow \phi_{\alpha}\left(U_{\alpha}\right) \times \mathbb{R}^{r}, \quad \tilde{\phi}_{\alpha}\left(x, \sum_{i=1}^{r} v_{i} s_{\alpha i}^{*}(x)\right)=\left(\phi_{\alpha}(x),\left(v_{1}, \ldots, v_{r}\right)\right) .
$$

Then $\left\{\left(\left(\pi^{*}\right)^{-1}\left(U_{\alpha}\right), \tilde{\phi}_{\alpha}\right): \alpha \in I\right\}$ is a C^{∞} atlas for E^{*}. Moreover, $h_{\alpha}^{E^{*}}$ and $h_{\beta}^{E^{*}} \circ h_{\alpha}^{E^{*}}$ satisfy (i) and (ii) in Definition 4.15 respectively. Finally, 8.1) tells us $g_{\beta \alpha}^{E^{*}}(x)=\left(g_{\beta \alpha}^{E}(x)^{T}\right)^{-1}$ for $x \in U_{\alpha} \cap U_{\beta}$.

Remark 8.14. The C^{∞} structure on E^{*} is characterized as follows. Let $\Gamma\left(M, E^{*}\right)$ denote the set of maps $\phi: M \rightarrow E^{*}=\cup_{x \in M} E_{x}^{*}$ such that $\phi(x) \in E_{x}^{*}$. We say $\phi \in \Gamma\left(M, E^{*}\right)$ is a smooth section of $E^{*} \rightarrow M$ if, for every smooth section $s: M \rightarrow E$, the function $\langle\phi, s\rangle: M \rightarrow \mathbb{R}$ is smooth. Equivalently, given C^{∞} frame $\left\{s_{\alpha 1}, \ldots, s_{\alpha r}\right\}$ of $\left.E\right|_{U_{\alpha}}$, we declare that $\left\{s_{\alpha 1}^{*}, \ldots, s_{\alpha r}^{*}\right\}$ is a C^{∞} frame of $\left.E^{*}\right|_{U_{\alpha}}$. For any $\phi \in \Gamma\left(U_{\alpha},\left.E^{*}\right|_{U_{\alpha}}\right)$ we may write

$$
\phi(x)=\sum_{i=1}^{r} a_{i}(x) s_{\alpha i}^{*}(x), \quad x \in U_{\alpha} .
$$

ϕ is a smooth section, i.e., $\phi \in C^{\infty}\left(U_{\alpha},\left.E^{*}\right|_{U_{\alpha}}\right)$, if and only if a_{1}, \ldots, a_{r} are smooth functions on U_{α}.

Let F be another smooth vector bundle over M. We may apply operations on vector spaces to construct new smooth vector bundles. For example, we can construct $E \oplus F$ and $E \otimes F$ whose fibers are given by $E_{p} \oplus F_{p}$ and $E_{p} \otimes F_{p}$ respectively. As another example, we can take $\operatorname{Hom}(E, F)$ whose fibers are given by $\operatorname{Hom}(E, F)_{p}=\operatorname{Hom}\left(E_{p}, F_{p}\right)$. Note that $\operatorname{Hom}(E, F) \simeq E^{*} \otimes F$. We can also take the k-th exterior power $\Lambda^{k} E$, where $k \leq r$.

In each above example, the smooth structure is given by the following. For each point $p \in M$, we take a neighborhood U of p such that there is a C^{∞} frame $\left\{e_{1}, \ldots, e_{r}\right\}$ for $\left.E\right|_{U}$ and a C^{∞} frame $\left\{f_{1}, \ldots, f_{s}\right\}$ for $\left.F\right|_{U}$.

- The dual frame $\left\{e_{1}^{*}, \ldots, e_{r}^{*}\right\}$ is a C^{∞} frame for $\left.E^{*}\right|_{U}$.
- $\left\{e_{1}, \ldots, e_{r}, f_{1}, \ldots, f_{s}\right\}$, we get a C^{∞} frame for $\left.(E \oplus F)\right|_{U}$.
- $\left\{e_{i} \otimes f_{j}: 1 \leq i \leq r, 1 \leq j \leq s\right\}$ is a C^{∞} frame for $\left.(E \otimes F)\right|_{U}$.
- $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq r\right\}$ is a C^{∞} frame of $\Lambda^{k} E$. (Here $k \leq r$.)

9. Wednesday, October 7, 2015

Definition 9.1. Let M be a smooth manifold. The cotangent space at $p \in M$ is the space $T_{p}^{*} M:=\left(T_{p} M\right)^{*}$, the dual vector space of the tangent space $T_{p} M$ to M at p. A cotangent vector at $p \in M$ is an element of $T_{p}^{*} M$. The cotangent bundle of M is $T^{*} M:=(T M)^{*}$, the dual of the tangent bundle $T M$ of M.
Definition 9.2. Let M be a smooth manifold.
(i) A smooth (r, s)-tensor on M is a smooth section of

$$
T_{s}^{r} M:=(T M)^{\otimes r} \otimes\left(T^{*} M\right)^{\otimes s}
$$

(ii) A smooth s-form on M is a smooth section of $\Lambda^{s} T^{*} M$.

Example 9.3. A vector field is a (1,0)-tensor. An s-form is a particular type of $(0, s)$-tensor. A 1 -form is the same as a $(0,1)$-tensor.
Example 9.4. Let $f: M \rightarrow \mathbb{R}$ be smooth. Then for any point $p \in M$, the differential $d f_{p}$ is a linear map $d f_{p}: T_{p} M \rightarrow \mathbb{R}$. It follows that $d f_{p} \in T_{p}^{*} M$. Suppose that (U, ϕ) is a chart for M and $\phi=\left(x_{1}, \ldots, x_{n}\right)$ are local coordinates. Then

$$
\left\langle d f, \frac{\partial}{\partial x_{i}}\right\rangle=\frac{\partial f}{\partial x_{i}}
$$

are smooth functions on U. This shows that $d f$ is a smooth section of $T^{*} M$, i.e., $d f$ is a smooth 1-form on M. The 1-form $d f$ is called the differential of f.

We now study tensors in local coordinates. Let (U, ϕ) be a chart for M such that $\phi=\left(x_{1}, \ldots, x_{n}\right)$. Then we know that $\left\{\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right\}$ is a smooth frame for $\left.T M\right|_{U}=T U$. The differentials $d x_{i}$ of the coordinate functions are smooth sections of $\left.T^{*} M\right|_{U}=T^{*} U$ and

$$
d x_{i}\left(\frac{\partial}{\partial x_{j}}\right)=\delta_{i j}
$$

So $\left\{d x_{1}, \ldots, d x_{n}\right\}$ is a C^{∞} frame of $T^{*} U$ dual to the C^{∞} frame $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ For any smooth function $f: U \rightarrow \mathbb{R}$, we may write

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

More generally, any smooth (r, s)-tensor can be written in terms of the local frames:

$$
\sum_{\substack{1 \leq i_{1}, \cdots, i_{r} \leq n \\ 1 \leq j_{1}, \cdots, j_{s} \leq n}} a_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x_{j_{1}} \otimes \cdots \otimes d x_{j_{s}}
$$

where $a_{j_{1} \cdots j_{s}}^{i_{1} \cdots r_{r}} \in C^{\infty}(U)$.

Pullback of $(0, s)$ tensors under a C^{∞} map

Definition 9.5. Let $\phi: M \rightarrow N$ be a smooth map between smooth manifolds. Let p be a point of M. Then $d \phi_{p}: T_{p} M \rightarrow T_{\phi(p)} N$ is a linear map. We get a dual linear map $d \phi_{p}^{*}: T_{\phi(p)}^{*} N \rightarrow T_{p}^{*} M$. Then for any $(0, s)$-tensor T on N, we let $\phi^{*} T$ denote the $(0, s)$-tensor of M described by

$$
\phi^{*} T(p)=\left(d \phi_{p}^{*}\right)^{\otimes s}(T(\phi(p)))
$$

Definition 9.6. We let $\Omega^{s}(N)$ denote the space of smooth s-forms on N, that is, the space of smooth sections of $\Lambda^{s} T^{*} N$. The above definition implies that we may pull back s-forms.

Lemma 9.7. For any smooth function $f: N \rightarrow \mathbb{R}$, we have

$$
\phi^{*}(d f)=d\left(\phi^{*} f\right) .
$$

Proof. For any $p \in M$, we compute

$$
\left(\phi^{*} d f\right)(p)=d \phi_{p}^{*}\left(d f_{\phi(p)}\right)=d f_{\phi(p)} \circ d \phi_{p}=d(f \circ \phi)_{p}=d\left(\phi^{*} f\right)(p)
$$

Example 9.8. Let $\phi:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the map

$$
\phi(r, \theta)=(r \cos \theta, r \sin \theta)
$$

Note $\phi^{*} x=r \cos \theta$ and $\phi^{*} y=r \sin \theta$. Then

$$
\phi^{*} d x=d\left(\phi^{*} x\right)=d(r \cos \theta)=\cos \theta d r-r \sin \theta d \theta
$$

and

$$
\phi^{*} d y=d\left(\phi^{*} y\right)=d(r \sin \theta)=\sin \theta d r+r \cos \theta d \theta
$$

We also compute that

$$
\phi^{*}(d x \wedge d y)=r d r \wedge d \theta
$$

Pullback and pushforward of tensors under a C^{∞} diffeomorphism

Definition 9.9. Let $\phi: M \rightarrow N$ be a smooth diffeomorphism. It follows that $d \phi_{p}: T_{p} M \rightarrow T_{\phi(p)} N$ is an invertible linear map with inverse $d\left(\phi^{-1}\right)_{\phi(p)}$. Then we get a map $\phi^{*}: C^{\infty}\left(N, T_{s}^{r} N\right) \rightarrow C^{\infty}\left(M, T_{s}^{r} M\right)$ called the pullback described by

$$
\phi^{*} T(p)=\left[\left(d\left(\phi^{-1}\right)_{\phi(p)}\right)^{\otimes r} \otimes\left(d \phi_{p}^{*}\right)^{\otimes s}\right] T(\phi(p))
$$

We also get a map $\phi_{*}: C^{\infty}\left(M, T_{s}^{r} M\right) \rightarrow C^{\infty}\left(N, T_{s}^{r} N\right)$ called the pushforward described by $\phi_{*}=\left(\phi^{-1}\right)^{*}$.

Example 9.10. If X is a smooth vector field, then

$$
\phi_{*} X(q)=d \phi_{\phi^{-1}(q)} X\left(\phi^{-1}(q)\right)
$$

for any $q \in N$.
Lemma 9.11. If $\phi: M_{1} \rightarrow M_{2}$ and $\psi: M_{2} \rightarrow M_{3}$ are smooth maps.
(i) Then $(\psi \circ \phi)^{*}=\phi^{*} \circ \psi^{*}$.
(ii) If ϕ, ψ are diffeomorphisms, then $(\psi \circ \phi)_{*}=\psi_{*} \circ \phi_{*}$.

Lie derivatives on tensors

Let X be a smooth vector field on M. We have already defined $L_{X} f=X(f)$ for $f: M \rightarrow \mathbb{R}$ a smooth function. We have also defined $L_{X}(Y)=[X, Y]$ for a smooth vector field Y on M. Now we want to define $L_{X} T$ for any smooth tensor T.

Recall from before that if $\phi_{t}: U \rightarrow M$ is the local flow of X around $p \in M$, then

$$
L_{X} f(p)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} f\right)(p)
$$

and

$$
L_{X} Y(p)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} Y\right)(p)
$$

Note that $\phi_{t}^{*}=\left(\phi_{t}^{-1}\right)_{*}=\left(\phi_{-t}\right)_{*}$.
Definition 9.12. Let M be a smooth manifold and let X be a smooth vector field. We can define the Lie derivative with respect to X to be the map L_{X} : $C^{\infty}\left(M, T_{s}^{r} M\right) \rightarrow C^{\infty}\left(M, T_{s}^{r} M\right)$ by the rule

$$
L_{X} T(p):=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} T\right)(p)
$$

where $\phi_{t}: U \rightarrow M$ is the local flow of X.
Lemma 9.13. The Lie derivative satisfies the following properties
(i) For a smooth function f, we have $L_{X} f=X(f)$.
(ii) For a smooth vector field Y, we have $L_{X} Y=[X, Y]$.
(iii) For a (0,1)-tensor α and Y a vector field, we have

$$
\left(L_{X} \alpha\right)(Y)=L_{X}(\alpha(Y))-\alpha\left(L_{X} Y\right)=X(\alpha(Y))-\alpha([X, Y])
$$

(iv) For tensors S and T, we have

$$
L_{X}(S \otimes T)=L_{X}(S) \otimes T+S \otimes L_{X}(T)
$$

In particular, if f is a smooth function, then

$$
L_{X}(f T)=X(f) T+f L_{X} T
$$

Proof. To see (iii), we can check that

$$
\phi_{t}^{*}(\alpha(Y))=\left(\phi_{t}^{*} \alpha\right)\left(\phi_{t}^{*}(Y)\right) .
$$

For (iv), we can check that

$$
\phi_{t}^{*}(S \otimes T)=\phi_{t}^{*} S \otimes \phi_{t}^{*} T
$$

Remark 9.14. Alternatively, one can use properties (i) through (iv) to define the Lie derivative.

Lemma 9.15. $L_{X} \circ L_{Y}-L_{Y} \circ L_{X}=L_{[X, Y]}$.
This means that the map $L: C^{\infty}(M, T M) \rightarrow \mathfrak{g l}\left(C^{\infty}\left(M, T_{s}^{r} M\right)\right)$ given by $X \mapsto L_{X}$ is a Lie algebra homomorphism.

Proof. Assignment 5 (1).

Exterior derivative on forms

Definition 9.16. Define $d: \Omega^{s}(M) \rightarrow \Omega^{s+1}(M)$ to be the unique \mathbb{R}-linear map satisfying
(i) If f is a smooth function on M, then $d f$ is the differential of f.
(ii) For any smooth function f on M, we have $d d f=0$.
(iii) (Leibniz rule): If α is an r-form and β is an s-form, then

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{r} \alpha \wedge d \beta
$$

In terms of local coordinates, we have the following. If α is an s-form and (U, ϕ) is a local coordinate chart, then we may write

$$
\alpha=\sum_{1 \leq j_{1}<\cdots j_{s} \leq n} a_{j_{1} \cdots j_{s}} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{s}}
$$

and we compute

$$
d \alpha=\sum_{1 \leq j_{1}<\cdots j_{s} \leq n} d a_{j_{1} \cdots j_{s}} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{j_{s}}
$$

Proposition 9.17. Let ω be an s-form on M. Then we have the following.
(i) $d d \omega=0$.
(ii) If $\phi: M^{\prime} \rightarrow M$ is a smooth map, then $d\left(\phi^{*} \omega\right)=\phi^{*}(d \omega)$, that is, d commutes with pullbacks.
(iii) If X is a smooth vector field on M, then $d\left(L_{X} \omega\right)=L_{X}(d \omega)$, that is, d commutes with Lie derivatives.
(iv) For an s-form ω and vector fields X_{0}, \ldots, X_{s}, we compute

$$
\begin{aligned}
d \omega\left(X_{0}, \ldots, X_{s}\right)= & \sum_{i=0}^{s}(-1)^{i} X_{i}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{s}\right)\right) \\
& +\sum_{0 \leq i, j \leq s}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{s}\right) .
\end{aligned}
$$

Proof. The proofs of (i) and (ii) are straightforward. Taking $\phi=\phi_{t}$ in (ii), we get (iii). The proof of (iv) is Assignment 5 (3).

Interior derivatives on forms

Definition 9.18. Let X be a smooth vector field on a smooth manifold M. Define $i_{X}: \Omega^{s}(M) \rightarrow \Omega^{s-1}(M)$ by the rules
(i) $i_{X} f=0$ for a smooth function $f: M \rightarrow \mathbb{R}$ and
(ii) For an s-form α, we have $i_{X} \alpha\left(X_{1}, \ldots, X_{s-1}\right)=\alpha\left(X, X_{1}, \ldots, X_{s-1}\right)$.

Lemma 9.19. We have the following.
(i) $i_{X} \circ i_{X}=0$
(ii) $i_{X}(\alpha \wedge \beta)=i_{X} \alpha \wedge \beta+(-1)^{\operatorname{deg}(\alpha)} \alpha \wedge i_{X} \beta$.
(iii) (Cartan's formula): We have $d \circ i_{X}+i_{X} \circ d=L_{X}$.

Proof. (i) and (ii) are straightfoward to check. (iii) is Assignment 5 (2a).

$$
\text { 10. Monday, October 12, } 2015
$$

Riemannian Metrics

Definition 10.1. Let M be a smooth manifold. A Riemannian metric g on M is a smooth (0,2)-tensor such that for any $p \in M, g(p): T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a inner product on $T_{p} M$. We say such a pair (M, g) is a Riemannian manifold.

The tensor bundle $T_{2}^{0} M$ can be written as a direct sum of two C^{∞} subbundles:

$$
T_{2}^{0} M=\left(T^{*} M\right)^{\otimes 2}=S^{2}\left(T^{*} M\right) \oplus \Lambda^{2}\left(T^{*} M\right)
$$

where $S^{2}\left(T^{*} M\right)$ is the symmetric square of $T^{*} M$.
Let $n=\operatorname{dim}(M)$. For any $p \in M$,

- $\left(T_{p}^{*} M\right)^{\otimes 2}$ is the space of bilinear forms on $T_{p} M$, which is n^{2} dimensional;
- $S^{2} T_{p}^{*} M$ is the space of symmetric bilinear forms on $T_{p} M$, which is $\frac{1}{2} n(n+1)$ dimensional;
- $\Lambda^{2} T_{p}^{*} M$ is the space of skew-symmetric bilinear forms on $T_{p} M$, which is $\frac{1}{2} n(n-1)$ dimensional.
Let $\Omega \subset C^{\infty}\left(M, S^{2} T^{*} M\right)$ denote the space of Riemannian metrics on M. Then we claim that Ω is a convex subset. This is because if $g_{0}, g_{1} \in \Omega$, then $(1-t) g_{0}+t g_{1}$ is a Riemannian metric for $t \in[0,1]$. In particular, we see that Ω is contractible.

We now discuss Riemannian metrics in local coordinates. Let (U, ϕ) be a chart for M and write $\phi=\left(x_{1}, \ldots, x_{n}\right)$. Then $\left\{d x_{1}, \ldots, d x_{n}\right\}$ is a C^{∞} frame for $\left.T^{*} M\right|_{U}=$ $T^{*} U$. If we let

$$
d x_{i} d x_{j}=\frac{1}{2}\left(d x_{i} \otimes d x_{j}+d x_{j} \otimes d x_{i}\right)
$$

then we see that $\left\{d x_{i} d x_{j}: 1 \leq i \leq j \leq n\right\}$ is a C^{∞} frame for $\left.S^{2} T^{*} M\right|_{U}$. Then we know that on U, we may write

$$
g=\sum_{i, j} g_{i j} d x_{i} d x_{j}
$$

for some smooth functions $g_{i j}$, where $g_{i j}=g_{j i}$. For any p, the collection $\left(g_{i j}(p)\right)$ forms a symmetric, positive definite, $n \times n$ matrix with entries in \mathbb{R}.
Example 10.2. Let $M=\mathbb{R}^{n}$. Then we let $g_{0}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\delta_{i j}$. This is called the Euclidean metric. In terms of global coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on \mathbb{R}^{n},

$$
g_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}
$$

Example 10.3. On \mathbb{R}^{2}, let (x, y) be the cartesian coordinates, so that the Eulidean metric g_{0} can be written as $g_{0}=d x^{2}+d y^{2}$. The polar coordinates (r, θ), which are local coordinates around any point in $\mathbb{R}^{2}-\{(0,0)\}$, are related to (x, y) by

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

In terms of the polar coordinates, the Euclidean metric is of the form

$$
g_{0}=E d r^{2}+F(d r d \theta+d \theta d r)+G d \theta^{2}=E d r^{2}+2 F d r d \theta+G d \theta^{2}
$$

where

$$
E=g_{0}\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right), \quad F=g_{0}\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right), \quad G=g_{0}\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)
$$

We have

$$
\begin{aligned}
\frac{\partial}{\partial r} & =\frac{\partial x}{\partial r} \frac{\partial}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial}{\partial y}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}=\frac{x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}}{\sqrt{x^{2}+y^{2}}} \\
\frac{\partial}{\partial \theta} & =-r \sin \theta \frac{\partial}{\partial x}+r \cos \theta \frac{\partial}{\partial y}=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
\end{aligned}
$$

We compute that $E=1, F=0$ and $G=r^{2}$. It follows that

$$
g_{0}=d r^{2}+r^{2} d \theta
$$

$\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}$ is an C^{∞} orthonormal frame for $T \mathbb{R}^{2}$.
$\left\{\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}\right\}$ is a C^{∞} orthonormal frame for $\left.T \mathbb{R}^{2}\right|_{\mathbb{R}^{2}-\{(0,0)\}}$.

Example 10.4. On \mathbb{R}^{3}, the Euclean metric is $g_{0}=d x^{2}+d y^{2}+d z^{2}$ in terms of the cartesian coordinates (x, y, z). The spherical coordinates (ρ, ϕ, θ) are local coordinates around any point in $U:=\left(\mathbb{R}^{2}-\{(0,0)\}\right) \times \mathbb{R}$, the complement of the z-axis $x=y=0$; they are related to the cartesian coordinates by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi .
$$

We find that

$$
\begin{aligned}
\frac{\partial}{\partial \rho} & =\frac{x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\frac{\partial}{\partial \theta} & =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} \\
\frac{\partial}{\partial \phi} & =\frac{1}{\sqrt{x^{2}+y^{2}}}\left(x z \frac{\partial}{\partial x}+y z \frac{\partial}{\partial y}-\left(x^{2}+y^{2}\right) \frac{\partial}{\partial z}\right)
\end{aligned}
$$

$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ is a smooth function on U; indeed it is a smooth function on $\mathbb{R}^{3}-\{(0,0,0)\}$. Although ϕ and θ are well-defined only locally but not globally on U, the above computations show that $\frac{\partial}{\partial \rho}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}$ are well-defined C^{∞} vector fields on U and form a C^{∞} frame for $\left.T \mathbb{R}^{3}\right|_{U} ; d \phi$ and $d \theta$ are well-defined, smooth 1-forms on U, and $\{d \rho, d \theta, d \phi\}$ is a C^{∞} frame for $\left.T^{*} \mathbb{R}^{3}\right|_{U}$.

We compute that

$$
g_{0}=d \rho^{2}+\rho^{2} d \phi^{2}+\rho^{2} \sin ^{2} \phi d \theta^{2} .
$$

$\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\}$ is a C^{∞} orthonormal frame for $T \mathbb{R}^{3}$.
$\left\{\frac{\partial}{\partial \rho}, \frac{1}{\rho} \frac{\partial}{\partial \phi}, \frac{1}{\rho \sin \phi} \frac{\partial}{\partial \theta}\right\}$ is a C^{∞} orthonormal frame for $\left.T \mathbb{R}^{3}\right|_{U}$.

Let $f: M \rightarrow N$ be a smooth map between smooth manifolds. If g is a Riemannian metric on N, then $g \in C^{\infty}\left(N, S^{2}\left(T^{*} N\right)\right)$, so $f^{*} g \in C^{\infty}\left(M, S^{2} T^{*} M\right)$. Given $p \in M,\left(f^{*} g\right)(p)$ is an inner product on $T_{p} M$ iff $d f_{p}: T_{p} M \rightarrow T_{f(p)} M$ is injective iff f is an immersion at p. Therefore, if f is an immersion then $f^{*} g$ is a Riemannian metric on M.

Definition 10.5. Let $f: M \rightarrow N$ be a smooth immersion and let g be a Riemannian metric on N. Then $f^{*} g$ is a Riemannian metric on M called the pullback.

Example 10.6. Let $i_{r}: S^{2}(r) \rightarrow \mathbb{R}^{3}$. Then $g_{c a n}:=i_{r}^{*} g_{0}$ is known as the canonical metric or round metric on the sphere of radius r.

It is convenient to use the coordinates

$$
x=r \sin \phi \cos \theta, \quad y=r \sin \phi \sin \theta, \quad z=r \cos \phi
$$

Then we find that

$$
g_{c a n}=i_{r}^{*} g_{0}=r^{2}\left(d \phi^{2}+\sin ^{2} \phi d \theta^{2}\right)
$$

Definition 10.7. Let $f:\left(M, g_{1}\right) \rightarrow\left(N, g_{2}\right)$ be a smooth map between Riemannian manifolds. We say that f is
(i) an isometric immersion (resp. embedding) if f is an immersion (resp. embedding) and $f^{*} g_{2}=g_{1}$ (in other words, if the differential preserves the inner product).
(ii) a (local) isometry if f is a (local) diffeomorphism and $f^{*} g_{2}=g_{1}$.

Suppose that $i:\left(M_{1}, g_{1}\right) \hookrightarrow\left(M_{2}, g_{2}\right)$ is an isometric embedding. Then $i\left(M_{1}\right)$ is a Riemannian submanifold of $\left(M_{2}, g_{2}\right)$. This means that it is a submanifold when equipped with the Riemannian metric given by pulling back the metric on M_{2} under inclusion.

Example 10.8. Let $i_{r}: S^{n}(r) \rightarrow \mathbb{R}^{n+1}$. Then $g_{c a n}=i_{r}^{*} g_{0}$ is the round metric on the n-sphere of radius $r>0$.

Example 10.9. Let $A \in G L(n, \mathbb{R})$. Then A defines an invertible linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. In particular, A is a smooth diffeomorphism. Then we can pull back the Euclidean metric. We find that

$$
\begin{aligned}
A^{*} g_{0} & =\sum_{i} d\left(\sum_{j} A_{i j} d x_{j}\right) d\left(\sum_{k} A_{i k} d x_{k}\right)=\sum_{j, k}\left(\sum_{i} A_{i j} A_{i k}\right) d x_{j} d x_{k} \\
& =\sum_{j, k}\left(A^{T} A\right)_{j k} d x_{j} d x_{k}
\end{aligned}
$$

We see that A is an isometry if and only if $A^{*} g_{0}=g_{0}$, which happens if and only if $A^{T} A=I$, which means that $A \in O(n)$.

We will see later the following.
Theorem 10.10. A smooth map $\phi:\left(\mathbb{R}^{n}, g_{0}\right) \rightarrow\left(\mathbb{R}^{n}, g_{0}\right)$ is an isometry if and only if ϕ is a rigid motion, i.e. $\phi(x)=A x+b$ for some $A \in O(n)$ and $b \in \mathbb{R}^{n}$.

Example 10.11. Let $A \in O(n+1)$. Then $A\left(S^{n}(r)\right)=S^{n}(r)$. It follows that the restriction $A:\left(S^{n}(r), g_{c a n}\right) \rightarrow\left(S^{n}(r), g_{c a n}\right)$ is an isometry. We will see later that, these are all of the isometrics of the round sphere.

Example 10.12. Let $\phi: \mathbb{R} \rightarrow S^{1}$ be the $\operatorname{map} \phi(t)=(\cos t, \sin t)$. This is a smooth local diffeomorphism. On \mathbb{R}, we have the metric $d t^{2}$ and on \mathbb{R}^{2}, we have the metric $d x^{2}+d y^{2}$, which induces the metric g_{can} on S^{1}. Then we find that

$$
\phi^{*} g_{\mathrm{can}}=(i \circ \phi)^{*}\left(d x^{2}+d y^{2}\right)=(-\sin t d t)^{2}+(\cos t d t)^{2}=d t^{2}
$$

It follows that $\phi:\left(\mathbb{R}, d t^{2}\right) \rightarrow\left(S^{1}, g_{\text {can }}\right)$ is a local isometry.
Definition 10.13. Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be Riemannian manifolds and let $M_{1} \times M_{2}$ denote the product manifold. For $i=1,2$, let $\pi_{i}: M_{1} \times M_{2} \rightarrow M_{i}$. We define the product metric on $M_{1} \times M_{2}$ to be

$$
g_{1} \times g_{2}=\pi_{1}^{*} g_{1}+\pi_{2}^{*} g_{2}
$$

In this way, the metric on $T_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right)$ ensures the space decomposes as an orthogonal sum $T_{p_{1}} M_{1} \oplus T_{p_{2}} M_{2}$. This means that

$$
\left(g_{1} \times g_{2}\right)\left(p_{1}, p_{2}\right)\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left\langle u_{1}, u_{2}\right\rangle_{p_{1}}+\left\langle v_{1}, v_{2}\right\rangle_{p_{2}}
$$

Example 10.14. Let T^{n} denote the torus $\underbrace{S^{1} \times \cdots \times S^{1}}_{n \text { copies }}$. The flat metric on T is $g=\underbrace{g_{\text {can }} \times \cdots \times g_{\text {can }}}_{n \text { times }}$. Let $\phi: \mathbb{R}^{n} \rightarrow T^{n}$ be the map

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(\left(\cos t_{1}, \sin t_{1}\right), \ldots,\left(\cos t_{n}, \sin t_{n}\right)\right)
$$

Then ϕ is a local isometry from $\left(\mathbb{R}^{n}, g_{0}\right)$ to $\left(T^{n}, g\right)$.

Definition 10.15. Let M be a smooth manifold (note that we are assuming that M is Hausdorff with a countable basis). A smooth partition of unity on M is a collection of smooth functions $\left\{f_{\gamma} \in C^{\infty}(M): \gamma \in \Gamma\right\}$ such that
(i) (nonnegative) We have $f_{\gamma} \geq 0$ for each γ
(ii) (locally finite) The collection $\left\{\operatorname{supp} f_{\gamma}: \gamma \in \Gamma\right\}$ is locally finite in the sense that for each $p \in M$, there is a neighborhood W of p such that only finitely many supp f_{γ} intersect W.
(iii) For each $p \in M$, we have

$$
\sum_{\gamma \in \Gamma} f_{\gamma}(p)=1
$$

Note that the left hand side is a finite sum by (ii).
Moreover we say that a partition of unity $\left\{f_{\gamma}\right\}$ is subordinate to an open cover $\mathcal{A}=\left\{A_{\alpha}: \alpha \in I\right\}$ if for each $\gamma \in \Gamma$, there is an $\alpha \in I$ such that $\operatorname{supp} f_{\gamma} \subseteq A_{\alpha}$.

Theorem 10.16. Let M be a smooth manifold and let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in I\right\}$ be an open cover of M. Then there is a partition of unity $\left\{f_{\gamma}: \gamma \in \Gamma\right\}$ subordinate to the open cover \mathcal{A}.

Proof. See [Bo, Chapter V Section 4].
The proofs of the following two propositions rely on Theorem 10.16 and will be presented on the roundtable on October 16.

Proposition 10.17. Let M be a smooth manifold. Then there is a Riemannian metric on M.

Proposition 10.18. Let M be a compact Hausdorff smooth n-manifold. Then M can be smoothly embedded in $\mathbb{R}^{2 n+1}$.

We have the following classical theorems.
Theorem 10.19 (Weak Whitney Embedding). Let M be a smooth n-manifold (Hausdorff and countable basis). Then M can be smoothly embedded in $\mathbb{R}^{2 n+1}$ as a closed submanifold.

Theorem 10.20 (Strong Whitney Emdedding). Let M be a smooth n-manifold (Hausdorff with countable basis). Then M can be smoothly embedded in $\mathbb{R}^{2 n}$ as a closed submanifold.

Theorem 10.21 (Nash Embedding Theorem). Any Riemannian n-manifold can be isometrically embedded in $\mathbb{R}^{n(n+1)(3 n+11) / 2}$. Any compact Riemannian n-manifold can be isometrically embedded in $\mathbb{R}^{n(3 n+11) / 2}$.

11. Wednesday, October 14, 2015

Volume form

Definition 11.1 (Volume Form). Let M be a smooth n-manifold. A volume form on M is a smooth n-form ν on M such that $\nu(p) \neq 0$ for any $p \in M$.

Lemma 11.2. If M is a smooth n-manifold, the following are equivalent.
(i) There is a volume form on M.
(ii) $\Lambda^{n} T^{*} M$ is trivial.
(iii) M is orientable.

Proof. (i) \Leftrightarrow (ii): Item (i) means that there is a global smooth frame for $\Lambda^{n} T^{*} M$. This happens if and only if $\Lambda^{n} T^{*} M$ is a trivial vector bundle of rank 1 by a previous lemma.
(i) \Rightarrow (iii): Assume that (i) holds. Call the volume form ν. Let $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ be a smooth atlas for M such that each U_{α} is connected. We define a smooth atlas $\left\{\left(U_{\alpha}, \phi_{\alpha}^{\prime}\right): \alpha \in I\right\}$ as follows: On U_{α}, we may write $\nu=f_{\alpha} d x_{1}^{\alpha} \wedge \cdots \wedge d x_{n}^{\alpha}$ where n is the dimension of M and $\phi_{\alpha}=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$ are local coordinates on U_{α}. We know that $f_{\alpha} \neq 0$, and U_{α} is connected. It follows that either $f_{\alpha}>0$ or $f_{\alpha}<0$ on U_{α}.

- If $f_{\alpha}>0$, define $\left(U_{\alpha}^{\prime}, \phi_{\alpha}^{\prime}\right)=\left(U_{\alpha}, \phi_{\alpha}\right)$.
- If $f_{\alpha}<0$, then let r be the map $r\left(x_{1}, \ldots, x_{n}\right)=\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$ and define $\left(U_{\alpha}, \phi_{\alpha}^{\prime}=r \circ \phi_{\alpha}\right)$.
Then we can check that $\left\{\left(U_{\alpha}, \phi_{\alpha}^{\prime}\right): \alpha \in I\right\}$ defines an orientation on M.
(iii) \Rightarrow (i): Assume that (iii) holds. Suppose that $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ is an orientation on M, that is, $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$ is a smooth atlas on M such that $\operatorname{det} d\left(\phi_{\beta} \circ\right.$ $\left.\phi_{\alpha}^{-1}\right)>0$ on $\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$. Equip M with a Riemannian metric g. On U_{α}, write $\phi_{\alpha}=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$. Then

$$
g=\sum_{i, j=1}^{n} g_{i j}^{\alpha} d x_{i}^{\alpha} d x_{j}^{\alpha}
$$

where $g_{i j}^{\alpha}=\left\langle\frac{\partial}{\partial x_{i}^{\alpha}}, \frac{\partial}{\partial x_{j}^{\alpha}}\right\rangle \in C^{\infty}\left(U_{\alpha}\right)$, and $\left(g_{i j}^{\alpha}(p)\right)$ is a positive definite symmetric $n \times n$ matrix for every $p \in U_{\alpha}$.

Define $\nu_{\alpha} \in \Omega^{n}\left(U_{\alpha}\right)$ to be $\nu_{\alpha}=\sqrt{\operatorname{det}\left(g_{i j}^{\alpha}\right)} d x_{1}^{\alpha} \wedge \cdots \wedge d x_{n}^{\alpha}$. For each $p \in U_{\alpha}$, we know that $g_{i j}^{\alpha}(p)$ is a symmetric positive definite matrix and so $\operatorname{det}\left(g_{i j}^{\alpha}\right): U_{\alpha} \rightarrow$ $(0, \infty)$. Then ν_{α} is a smooth nowhere zero section of $\left.\left(\Lambda^{n} T^{*} M\right)\right|_{U_{\alpha}}$. If $U_{\alpha} \cap U_{\beta} \neq \varnothing$, then

$$
g_{k l}^{\beta}=\left\langle\frac{\partial}{\partial x_{k}^{\beta}}, \frac{\partial}{\partial x_{l}^{\beta}}\right\rangle=\left\langle\sum_{i} \frac{\partial x_{i}^{\alpha}}{\partial x_{k}^{\beta}} \frac{\partial}{\partial x_{i}^{\alpha}}, \sum_{j} \frac{\partial x_{j}^{\alpha}}{\partial x_{l}^{\beta}} \frac{\partial}{\partial x_{j}^{\alpha}}\right\rangle=\sum_{i, j} \frac{\partial x_{i}^{\alpha}}{\partial x_{k}^{\beta}} \frac{\partial x_{j}^{\alpha}}{\partial x_{l}^{\beta}} g_{i j}^{\alpha} .
$$

Write $A_{i j}=g_{i j}^{\alpha}$ and $B_{k l}=g_{k l}^{\beta}$ and $C_{i k}=\frac{\partial x_{i}^{\alpha}}{\partial x_{k}^{\beta}}$. Then $B=C^{t} A C$. It follows that $\operatorname{det} B=\operatorname{det} A(\operatorname{det} C)^{2} \Rightarrow \operatorname{det} B=\operatorname{det} A \sqrt{\operatorname{det} C}$ (since A, B are symmetric and positive definite, and $\operatorname{det} C>0$). We also have

$$
d x_{1}^{\alpha} \wedge \cdots \wedge d x_{n}^{\alpha}=\operatorname{det} C d x_{1}^{\beta} \wedge \cdots \wedge d x_{n}^{\beta}
$$

On $U_{\alpha} \cap U_{\beta}$,

$$
\begin{aligned}
\nu_{\alpha} & =\sqrt{\operatorname{det} A} d x_{1}^{\alpha} \wedge \cdots \wedge d x_{n}^{\alpha}=\sqrt{\operatorname{det} A} \operatorname{det} C d x_{1}^{\beta} \wedge \cdots \wedge d x_{n}^{\beta} \\
& =\operatorname{det} B d x_{1}^{\beta} \wedge \cdots \wedge d x_{n}^{\beta}=\nu_{\beta}
\end{aligned}
$$

Remark 11.3. Let (M, g) be an oriented Riemannian manifold of dimension n. Then there is a unique volume form ν compatible with the orientation and the Riemannian metric, namely, the one we constructed. For any $p \in M$, choose an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ for $T_{p} M$ compatible with the orientation in the sense that if $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ is an orientation and $\phi_{\alpha}=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$, then $\left(d x_{1}^{\alpha} \wedge \cdots \wedge\right.$ $\left.d x_{n}^{\alpha}\right)_{p}\left(e_{1}, \ldots, e_{n}\right)>0$. Then we let $\nu(p)=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$, where $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ is the dual
basis of $T_{p}^{*} M$. This is well-defined because if $\left(f_{1}, \ldots, f_{n}\right)$ is another orthonormal basis which is compatible with the orientation then

$$
f_{i}=\sum_{j=1}^{n} a_{i j} e_{j}
$$

where $a_{i j}=A \in O(n)$ and $\operatorname{det}(A)>0$ (which means that $A \in S O(n)$) and so

$$
f_{1}^{*} \wedge \cdots \wedge f_{n}^{*}=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*} .
$$

Example 11.4. For $\left(\mathbb{R}^{n}, g_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}\right)$, we let $e_{i}=\frac{\partial}{\partial x_{i}}$ and $e_{i}^{*}=d x_{i}$ and so $\nu=d x_{1} \wedge \cdots \wedge d x_{n}$.

Example 11.5. Let $j:\left(S^{n}, g_{c a n}\right) \hookrightarrow\left(\mathbb{R}^{n+1}, g_{0}\right)$ be the round unit sphere isometrically embedded in \mathbb{R}^{n+1}. For any $x=\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n}$, we know that

$$
T_{x} S^{n}=\left\{v \in \mathbb{R}^{n+1}: x \cdot v=0\right\}
$$

Then we find that,

$$
\operatorname{vol}_{S^{n}, g_{c a n}}= \pm j^{*}\left(i_{X}\left(d x_{1} \wedge \cdots \wedge d x_{n+1}\right)\right)
$$

where \pm depends on the orientation on S^{n}, and $X=\sum_{j=1}^{n+1} x_{j} \frac{\partial}{\partial x_{j}}$.
Example 11.6. More generally, let $\left(N^{n+1}, g\right)$ be an oriented Riemannian manifold. Let $j: M^{n} \hookrightarrow N^{n+1}$ be a submanifold of codimension 1 equipped with the Riemannian metric $j^{*} g$. If M is also oriented, then we have volume forms $\nu_{M} \in \Omega^{n}(M)$ and $\nu_{N} \in \Omega^{n+1}(M)$ which are compatible with the orientations and metrics. Suppose that there is a vector field X on N such that for any $p \in M$, we have $|X(p)|=1$ and $X(p) \perp T_{p} M$. By replacing X by $-X$ if necessary, we may further assume that $\left(X(p), e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis for $T_{p} N$ which is compatible with the orientation on N where e_{1}, \ldots, e_{n} is an orthonormal basis for $T_{p} M$ compatible with the orientation on M. Then $j^{*}\left(i_{X} \nu_{N}\right)=\nu_{M}$.

Integration on an oriented manifold

Let (M, g) be a smooth n-manifold equipped with an orientation defined by a C^{∞} atlas $\left\{\left(U_{\alpha}, \phi_{\alpha}\right): \alpha \in I\right\}$. Let $\phi_{\alpha}=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$. Given a smooth n-form ω and a compact subset R of ω, the integral

$$
\int_{R} \omega
$$

is characterized by the following properties.
(1) Suppose that R is contained in U_{α} for some $\alpha \in I$, and let $\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$ be local coordinates on U_{α}. On U_{α}, any smooth n-form can be written as $\omega=f_{\alpha} d x_{1}^{\alpha} \wedge \cdots d x_{n}^{\alpha}$ for some $f_{\alpha} \in C^{\infty}\left(U_{\alpha}\right)$. We define

$$
\int_{R} \omega=\int_{\phi_{\alpha}(R)} f_{\alpha}(x) d x_{1}^{\alpha} \cdots d x_{n}^{\alpha}
$$

(2) If R_{1} and R_{2} are disjoint compact subsets of M then

$$
\int_{R_{1} \cup R_{2}} \omega=\int_{R_{1}} \omega+\int_{R_{2}} \omega
$$

(3) If $\omega_{1}, \omega_{2} \in \Omega^{n}(M)$ and $c_{1}, c_{2} \in \mathbb{R}$ then

$$
\int_{R}\left(c_{1} \omega_{1}+c_{2} \omega_{2}\right)=c_{1} \int_{R} \omega_{1}+c_{2} \int_{R} \omega_{2}
$$

Let $\left\{f_{\gamma}: \gamma \in \Lambda\right\}$ be a partition of unity subordinate to the open cover $\left\{U_{\alpha}: \alpha \in\right.$ $I\}$. Given any $\omega \in \Omega^{n}(M)$,

$$
\int_{R} \omega=\int_{R} \sum_{\gamma \in \Lambda} f_{\gamma} \omega=\sum_{\gamma \in \Lambda} \int_{R} f_{\gamma} \omega=\sum_{\gamma \in \Lambda} \int_{R_{\gamma}} f_{\gamma} \omega
$$

where $R_{\gamma}:=R \cap \operatorname{Supp}\left(f_{\gamma}\right)$ is a compact set contained in some U_{α}, so we define $\int_{R_{\gamma}} f_{\gamma} \omega$ by (1).
Definition 11.7. Let (M, g) be an oriented Riemannian manifold and let ν_{g} be a volume form compatible with the orientation and Riemannian metric g. Given a compact set R in M, we define the volume of R

$$
\operatorname{volume}_{g}(R)=\int_{R} \nu_{g}
$$

Example 11.8. Equip S^{2} with the metric $g_{\text {can }}=d \phi^{2}+\sin ^{2} \phi d \theta^{2}$. Let $U=$ $S^{2} \backslash\{(0,0,1),(0,0,-1)\}$. An orthonormal frame for $\left.T S^{2}\right|_{U}$ is

$$
\frac{\partial}{\partial \phi}, \frac{1}{\sin \phi} \frac{\partial}{\partial \theta}
$$

and the dual coframe is $d \phi, \sin \phi d \theta$. (In general, if e_{1}, \ldots, e_{n} is an orthonormal basis of $T_{p} M$ which is compatible with the orientation, then $g(p)=e_{1}^{*} \otimes e_{1}^{*}+\cdots+e_{n}^{*} \otimes e_{n}^{*}$ and $\nu(p)=e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$.) Then we see that the volume form is

$$
\nu_{g_{\mathrm{can}}}=\sin \phi d \phi \wedge d \theta
$$

and so

$$
\text { volume }_{g_{\text {can }}}\left(S^{2}\right)=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=4 \pi
$$

Length

Definition 11.9. Let $\gamma:(a, b) \rightarrow(M, g)$ be a smooth curve. Then the length of γ is

$$
\operatorname{length}(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t, \text { where }\left\|\gamma^{\prime}(t)\right\|=\sqrt{\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{\gamma(t)}}
$$

Example 11.10. We consider upper half plane $\mathbb{H}^{2}=\left\{(x, y): \mathbb{R}^{2}: y>0\right\}$. We endow this with the metric

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

Pick points $x_{1}>x_{0}$ and $y_{1}>y_{0}>0$ in \mathbb{R}. Let γ_{1} be the straight line from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{0}\right)$ and let γ_{2} be the straight line from $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}, y_{1}\right)$:

$$
\gamma_{1}(t)=\left(t, y_{0}\right), \quad t \in\left(x_{0}, x_{1}\right) ; \quad \gamma_{2}(t)=\left(x_{0}, t\right), \quad t \in\left(y_{0}, y_{1}\right)
$$

We compute that $\gamma_{1}^{\prime}=\frac{\partial}{\partial x}$,

$$
\left\langle\gamma_{1}^{\prime}(t), \gamma_{1}^{\prime}(t)\right\rangle_{\gamma(t)}=\frac{1}{y_{0}^{2}}
$$

Hence we find that

$$
\operatorname{length}\left(\gamma_{1}\right)=\int_{x_{0}}^{x_{1}}\left|\gamma_{1}^{\prime}\right| d t=\frac{x_{1}-x_{0}}{y_{0}}
$$

On the other hand, we compute that $\gamma_{2}^{\prime}=\frac{\partial}{\partial y}$,

$$
\left\langle\gamma_{2}^{\prime}(t), \gamma_{2}^{\prime}(t)\right\rangle_{\gamma(t)}=\frac{1}{t^{2}}
$$

and hence

$$
\operatorname{length}\left(\gamma_{2}\right)=\int_{y_{0}}^{y_{1}} \frac{d t}{t}=\log \left(y_{1} / y_{0}\right)
$$

For any $a>0$, we can consider $F_{a}: \mathbb{H} \rightarrow \mathbb{H}$ given by $F_{a}(x, y)=(a x, a y)$ and then

$$
F^{*} g=\frac{d(a x)^{2}+d(a y)^{2}}{(a y)^{2}}=g
$$

It follows that F_{a} is an isometry.

12. Monday, October 19, 2015

Distance

Definition 12.1. If (M, g) is a connected Riemannian manifold and $p, q \in M$, then for any p, q in M there exists a piecewise smooth curve $\gamma:[0,1] \rightarrow M$ such that $\gamma(0)=1$ and $\gamma(1)=q$. We define the distance from p to q to be
$d_{g}(p, q)=\inf \{$ length $(\gamma): \gamma:[0,1] \rightarrow M$ piecewise smooth, $\gamma(0)=p, \gamma(1)=q\}$.
From the above definition, it is clear that for $p, q, r \in M$,

- $d_{g}(p, q) \in[0, \infty)$ and $\operatorname{dist}_{g}(p, p)=0$;
- $d_{g}(p, q)=\operatorname{dist}_{g}(q, p)$;
- $d_{g}(p, q)+\operatorname{dist}_{g}(q, r) \geq \operatorname{dist}_{g}(p, r)$.

We will see later that if M is Hausdorff then $d_{g}(p, q)=0 \Rightarrow p=q$, so that $\left(M, d_{g}\right)$ is a metric space (in the sense of topology). The topology defined by d_{g} agrees with the topology on M.

Lemma 12.2. The distance is preserved by isometry. That is, if $\phi:\left(M_{1}, g_{1}\right) \rightarrow$ $\left(M_{2}, g_{2}\right)$ is an isometry, then

$$
d_{g_{1}}(p, q)=d_{g_{2}}(\phi(p), \phi(q))
$$

Proof. Note that $\gamma: I \rightarrow M_{1}$ is a piecewise smooth curve in M_{1} if and only if $\phi \circ \gamma: I \rightarrow M_{2}$ is a piecewise smooth curve in M_{2}, and in this case, we have length $(\phi \circ \gamma)=\operatorname{length}(\gamma)$.

Example 12.3. For $\left(\mathbb{R}^{n}, g_{0}\right), d_{g_{0}}(\vec{x}, \vec{y})=|\vec{x}-\vec{y}|$. To see this, by Lemma 12.2 and the fact that rigid motions are isometries, we may assume $\vec{x}=(0, \ldots, 0)$ and $\vec{y}=(d, 0, \ldots, 0)$, where $d \geq 0$. Details are left as an exercise.

Discrete group actions

Definition 12.4. Let G be a group and M a set. We say that G acts on M on the left (resp. on the right) if there is a map $\phi: G \times M \longrightarrow M, \phi(m, g)=\phi_{g}(m)=g \cdot m$ (resp. $m \cdot g$), satsifying the following (i) and (ii) (resp. (ii)').
(i) If $e \in G$ is the identity of G then $\phi_{e}: M \rightarrow M$ is the identity map.
(ii) (left action) For any $g_{1}, g_{2} \in G$, we have $\phi_{g_{1} g_{2}}=\phi_{g_{1}} \circ \phi_{g_{2}}$,
i.e. $\left(g_{1} g_{2}\right) \cdot m=g_{1} \cdot\left(g_{2} \cdot m\right)$ for all $m \in M$.
(ii)' (right action) For any $g_{1}, g_{2} \in G$, we have $\phi_{g_{1} g_{2}}=\phi_{g_{2}} \circ \phi_{g_{1}}$,
i.e., $m \cdot\left(g_{1} g_{2}\right)=\left(m \cdot g_{1}\right) \cdot g_{2}$ for all $m \in M$.

Remark 12.5. A left (resp. right) G-action on a set M is the same thing as a group homomorphism $G \rightarrow(\operatorname{Perm}(M), \circ)$ given by $g \mapsto \phi_{g}\left(\right.$ resp. $g \mapsto \phi_{g^{-1}}$.)

Definition 12.6. Let G be a group and M a topological space. Then we say that G acts on M on the left (resp. on the right) if there is a map $\phi: G \times M \rightarrow M$ satisfying (i) and (ii) (resp. (ii)') above and also
(iii) The $\operatorname{map} \phi_{g}: M \rightarrow M$ is continuous for each $g \in G$.

Remark 12.7. A left (resp. right) G-action on a topological space M is the same thing as a group homomorphism $G \rightarrow(\operatorname{Homeo}(M), \circ)$ given by $g \mapsto \phi_{g}$ (resp. $\left.g \mapsto \phi_{g^{-1}}.\right)$
Definition 12.8. Let G be a group and M a topological space and suppose G acts on M on the left. The action of G on M is called properly discontinuous if for each point $p \in M$, there is a neighborhood U of p in M such that for each $g \in G \backslash\{e\}$, we have $\phi_{g}(U) \cap U=\varnothing$.

Remark 12.9. Let U be as in Definition 12.8. If $g_{1}, g_{2} \in G$ are distinct then $\phi_{g_{1}}(U) \cap \phi_{g_{2}}(U)=\varnothing$. In particular, a properly discontinuous action is free in the sense that if $g \in G$ and $p \in M$, then $g \cdot p=p$ implies that $g=e$.

Proposition 12.10. If a group G acts on a topological space M properly discontinuously, then the map $\pi: M \rightarrow M / G$ is a covering map, where M / G is equipped with the quotient topology.

Proof. For a point $\bar{p} \in M / G$, there is a $p \in M$ such that $\pi(p)=\bar{p}$. There is an open neighborhood U of p in M such that if g is not the identity, then $g(U) \cap U=\varnothing$. Let \bar{U} be $\pi(U)$. Then $\bar{p} \in \bar{U}$ and $\pi^{-1}(\bar{U})$ is the disjoint union $\sqcup_{g \in G} \phi_{g}(U)$, where each $\phi_{g}(U)$ is open. It follows that \bar{U} is an open neighborhood of \bar{p} in M / G. Moreover, the restriction $\left.\pi\right|_{\phi_{g}(U)}: \phi_{g}(U) \rightarrow \bar{U}$ is a homeomorphism for any $g \in G$.

Definition 12.11. Let G be a group and let M be a smooth manifold. We say that G acts on M on the left (resp. on the right) if there is a map $\phi: G \times M \rightarrow M$ satisfying (i) and (ii) (resp. (ii)'), and also
(iii)' The map $\phi_{g}: M \rightarrow M$ is a smooth for each $g \in G$.

Remark 12.12. A left (resp. right) G-action on a smooth manifold M is the same thing as a homomorphism $G \rightarrow \operatorname{Diffeo}(M)$ given by $g \mapsto \phi_{g}$ (resp. $g \mapsto \phi_{g^{-1}}$).

Proposition 12.13. Suppose that a group G acts on a smooth manifold M properly discontinuously. Then
(i) There is a unique smooth structure on M / G such that $\pi: M \rightarrow M / G$ is a local smooth diffeomorphism.
(ii) If h is a Riemannian metric on M and ϕ_{g} is an isometry of (M, h) for each $g \in G$ (in this case we say that G acts isometrically on (M, h)), then there is a unique Riemannian metric \hat{h} on M / G such that $\pi^{*} \hat{h}=h$.

Example 12.14. Let $G=\{ \pm 1\}$ and let $M=S^{n}$. Let $\phi_{1}=$ id and let ϕ_{-1} be the antipodal map $A: S^{n} \rightarrow S^{n}, A(x)=-x$. Then G acts properly discontinuously and isometrically on $\left(S^{n}, g_{c a n}\right)$. It follows that there is a metric \hat{g} on $P_{n}(\mathbb{R})$ such that $\pi^{*} \hat{g}=g_{\text {can }}$. When $n=1,\left(P_{1}(\mathbb{R}), \hat{g}\right)$ is isometric to $S^{1}\left(\frac{1}{2}\right)$ (circle of radius $\frac{1}{2}$).

Example 12.15. Let $G=\mathbb{Z}^{n}$ acts \mathbb{R}^{n} by

$$
\left(m_{1}, \ldots, m_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+m_{1}, \ldots, x_{n}+m_{n}\right)
$$

where $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, i.e., $\phi_{\left(m_{1}, \ldots, m_{n}\right)}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is translation by the vector $\left(m_{1}, \ldots, m_{n}\right)$. This action is properly discontinuous and preserves the Euclidean metric g_{0}, so it descendents to a Riemannian metric \hat{g}_{0}, known as the flat metric, on the quotient $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$. There is an isometry $\left(\mathbb{R}^{n} / \mathbb{Z}^{n}, \hat{g}_{0}\right) \rightarrow\left(S^{1}\left(\frac{1}{2 \pi}\right)\right)^{n}$.

We now discuss orientation.
Definition 12.16. Let V be a real vector space of dimension n. An orientation on V is an equivalence class of ordered bases, where two bases are equivalent if the change of coordinates matrix has positive determinant.

Let $\left(U_{\alpha}, \phi_{\alpha}\right)$ be a smooth atlas on a smooth manifold M and say it defines an orientation, meaning that the transition functions have positive Jacobian. Choose local coordinates $\phi_{\alpha}=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$ around $p \in M$. Then the basis $\left\{\frac{\partial}{\partial x_{i}}(q)\right\}$ defines an orientation on $T_{q} M$ for each $q \in U_{\alpha}$.
Definition 12.17. Suppose that $f: M_{1} \rightarrow M_{2}$ is a local diffeomorphism between oriented smooth manifolds. We say that f is orientation preserving (resp. orientation reversing) at $p \in M_{1}$ if given an ordered basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{p} M_{1}$ compatible with the orientation on M_{1}, the ordered basis $\left(d f_{p}\left(e_{1}\right), \ldots, d f_{p}\left(e_{n}\right)\right)$ of $T_{f(p)} M_{2}$ is compatible (resp. not compatible) with the orientation on M_{2}.

We say f is orientation preserving (resp. orientation reversing) if it is orientation preserving (resp. orientation reversing) at all $p \in M_{1}$.

Remark 12.18. If M_{1} and M_{2} are connected, then f is orientation preserving (reversing) at some point $p \in M_{1}$ if and only if f is orientation preserving (reversing) at all $p \in M_{1}$.
Example 12.19. The antipodal map $A: S^{n} \rightarrow S^{n}$ is orientation preserving if and only if n is odd. (cf. Problem (4) of Assignment 6)

Example 12.20. The action of \mathbb{Z}^{n} on \mathbb{R}^{n} by translation is orientation preserving.
13. Wednesday, October 21, 2015

Lie groups

Definition 13.1. A Lie group G is a group together with the structure of a smooth manifold such that $\lambda: G \times G \rightarrow G$ given by $\lambda(x, y)=x y^{-1}$ is a smooth map.

Remark 13.2. From the definition:

- (inverse) The map $G \rightarrow G$ given by $x \mapsto x^{-1}$ is smooth.
- (multiplication) The map $G \times G \rightarrow G$ given by $(x, y) \mapsto x y$ is smooth.
- (left multiplication) For any $x \in G$, the map $L_{x}: G \rightarrow G$ given by $L_{x}(y)=$ $x y$ (left multiplication by x) is a smooth map.
- (right multiplication) For any $x \in G$, the map $R_{x}: G \rightarrow G$ given by $R_{x}(y)=y x$ (right multiplication by x) is a smooth map.
Indeed, G acts on G on the right (resp. on the left) by right (resp. left) multiplication, so L_{x} and R_{x} are smooth diffeomorphisms for any $x \in G$.
Example 13.3. $\left(\mathbb{R}^{n},+\right)$ is a Lie group.

Example 13.4. The set $G L(n, \mathbb{R})$ of invertible $n \times n$ matrices is a smooth manifold with a smooth group operation given by matrix multiplication. This manifold has two connected components, namely, $G L(n, \mathbb{R})_{+}=\{A \in G L(n, \mathbb{R}): \operatorname{det} A>0\}$ and $G L(n, \mathbb{R})_{-}=\{A \in G L(n, \mathbb{R}): \operatorname{det} A<0\} . G L(n, \mathbb{R})_{+}$is a connected Lie group. The special linear group $S L(n, \mathbb{R})=\{A \in G L(n, \mathbb{R}): \operatorname{det} A=1\}$ is a Lie subgroup of $G L(n, \mathbb{R})$.
Example 13.5. The orthogonal group $O(n)=\left\{A \in G L(n, \mathbb{R}): A^{T} A=I_{n}\right\}$ is a Lie subgroup of $G L(n, \mathbb{R})$. It has two connected components; $S O(n)=O(n) \cap S L(n, \mathbb{R})$, the connected component of the identity, is a Lie subgroup of $S L(n, \mathbb{R})$.
Definition 13.6. Let G be a Lie group. A tensor T on G is left (resp. right) invariant if $L_{x}^{*} T=T$ (resp. $R_{x}^{*} T=T$) for each $x \in G$. If a tensor T on G is both left-invariant and right-invariant, then T is called bi-invariant.

Remark 13.7. Note that if T is left (resp. right) invariant then T is determined by $T(e)$, the value of T at the identity $e \in G$. In particular:

- A function on G is left (resp. right) invariant if and only if it a constant function.
- A vector field X on G is left (resp. right) invariant if and only if for each $x \in G$, we have $X(x)=d\left(L_{x}\right)_{e}(X(e))$ (resp. $\left.X(x)=d\left(R_{x}\right)_{e}(X(e))\right)$.
Let $\mathfrak{X}(G)^{L}$ (resp. $\mathfrak{X}(G)^{R}$) denote the space of left (resp. right) invariant vector fields. We have an \mathbb{R}-linear isomorphisms $T_{e} G \xrightarrow{\simeq} \mathfrak{X}(G)^{L}$ (resp. $\left.T_{e} G \xrightarrow{\simeq} \mathfrak{X}(G)^{R}\right)$ described by $\xi \mapsto X_{\xi}^{L}$ (resp. $\xi \mapsto X_{\xi}^{R}$), where X_{ξ}^{L} (resp. X_{ξ}^{R}) is the unique left (resp. right) invariant vector field on G such that $X_{\xi}^{L}(e)=\xi$ (resp. $X_{\xi}^{R}(e)=\xi$). More explicitly, $X_{\xi}^{L}(x)=d\left(L_{x}\right)_{e}(\xi)$ and $X_{\xi}^{R}(x)=d\left(R_{x}\right)_{e}(\xi), x \in G$.
Definition 13.8. Let $F: M \rightarrow N$ be smooth and let X be a smooth vector field on M and Y a smooth vector field on N. We say that X and Y are F-related if for each $p \in M$, we have $d F_{p}(X(p))=Y(F(p))$.
Remark 13.9. If F is a diffeomorphism then X and Y are F-related if and only if $Y=F_{*} X$.
Remark 13.10. More generally, X and Y are F-related if and only if for each $f \in C^{\infty}(N)$, we have $X\left(F^{*} f\right)=F^{*}(Y(f))$.

Proposition 13.11. Let $F: M \rightarrow N$ be smooth, let X_{1}, X_{2} be smooth vector fields on M and let Y_{1}, Y_{2} be smooth vector fields on N. Suppose that X_{i} and Y_{i} are F-related. Then $\left[X_{1}, X_{2}\right]$ and $\left[Y_{1}, Y_{2}\right]$ are F-related.
Proof. Let f be a smooth function on N. Then

$$
\begin{aligned}
{\left[X_{1}, X_{2}\right]\left(F^{*} f\right) } & =X_{1}\left(X_{2} F^{*} f\right)-X_{2}\left(X_{1} F^{*} f\right) \\
& =X_{1}\left(F^{*}\left(Y_{2} f\right)\right)-X_{2}\left(F^{*}\left(Y_{1} f\right)\right) \\
& =F^{*}\left(Y_{1} Y_{2} f\right)-F^{*}\left(Y_{2} Y_{1} f\right) \\
& =F^{*}\left(\left[Y_{1}, Y_{2}\right] f\right)
\end{aligned}
$$

where the second and the third equalities follow from Remark 13.10. By Remark 13.10. $\left[X_{1}, X_{2}\right]$ and $\left[Y_{1}, Y_{2}\right]$ are F-related.

Corollary 13.12. If F is a smooth diffeomorphism and X_{1}, X_{2} are vector fields on M, then

$$
\left[F_{*} X_{1}, F_{*} X_{2}\right]=F_{*}\left[X_{1}, X_{2}\right]
$$

Corollary 13.13. The set of left invariant vector fields $\mathfrak{X}(G)^{L}$ is a Lie subalgebra of $\mathfrak{X}(G)$. So is the set $\mathfrak{X}(G)^{R}$.
Definition 13.14. We define $[-,-]: T_{e} G \times T_{e} G \rightarrow T_{e} G$ by

$$
(\xi, \eta) \mapsto\left[X_{\xi}^{L}, X_{\eta}^{L}\right](e)
$$

We define the Lie algebra \mathfrak{g} of G to be $T_{e} G$ with the above Lie bracket. Then we note that we have an isomorphism $\mathfrak{g} \simeq \mathfrak{X}(G)^{L}$ as Lie algebras.
Remark 13.15 (Assignment 7 (1)). If we let $i: G \rightarrow G$ denote the map $g \mapsto g^{-1}$, then $i^{2}=\mathrm{id}$ and $d i_{e}(\xi)=-\xi$. We have

It follows that $X_{\xi}^{R}=-i_{*} X_{\xi}^{L}$. Hence,

$$
\left[X_{\xi}^{R}, X_{\eta}^{R}\right]=\left[i_{*} X_{\xi}^{L}, i_{*} X_{\eta}^{L}\right]=i_{*}\left[X_{\xi}^{L}, X_{\eta}^{L}\right]=i_{*} X_{[\xi, \eta]}^{L}=-X_{[\xi, \eta]}^{R} .
$$

Proposition 13.16. The tangent bundle of a Lie group is trivial.
Proof. Let ξ_{1}, \ldots, ξ_{n} be a basis of $\mathfrak{g}=T_{e} G$. Then $X_{\xi_{1}}^{L}, \ldots, X_{\xi_{n}}^{L}$ forms a global C^{∞} frame of $T G$. Let $\phi: G \times \mathfrak{g} \rightarrow T G$ be the map

$$
(x, \xi) \mapsto\left(x, X_{\xi}^{L}(x)\right)
$$

Then $\phi^{-1}: T G \rightarrow G \times \mathfrak{g}$ is a global trivialization of $T G$.
Example 13.17. Let $G=\left(\mathbb{R}^{n},+\right)$. For any $a_{1}, \ldots, a_{n} \in \mathbb{R}$, the vector field $\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$ is bi-invariant. We have

$$
\mathfrak{X}(G)^{L}=\mathfrak{X}(G)^{R}=\left\{\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}:\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}\right\} \cong \mathbb{R}^{n}
$$

The Lie bracket on $T_{0} \mathbb{R}^{n}$ is trivial. The map ϕ in the proof of Proposition 13.16 is given by

$$
\phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow T \mathbb{R}^{n}, \quad(x, y) \mapsto\left(x, \sum_{i=1}^{n} y_{i} \frac{\partial}{\partial x_{i}}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.
Example 13.18. Let $G=G L(n, \mathbb{R})$. Recall that $\mathfrak{g}=M_{n}(\mathbb{R})$. For $\xi \in M_{n}(\mathbb{R})$, then $d\left(L_{A}\right)_{I_{n}}(\xi)=A \xi$ and $d\left(R_{A}\right)_{I_{n}}(\xi)=\xi A$. Because of this, we see that

$$
\begin{aligned}
X_{\xi}^{L}(A) & =A \xi=\sum_{i, j}\left(\sum_{k} a_{i k} \xi_{k j}\right) \frac{\partial}{\partial a_{i j}} \\
X_{\xi}^{R}(A) & =\xi A=\sum_{i, j}\left(\sum_{k} \xi_{i k} a_{k j}\right) \frac{\partial}{\partial a_{i j}}
\end{aligned}
$$

The $\operatorname{map} \phi: G L(n, \mathbb{R}) \times \mathfrak{g} \rightarrow T G=G L(n, \mathbb{R}) \times M_{n}(\mathbb{R})$ is described by

$$
(A, \xi) \mapsto(A, A \xi)
$$

Moreover, if H is a Lie subgroup of $G=G L(n, \mathbb{R}), \phi$ restricts to $H \times \mathfrak{h} \subset$ $G \times \mathfrak{h} \rightarrow T H \subset T G$. For example, $H=S L(n, \mathbb{R}), \mathfrak{h}=\mathfrak{s l}(n, \mathbb{R}) ; H=O(n)$ or $S O(n), \mathfrak{h}=\mathfrak{s o}(n)$.

Remark 13.19. This argument of trivializing a bundle will work also for the cotangent bundle of G and more generally for any tensor bundle $T_{s}^{r} G$ of G. Indeed, if $E \rightarrow M$ is a trivial vector bundle then the dual bundle $E^{*} \rightarrow M$ is also trivial and more generally $E^{\otimes r} \otimes\left(E^{*}\right)^{\otimes s}$ is a trivial vector bundle for any $r, s \in \mathbb{Z}_{\geq 0}$.
Lemma 13.20. Let ϕ_{ξ}^{L} be the flow of X_{ξ}^{L} and ϕ_{ξ}^{R} the flow of X_{ξ}^{R}. Then
(i) For each $a \in G$, we have

$$
L_{a} \circ \phi_{\xi}^{L}(t, x)=\phi_{\xi}^{L}(t, a x)
$$

(ii) For each $a \in G$, we have

$$
R_{a} \circ \phi_{\xi}^{R}(t, x)=\phi_{\xi}^{R}(t, x a)
$$

Remark 13.21. This is saying that left (resp. right) multiplication by a carries an integral curve of a left (resp. right) invariant vector field to another integral curve of this vector field.

Proof of Lemma 13.20. It suffices to show that
(a) $\left(L_{a} \circ \phi_{\xi}^{L}\right)(0, x)=a x$
(b) $\frac{d}{d t}\left(L_{a} \circ \phi_{\xi}^{L}\right)(t, x)=X_{\xi}^{L}\left(\left(L_{a} \circ \phi_{\xi}^{L}\right)(t, x)\right)$.

To see (a), we note that

$$
L_{a} \circ \phi_{\xi}^{L}(0, x)=a \cdot \phi_{\xi}^{L}(0, x)=a x
$$

For (b), we note that

$$
\begin{aligned}
\frac{d}{d t}\left(L_{a} \circ \phi_{\xi}^{L}\right)(t, x) & =d\left(L_{a}\right)_{\phi_{\xi}^{L}(t, x)}\left(\frac{d}{d t} \phi_{\xi}^{L}(t, x)\right) \\
& =d\left(L_{a}\right)_{\phi_{\xi}^{L}(t, x)}\left(X_{\xi}^{L}\left(\phi_{\xi}^{L}(t, x)\right)\right) \\
& =X_{\xi}^{L}\left(L_{a} \circ \phi_{\xi}^{L}(t, x)\right)
\end{aligned}
$$

Proposition 13.22. If G is a Lie group and $\xi \in \mathfrak{g}$, then $\phi_{\xi}^{L}, \phi_{\xi}^{R}$ are defined on $\mathbb{R} \times G$.
Proof. There is an $\epsilon>0$ and an open neighborhood V of e in G such that $\phi(t, x)$ is defined for $(t, x) \in(-\epsilon, \epsilon) \times V$. By the previous result, we see that $\phi_{t}(x)$ is defined for $(t, x) \in(-\epsilon, \epsilon) \times G$. Then we see that $\phi_{n t}(x)=\phi_{t} \circ \cdots \circ \phi_{t}(x)$ is defined for all $n \in \mathbb{N}, t \in(-\epsilon, \epsilon), x \in G$, and hence $\phi(t, x)$ is defined for all $(t, x) \in \mathbb{R} \times G$.

Example 13.23. If $G=G L(n, \mathbb{R})$ or any Lie subgroup of $G L(n, \mathbb{R})$, then, we see that $X_{\xi}^{L}(A)=A \xi$ and also that

$$
\begin{aligned}
& X_{\xi}^{L}(A)=A \xi, \quad \phi_{\xi}^{L}(t, A)=A \exp (t \xi) \\
& X_{\xi}^{R}(A)=\xi A, \quad \phi_{\xi}^{R}(t, A)=\exp (t \xi) A
\end{aligned}
$$

Here $\exp (B)=\sum_{n=0}^{\infty} \frac{B^{n}}{n!}, B \in M_{n}(\mathbb{R})$. We want to use this observation to extend the definition of the exponential to any Lie group.

Definition 13.24 (Exponential map). If G is a Lie group. Define the exponential map $\exp : \mathfrak{g} \rightarrow G$ by the rule

$$
\xi \mapsto \phi_{\xi}^{L}(1, e)
$$

where e is the identity of G.

Remark 13.25. We note that $\phi_{\xi}^{L}(t, x)=\phi_{t \xi}^{L}(1, x)=\phi_{t \xi}^{L}(1, x \cdot e)=x \phi_{t \xi}^{L}(1, e)=$ $x \exp (t \xi)$. It follows that

$$
\phi_{\xi}^{L}(t, x)=x \exp (t \xi)
$$

In other words

$$
\left(\phi_{\xi}^{L}\right)_{t}=R_{\exp (t \xi)}: G \rightarrow G .
$$

14. Wednesday, October 28, 2015

As a special case of Definition 13.6 .
Definition 14.1. Let G be a Lie group and let g be a Riemannian metric on G. We say g is left-invariant if $L_{x}^{*} g=g$ for all $x \in G$. Equivalently, g is left-invariant if and only if for each $x \in G, L_{x}:(G, g) \rightarrow(G, g)$ is an isometry.

Remark 14.2. We have a one-to-one correspondence:

$$
\{\text { left-invariant metrics on } G\} \leftrightarrow\left\{\text { inner products on } T_{e} G\right\} .
$$

Indeed, g is left-invariant if and only if for each $x \in G$ and for each $U, V \in T_{x} G$,

$$
g(x)(U, V)=g(e)\left(d\left(L_{x^{-1}}\right)_{x} U, d\left(L_{x^{-1}}\right)_{x} V\right)
$$

Example 14.3. $G=\left(\mathbb{R}^{n},+\right), g_{0}=d x_{1}^{2}+\cdots d x_{n}^{2}$. For any $x \in \mathbb{R}^{n}, L_{x}^{*} g=R_{x}^{*} g=g$. So g is bi-invariant.

Example 14.4. Let

$$
G=\{g: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto y t+x: x \in \mathbb{R}, y \in(0, \infty)\}
$$

that is, the group of proper affine transformations of \mathbb{R}. Define multiplication by composition: $g_{1}(t)=y_{1} t+x_{1}$ and $g_{2}(t)=y_{2} t+x_{2}$, then

$$
\left(g_{1} \circ g_{2}\right)(t)=g_{1}\left(y_{2} t+x_{2}\right)=y_{1}\left(y_{2} t+x_{2}\right)+x_{1}=y_{1} y_{2} t+\left(y_{1} x_{2}+x_{1}\right) .
$$

We may identify G with the upper half plane: $G=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. With this identification, the multiplication is given by

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(y_{1} x_{2}+x_{1}, y_{1} y_{2}\right)
$$

So the multiplication defines a smooth map $G \times G \rightarrow G$. The identity element is $e=(0,1)$. The inverse map is given by

$$
\left(x_{1}, y_{1}\right)^{-1}=\left(-x_{1} y_{1}^{-1}, y_{1}^{-1}\right)
$$

which is smooth. So G is indeed a Lie group.
We note that

$$
L_{(a, b)}(x, y)=b(x, y)+(a, 0) .
$$

And hence

$$
d\left(L_{(a, b)}\right)_{(x, y)}(v)=b v .
$$

Let g be the unique left-invariant metric on G such that $g(0,1)=d x^{2}+d y^{2}$. We know that g is of the form $g=E d x^{2}+2 F d x d y+G d y^{2}$ for some smooth functions E, F, G, where $E(0,1)=G(0,1)=1$, and $F(0,1)=0$. We compute

$$
L_{(a, b)}^{*} d x=d(b x+a)=b d x, \quad L_{(a, b)}^{*} d y=d(b y)=b d y
$$

So

$$
\begin{gathered}
L_{(a, b)}^{*} g(x, y)=E(b x+a, b y) b^{2} d x^{2}+2 F(b x+a, b y) b^{2} d x d y+G(b x+a, b y) b^{2} d y^{2} . \\
L_{(a, b)}^{*} g(0,1)=E(a, b) b^{2} d x^{2}+2 F(a, b) b^{2} d x d y+G(a, b) b^{2} d y^{2}
\end{gathered}
$$

Since g is left-invariant, $\left(L_{(a, b)}^{*} g\right)(0,1)=g(0,1)=d x^{2}+d y^{2}$, so

$$
E(a, b)=\frac{1}{b^{2}}, \quad F(a, b)=0, \quad G(a, b)=\frac{1}{b^{2}}
$$

We conclude that

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

We find that

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

We remark that there is a natural inclusion $G \hookrightarrow \operatorname{Isom}(G, g)$ given by $x \mapsto L_{x}$.
We can check that this metric is not right-invariant. Indeed

$$
R_{(a, b)}(x, y)=(a y+x, b y)
$$

So we find that

$$
\begin{array}{r}
R_{(a, b)}^{*} d x=d R_{(a, b)}^{*} x=d x+a d y \\
R_{(a, b)}^{*} d y=d R_{(a, b)}^{*} y=b d y
\end{array}
$$

And hence

$$
R_{(a, b)}^{*} g=\frac{(d x+a d y)^{2}+(b d y)^{2}}{(b y)^{2}}=\frac{d x^{2}+2 a d x d y+\left(a^{2}+b^{2}\right) d y^{2}}{b^{2} y^{2}}
$$

John Milnor proved the following:
Theorem 14.5 ([Mi, Lemma 7.5]). A connected Lie group admits a bi-invariant Riemannian metric if and only if it is isomorphic to the direct product of a compact Lie group and an additive vector group.

Definition 14.6 (Adjoint representation). Let G be a Lie group. Given an element $a \in G$, the map $R_{a^{-1}} \circ L_{a}: G \rightarrow G$ is a diffeomorphism sending e to e, and hence we get a linear isomorphism

$$
\operatorname{Ad}(a):=d\left(R_{a^{-1}} \circ L_{a}\right)_{e}: T_{e} G \rightarrow T_{e} G
$$

This means that we get a group homomorphism

$$
\begin{aligned}
\operatorname{Ad}: G & \rightarrow G L(\mathfrak{g}) \\
a & \mapsto \operatorname{Ad}(a)
\end{aligned}
$$

where $G L(\mathfrak{g})$ is the space of \mathbb{R}-linear isomorphisms of \mathfrak{g}. This is a representation of G called the adjoint representation.
Example 14.7. (1) Let $G=\left(\mathbb{R}^{n},+\right)$. For any $a \in \mathbb{R}^{n}, R_{a^{-1}} \circ L_{a}=\mathrm{id}$ is the identity map, and hence

$$
\operatorname{Ad}(a)=\mathrm{id}_{\mathfrak{g}}
$$

for each $a \in G$.
(2) More generally, for any abelian Lie group, the adjoint representation is trivial.
(3) Let $G=G L(n, \mathbb{R})$ or any subgroup of $G L(n, \mathbb{R})$. In this case

$$
\operatorname{Ad}(A)(\xi)=A \xi A^{-1}, \quad \text { where } A \in G L(n, \mathbb{R}), \xi \in \mathfrak{g l}(\mathbb{R})
$$

Proposition 14.8 ($\mathbb{d C}$, page 41]). Let $\xi, \eta \in \mathfrak{g}$. Then

$$
[\xi, \eta]=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp (t \xi)) \eta
$$

We set $\operatorname{ad}(\xi) \eta=[\xi, \eta]$. The map ad : $\mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ is called adjoint representation of the Lie algebra.

Proof. We note that

$$
\begin{aligned}
\operatorname{Ad}(\exp (t \xi)) \eta & =d\left(R_{-\exp (t \xi)}\right)_{\exp (t \xi)} d\left(L_{\exp (t \xi)}\right)_{e} \eta \\
& =d\left(R_{-\exp (t \xi)}\right)_{\exp (t \xi)}\left(X_{\eta}^{L}(\exp (t \xi))\right) \\
& =\phi_{t}^{*} X_{\eta}^{L}(e)
\end{aligned}
$$

where $\phi_{t}=R_{\exp (t \xi)}$ is the flow of X_{ξ}^{L}. So

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp (t \xi)) \eta=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} X_{\eta}^{L}\right)(e)=\left[X_{\xi}^{L}, X_{\eta}^{L}\right](e)=[\xi, \eta]
$$

Example 14.9. Let $G=G L(n, \mathbb{R})$ or a subgroup. Then for $\xi, \eta \in \mathfrak{g l}(n, \mathbb{R})$

$$
[\xi, \eta]=\left.\frac{d}{d t}\right|_{t=0} e^{t \xi} \eta e^{-t \xi}=\xi \eta-\eta \xi
$$

Continuous group actions

Definition 14.10. Let G be a group and M a set. Suppose that G acts on M on the left. For any $p \in M$:

- Let G_{p} denote the stabilizer of p, that is, $G_{p}=\{g \in G: g \cdot p=p\}$
- Let $G \cdot p$ denote the orbit of p, that is, $G \cdot p=\{g \cdot p: g \in G\}$.

We say G acts on M freely if $G_{p}=\{e\}$ for each $p \in M$. We say that G acts transitively if $M=G \cdot p$ for some $p \in M$ (which implies $M=G \cdot p$ for all $p \in M$).
Definition 14.11 (topological group). We say that G is a topological group if G is a topological space together with a group structure such that the map $G \times G \rightarrow G$ given by $(x, y) \mapsto x y^{-1}$ is continuous.

Definition 14.12. Let G be a group and M a set, and suppose that G acts on M on the left. Let $\phi: G \times M \rightarrow M$ denote the action.
(i) If G is a topological group and M is a topological space, we say the action is continuous if ϕ is continuous as a map from the product space.
(ii) If G is a Lie group and M is smooth, then we say that the action is smooth if ϕ is smooth if ϕ is smooth as a map from the product manifold.
Lemma 14.13. Let G be a group, let M be a topological space. Equip G with the discrete topology. Then $\phi: G \times M \rightarrow M$ is continuous if and only if for each $g \in G$, the map $\phi_{g}: M \rightarrow M$ is continuous.
Proof. (\Rightarrow) If ϕ is continuous, then we note that $\phi_{g}=\phi \circ i_{g}$, where $i_{g}: M \rightarrow G \times M$ is the map $i_{g}(p)=(g, p)$, which is continuous, since G is given the discrete topology.
(\Leftarrow) Suppose that each ϕ_{g} is continuous. Let U be an open subset of M. Then we note that

$$
\phi^{-1}(U)=\bigcup_{g \in G}\left(\{g\} \times \phi_{g}^{-1}(U)\right)
$$

Each of the sets in the union is open, and hence so is the union.

Definition 14.14. Let G be a topological group and let M be a Hausdorff topological manifold. Suppose G acts on M on the left continuously. We say that the action is proper if for any compact $K \subset M$, the set $G_{K}:=\left\{g \in G: \phi_{g}(K) \cap K \neq \varnothing\right\}$ is relative compact in G, i.e. the closure of G_{K} is compact. (This is automatic if G is compact.)

Example 14.15. Suppose that \mathbb{C}^{*} acts on \mathbb{C} by multiplication. Then this action is not proper. On the other hand if \mathbb{C}^{*} acts on \mathbb{C}^{*}, then the action is proper.

Remark 14.16. (i) Suppose that G is a discrete group. The action is continuous and proper if and only if for each compact subset $K \subset M$, the set G_{K} is finite. In particular, when $K=\{p\}, G_{K}=G_{p}$, we see that the stabilizer G_{p} of p is finite.
(ii) Suppose that G is discrete. Suppose that the action is continuous, proper, and free. We already know that for any $p \in M$ there is an open neighborhood U of p in M such that \bar{U} is compact. Because $G_{\bar{U}}$ is finite, we claim that $(G \cdot p) \cap U$ is finite. Because M is Hausdorff, there is an open neighborhood U^{\prime} of p such that $U^{\prime} \cap \phi_{g}\left(U^{\prime}\right)=\varnothing$ for each $g \in G \backslash\{e\}$. This means that the action is "properly discontinuous."
Example 14.17. Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$, a Lie group. Also $S^{2 n+1}=$ $\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}:\left|z_{0}\right|^{2}+\cdots\left|z_{n}\right|^{2}=1\right\}$. Let S^{1} act on $S^{2 n+1}$ by the rule

$$
\lambda \cdot\left(z_{0}, \ldots, z_{n}\right)=\left(\lambda z_{0}, \ldots, \lambda z_{n}\right)
$$

This action is smooth. The action is also proper because S^{1} is compact. Moreover the action is free.

Theorem 14.18. Let G be a Lie group and let M be a smooth manifold. If G acts on M smoothly, freely, and properly, then there is a unique smooth structure on M / G such that $\pi: M \rightarrow M / G$ is a smooth submersion.
Example 14.19. Let $\pi: S^{2 n+1} \rightarrow P_{n}(\mathbb{C})=S^{2 n+1} / S^{1}$ be the projection. We already constructed a C^{∞} atlas on $P_{n}(\mathbb{C})$. We can check that π is a C^{∞} submersion with respect to this C^{∞} structure on $P_{n}(\mathbb{C})$. Theorem 14.18 implies that this C^{∞} structure is unique with these properties. It follows that $P_{n}(\mathbb{C})$ is diffeomorphic to $S^{2 n+1} / S^{1}$, where $S^{2 n+1} / S^{1}$ is equipped with the unique C^{∞} structure given by Theorem 14.18.

15. Wednesday, November 4, 2015

Definition 15.1 (Smooth fibration). A map $\pi: E \rightarrow B$ is a smooth fibration with total space E, base B, and fiber F if
(i) E, B, F are smooth manifolds.
(ii) π is a surjective smooth map.
(iii) There is an open cover $\left\{U_{\alpha}: \alpha \in I\right\}$ of B and smooth diffeomorphisms

$$
h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times F
$$

such that $\left.\pi\right|_{\pi^{-1}\left(U_{\alpha}\right)}=\operatorname{pr}_{1} \circ h_{\alpha}$, where $\operatorname{pr}_{1}: U_{\alpha} \times F \rightarrow U_{\alpha}$ is the projection to the first factor. (It follows that π is a submersion.)
Example 15.2. Take $E=B \times F$ with $\pi: E \rightarrow B$ being projection onto the first factor. This is called the product fiber bundle with base B and fiber F.

Definition 15.3. We say that $\pi: E \rightarrow B$ is a trivial fiber bundle over B with fiber F if there is a smooth diffeomorphism $h: E \rightarrow B \times F$ such that $\pi=\operatorname{pr}_{1} \circ h$.

Example 15.4. If $\pi: E \rightarrow B$ is a smooth vector bundle of rank r, then $\pi: E \rightarrow B$ is a smooth fibration with fiber \mathbb{R}^{r}. But the converse is not true: the transition functions for a vector bundle need to satisfy some additional linearity requirement.

Example 15.5. A covering space is a smooth fibration with discrete fiber.
Theorem 15.6. Let G be a Lie group and let M be a smooth manifold. If G acts on M smoothly, freely, and properly, then there is a unique smooth structure on M / G such that $\pi: M \rightarrow M / G$ is a smooth fibration with fiber G.

Example 15.7. The map $\pi: S^{2 n+1} \rightarrow P_{n}(\mathbb{C})$ is a smooth circle bundle, known as the Hopf fibration.

Riemannian submersions

Let $f:(M, g) \rightarrow(N, h)$ be a smooth submersion between Riemannian manifolds. For a point $p \in M$, let $q=f(p) \in N$. Then we have an exact sequence of the form

$$
0 \rightarrow T_{p} f^{-1}(q) \rightarrow T_{p} M \xrightarrow{d f_{p}} T_{q} N \rightarrow 0
$$

Let H_{p} be the orthogonal complement of $T_{p} f^{-1}(q)$ in $T_{p} M$ (using the metric $\left.\langle-,-\rangle_{p}\right)$. If we restrict $d f_{p}$ to H_{p}, then we see that $\left.d f_{p}\right|_{H_{p}}$ gives a linear isomorphism $H_{p} \cong T_{q} N$.

Definition 15.8 (Riemannian submersion). We say that $f:(M, g) \rightarrow(N, h)$ is a Riemannian submersion if $\left.d f\right|_{H_{p}}: H_{p} \rightarrow T_{f(p)} N$ is an inner product space isomorphism. This means that for any $u, v \in H_{p}$, we have

$$
\langle u, v\rangle_{p}=\left\langle d f_{p}(u), d f_{p}(v)\right\rangle_{q}
$$

Theorem 15.9. If (M, g) is a Riemannian manifold and G is a Lie group acting smoothly, freely, and properly on M and in addition the action is by isometries, then there is a unique Riemannian metric \hat{g} on M / G such that $\pi:(M, g) \rightarrow(M / G, \hat{g})$ is a Riemannian submersion.

Proof. To determine this metric, we write

$$
\hat{g}(q)(u, v)=g(p)\left(\left(\left.d \pi\right|_{H_{p}}\right)^{-1} u,\left(\left.d \pi\right|_{H_{p}}\right)^{-1} v\right)
$$

where $p \in \pi^{-1}(q)$. The right hand side is independent of choice of $p \in \pi^{-1}(q)=G \cdot p$ since $\left(d \phi_{g}\right)_{p}$ defines an isomoetry from H_{p} to $H_{g \cdot p}$.

Example 15.10. Use the round metric $g_{c a n}$ on $S^{2 n+1}$ induced by the Euclidean metric on $\mathbb{R}^{2 n+2}$. Then S^{1} acts on $S^{2 n+1}$ smoothly, freely, properly, and isometrically. So there is a unique Riemannian metric $\hat{g}_{\text {can }}$ on $P_{n}(\mathbb{C})$ such that $\pi: S^{2 n+1} \rightarrow P_{n}(\mathbb{C})$ is a Riemannian submersion. When $n=1$, the space $P_{n}(\mathbb{C})$ is diffeomorphic to S^{2} and $\left(P_{1}(\mathbb{C}), \hat{g}_{c a n}\right)$ is isometric to $\left(S^{2}, \frac{1}{4} g_{c a n}\right)$. (See Example 15.15 below.) So $\pi: S^{3}(1) \rightarrow S^{2}\left(\frac{1}{2}\right)$ is a Riemannian submersion.

Theorem 15.11. Let G be a Lie group and let H be a closed Lie subgroup. Then there is a unique smooth structure on G / H such that

- $\pi: G \rightarrow G / H$ is a smooth submersion and
- the action $\phi: G \times G / H \rightarrow G / H$ is smooth.

Theorem 15.12. If G is a Lie group and M is a smooth manifold, then the following are equivalent.
(i) G acts on M transitively, smoothly, and H is the stabilizer of some $p \in M$
(ii) M is diffeomorphic to G / H.

Example 15.13. Let $\phi: S O(n+1) \times S^{n} \rightarrow S^{n}$ be the smooth map described by $(A, x) \mapsto A x$. The action is smooth, transitive. The stabilizer of $(0,0, \ldots, 0,1)$ is

$$
\left\{\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right]: A \in S O(n)\right\} \simeq S O(n)
$$

So there is a map

$$
\begin{aligned}
& S O(n+1) / S O(n) \rightarrow S^{n} \\
& A \cdot S O(n) \mapsto A\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

which is a diffeomorphism.
By Assignment $7(3)$, there is a bi-invariant metric g on $S O(n+1)$. There is a unique metric \hat{g} on $S O(n+1) / S O(n)$ such that π is a Riemannian submersion.

Assignment $8(2):(S O(n+1) / S O(n), \hat{g})$ is isometric to $\left(S^{n}, \lambda g_{\text {can }}\right)$ for some constant $\lambda>0$.

Example 15.14. Let $G r(k, n)=\left\{V \subset \mathbb{R}^{n}: V k\right.$-dimensional subspace of $\left.\mathbb{R}^{n}\right\}$. In particular we have $\mathbb{P}_{n}(\mathbb{R})=\operatorname{Gr}(1, n+1)$. Note that $O(n)$ acts transitively on $\operatorname{Gr}(k, n)$ and the stabilizer of $\mathbb{R}^{k} \times\{0\}$ can be identified with $O(k) \times O(n-k)$. We may identify

$$
\operatorname{Gr}(k, n)=O(n) /(O(k) \times O(n-k))
$$

where the right hand side is a homogeneous space, which is a smooth manifold. The bi-invariant metric on $O(n)$ induces a Riemannian metric on $\operatorname{Gr}(k, n)$, and $O(n)$ isometrically on $\operatorname{Gr}(k, n)$.

For example, we may write

$$
\operatorname{Gr}(1, n+1)=\frac{O(n+1)}{O(1) \times O(n)}=\frac{1}{\{ \pm 1\}} \frac{O(n+1)}{O(n)}=\frac{1}{\{ \pm 1\}} \frac{S O(n+1)}{S O(n)}=\frac{1}{\{ \pm 1\}} S^{n}
$$

Example 15.15. We have a diagram

where the diffeormophism $j^{-1}: P_{1}(\mathbb{C}) \rightarrow S^{2}$ is

$$
\left[z_{1}, z_{2}\right] \mapsto\left(\frac{2 z_{1} \overline{z_{2}}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}, \frac{\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}\right)
$$

and

$$
\pi: S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \rightarrow S^{2}=\left\{(w, z) \in \mathbb{C} \times \mathbb{R}:|w|^{2}+z^{2}=1\right\}
$$

is given by

$$
\left(z_{1}, z_{2}\right) \mapsto\left(2 z_{1} \bar{z}_{2},\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)
$$

Let $\hat{g}_{\text {can }}$ be the unique metric on $P_{1}(\mathbb{C})$ such that $p:\left(S^{3}, g_{\text {can }}\right) \rightarrow\left(P_{1}(\mathbb{C}), \hat{g}_{\text {can }}\right)$ is a Riemannian submersion. We want to compute $\hat{g}=j^{*} \hat{g}_{\text {can }}$.

Write

$$
\left\{\begin{array}{l}
z_{1}=\sin \lambda e^{i \theta_{1}} \\
z_{2}=\cos \lambda e^{i \theta_{2}}
\end{array}\right.
$$

These coordinates cover almost all of S^{3} and because metrics are continuous, this is sufficient for our purposes. On S^{2} we use spherical coordinates

$$
\left\{\begin{array}{l}
x=\sin \phi \cos \theta \\
y=\sin \phi \sin \theta \\
z=\cos \phi
\end{array} .\right.
$$

We already know that $g_{\text {can }}^{S^{2}(1)}=d \phi^{2}+\left(\sin ^{2} \phi\right) d \theta^{2}$. If we write $z_{j}=x_{j}+i y_{j}$, then we note that

$$
\left\{\begin{array}{l}
x_{1}=\sin \lambda \cos \theta_{1} \\
y_{1}=\sin \lambda \sin \theta_{1} \\
x_{2}=\cos \lambda \cos \theta_{2} \\
y_{2}=\cos \lambda \sin \theta_{2}
\end{array} .\right.
$$

We compute that

$$
g_{c a n}^{S^{3}(1)}=d \lambda^{2}+\sin ^{2} \lambda d \theta_{1}^{2}+\cos ^{2} \lambda d \theta_{2}^{2} .
$$

In these coordinates, we find that

$$
\left(\sin \lambda e^{i \theta_{1}}, \cos \lambda e^{i \theta_{2}}\right) \mapsto\left(\sin (2 \lambda) e^{i\left(\theta_{1}-\theta_{2}\right)}, \cos ^{2} \lambda-\sin ^{2} \lambda\right) .
$$

In other words, $\phi=2 \lambda$ and $\theta=\theta_{1}-\theta_{2}$. We find that

$$
d \pi\left(\frac{\partial}{\partial \lambda}\right)=2 \frac{\partial}{\partial \phi}, \quad d \pi\left(\frac{\partial}{\partial \theta_{1}}\right)=\frac{\partial}{\partial \theta}, \quad d \pi\left(\frac{\partial}{\partial \theta_{2}}\right)=-\frac{\partial}{\partial \theta} .
$$

We note that

$$
\operatorname{ker}(d \pi)=\mathbb{R}\left(\frac{\partial}{\partial \theta_{1}}+\frac{\partial}{\partial \theta_{2}}\right) .
$$

We find that the horizontal subspace is

$$
H=(\operatorname{ker} d \pi)^{\perp}=\mathbb{R} \frac{\partial}{\partial \lambda} \oplus \mathbb{R}\left(\cos ^{2} \lambda \frac{\partial}{\partial \theta_{1}}-\sin ^{2} \lambda \frac{\partial}{\partial \theta_{2}}\right) .
$$

Let \tilde{X} denote the horizontal lift of X. Then we find that

$$
\frac{\widetilde{\partial}}{\partial \phi}=\frac{1}{2} \frac{\partial}{\partial \lambda}, \quad \widetilde{\partial} \quad \frac{\cos ^{2} \lambda}{\partial \theta} \frac{\partial}{\partial \theta_{1}}-\sin ^{2} \lambda \frac{\partial}{\partial \theta_{2}}
$$

We know that

$$
\begin{aligned}
\hat{g}\left(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi}\right) & =g_{\mathrm{can}}^{S^{3}(1)}\left(\frac{\widetilde{\partial}}{\partial \phi}, \frac{\widetilde{\partial}}{\partial \phi}\right)=g_{\mathrm{can}}^{S^{3}(1)}\left(\frac{1}{2} \frac{\partial}{\partial \lambda}, \frac{1}{2} \frac{\partial}{\partial \lambda}\right)=\frac{1}{4} \\
\hat{g}\left(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta}\right) & =g_{\operatorname{can}}^{S^{3}(1)}\left(\frac{\widetilde{\partial}}{\partial \phi}, \frac{\widetilde{\partial}}{\partial \theta}\right)=0 \\
\hat{g}\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right) & =g_{\operatorname{can}}^{S^{3}(1)}\left(\frac{\widetilde{\partial}}{\partial \theta}, \frac{\widetilde{\partial}}{\partial \theta}\right)=\cos ^{4} \lambda \sin ^{2} \lambda+\sin ^{4} \lambda \cos ^{2} \lambda \\
& =\sin ^{2} \lambda \cos ^{2} \lambda=\frac{1}{4} \sin (2 \lambda)^{2}=\frac{1}{4} \sin ^{2} \phi .
\end{aligned}
$$

We see that

$$
\hat{g}=\frac{1}{4}\left(d \phi^{2}+\sin ^{2} \phi d \theta^{2}\right)=\frac{1}{4} g_{c a n}^{S^{2}(1)} .
$$

16. Monday, November 9, 2015

Affine connections

Definition 16.1 (affine connection). An affine connection ∇ on a smooth manifold M is a map

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), \quad(X, Y) \mapsto \nabla_{X} Y
$$

such that for each $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$, we have
(i) $\nabla_{f X+g Y} Z=f \nabla_{X} Z+g \nabla_{Y} Z$.
(ii) $\nabla_{X}(Y+Z)=\nabla_{X} Y+\nabla_{X} Z$
(iii) $\nabla_{X}(f Y)=f \nabla_{X} Y+X(f) Y$.

Remark 16.2. - In the above definition:
i): for fixed $Y \in \mathfrak{X}(M)$, the map $X \mapsto \nabla_{X} Y$ is $C^{\infty}(M)$-linear.
ii) and iii): for fixed $X \in \mathfrak{X}(M)$, the map $\nabla_{X}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is \mathbb{R}-linear, and satisfies the Leibniz rule.

- The Lie derivative $L: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M),(X, Y) \rightarrow L_{X} Y=[X, Y]$, is NOT an affine connection: it does not satisfy (i), although it satisfies (ii) and (iii).

Remark 16.3. If ∇_{1} and ∇_{2} are affine connections, then for $X \in \mathfrak{X}(M)$, the map

$$
\left(\nabla_{1}\right)_{X}-\left(\nabla_{2}\right)_{X}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

is $C^{\infty}(M)$-linear and can be viewed as a section of $\operatorname{End}(T M)$. That is, we may write

$$
\nabla_{1}-\nabla_{2} \in C^{\infty}\left(M, T^{*} M \otimes T^{*} M \otimes T M\right)
$$

The space of affine connections is an affine space associated to the vector space $C^{\infty}\left(M, T_{2}^{1} M\right)$.

We now study connections in local coordinates. Let (U, ϕ) be a chart for M and write $\phi=\left(x_{1}, \ldots, x_{n}\right)$. The list $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ form a smooth frame for $\left.T M\right|_{U}=T U$. Then

$$
\nabla_{\frac{\partial}{\partial x_{i}}}\left(\frac{\partial}{\partial x_{j}}\right)=\sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}
$$

for some $\Gamma_{i j}^{k} \in C^{\infty}(U)$.

If X and Y are smooth vector fields on U, we may write

$$
X=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}} \quad \text { and } \quad Y=\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}
$$

where $a_{i}, b_{j} \in C^{\infty}(U)$. We find that

$$
\nabla_{X} Y=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} a_{i} \frac{\partial b_{k}}{\partial x_{i}}+\sum_{i, j=1}^{n} \Gamma_{i j}^{k} a_{i} b_{j}\right) \frac{\partial}{\partial x_{k}}
$$

Definition 16.4 (Vector field along a curve). Let M be a smooth manifold and $c: I \rightarrow M$ a smooth curve. A smooth vector field along c is a smooth map $V: I \rightarrow T M$ such that $\pi \circ V=c$, that is, for each $t \in I$, we have $V(t) \in T_{c(t)} M$.

In local coordinates, if we restrict c to I^{\prime} such that $c\left(I^{\prime}\right) \subset U$. Then

$$
V(t)=\left.\sum_{i=1}^{n} a_{i}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)}
$$

for $a_{i} \in C^{\infty}\left(I^{\prime}\right)$.
Example 16.5. The tangent vector field $\frac{d c}{d t}$ is a smooth vector field along c.
Proposition 16.6. Let M be a smooth manifold with an affine connection ∇. Then there is a unique correspondence taking a smooth curve $c: I \rightarrow M$ together with a smooth vector field $V: I \rightarrow T M$ along c to a smooth vector field $\frac{D V}{d t}: I \rightarrow T M$ along c, called the covariant derivative of V along c such that
(i) $\frac{D}{d t}(V+W)=\frac{D V}{d t}+\frac{D W}{d t}$
(ii) $\frac{D}{d t}(f V)=\frac{d f}{d t} V+f \frac{D V}{d t}$
(iii) If $V=Y \circ c$ for some $Y \in \mathfrak{X}(M)$, then

$$
\frac{D V}{d t}(t)=\nabla_{\frac{d c}{d t}(t)} Y
$$

In local coordinates, consider the case $c: I \rightarrow U$, where (U, ϕ) is a local coordinate chart. Then $\phi \circ c: I \rightarrow \phi(U) \subset \mathbb{R}^{n}$ is given by $\phi \circ c(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$, where $x_{i} \in C^{\infty}(I)$. On U, we may write

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}
$$

And we may write

$$
V(t)=\left.\sum_{i=1}^{n} a_{i}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)}, \quad \frac{d c}{d t}(t)=\left.\sum_{i=1}^{n} \frac{d x_{i}}{d t}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)}
$$

Then

$$
\begin{aligned}
\frac{D V}{d t} & =\frac{D}{d t}\left(\left.\sum_{i=1}^{n} a_{i}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)}\right) \\
& =\sum_{i=1}^{n} \frac{D}{d t}\left(\left.a_{i}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)}\right) \\
& =\left.\sum_{i=1}^{n} \frac{d a_{i}}{\partial t}(t) \frac{\partial}{\partial x_{i}}\right|_{(c(t))}+a_{i} \frac{D}{d t}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{c(t)}\right)
\end{aligned}
$$

where

$$
\frac{D}{d t}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{c(t)}\right)=\nabla_{\frac{d c}{d t}(t)} \frac{\partial}{\partial x_{i}}=\left.\sum_{j=1}^{n} \frac{d x_{j}}{d t}(t) \nabla_{\frac{\partial}{\partial x_{i}}}\right|_{c(t)} \frac{\partial}{\partial x_{i}}=\left.\sum_{j=1}^{n} \frac{d x_{j}}{d t}(t) \sum_{k=1}^{n} \Gamma_{j i}^{k}(c(t)) \frac{\partial}{\partial x_{k}}\right|_{c(t)}
$$

Then we conclude that

$$
\frac{D V}{d t}=\sum_{k=1}^{n}\left(\frac{d a_{k}}{d t}+\sum_{i, j=1}^{n} \Gamma_{i j}^{k} \frac{d x_{i}}{d t} a_{j}\right) \frac{\partial}{\partial x_{k}}
$$

Parallel transport

Definition 16.7. Let M be a smooth manifold with an affine connection ∇. A smooth vector field V along smooth curve $c: I \rightarrow M$ is parallel if $\frac{D V}{d t}(t)=0$ for all $t \in I$.

Proposition 16.8. Let M be a smooth manifold with an affine connection ∇. Let $c: I \rightarrow M$ be a smooth curve and let $t_{0} \in I$. For each tangent vector $V_{0} \in T_{c\left(t_{0}\right)} M$ there is a unique parallel vector field $V(t)$ along $c(t)$ with $V\left(t_{0}\right)=V_{0}$. The vector field $V(t)$ is called the parallel transport of V_{0} along c.
Proof. We may assume that $c(I) \subset U$ where U is a coordinate chart. We may write

$$
V_{0}=\left.\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}\right|_{c\left(t_{0}\right)}
$$

for some $a_{i} \in \mathbb{R}$. We want to solve $\frac{D V}{d t}=0$ and $V\left(t_{0}\right)=V_{0}$. In terms of local coordinates, this means that, for $k=1, \ldots, n$,

$$
\left\{\begin{array}{l}
\frac{d a_{k}}{d t}+\sum_{i, j=1}^{n} \Gamma_{i j}^{k} \frac{d x_{i}}{d t} a_{j}=0 \\
a_{k}\left(t_{0}\right)=a_{k}
\end{array}\right.
$$

If we write

$$
\vec{a}(t)=\left[\begin{array}{c}
a_{1}(t) \\
\vdots \\
a_{n}(t)
\end{array}\right], \quad \vec{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

and let $A(t)=\left(A_{k j}(t)\right)$, where

$$
A_{k j}(t)=-\sum_{i=1}^{n} \Gamma_{i j}^{k}\left(x_{1}(t), \ldots, x_{n}(t)\right) \frac{d x_{i}}{d t}(t)
$$

Then these conditions are equivalent to

$$
\left\{\begin{array}{l}
\frac{d}{d t} \vec{a}(t)=A(t) \vec{a}(t) \\
\vec{a}\left(t_{0}\right)=\vec{a}
\end{array} .\right.
$$

So the proposition follows from the existence and uniqueness of solutions to first order ODE's.
Example 16.9. On \mathbb{R}^{n} we can take the trivial connection $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$. Then the parallel vector fields are just constant along curves.

Riemannian Connection

Definition 16.10. An affine connection ∇ on a smooth manifold M is said to be symmetric if for any smooth vector fields $X, Y \in \mathfrak{X}(M)$, we have

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y] .
$$

In terms of local coordinates, this places the requirement that $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
Definition 16.11. Let (M, g) be a Riemannian manifold with affine connection ∇. We say that ∇ is compatible with the metric g if for each $X, Y, Z \in \mathfrak{X}(M)$, we have

$$
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

Theorem 16.12 (Levi-Civita). Given a Riemannian manifold (M, g), there is a unique affine connection ∇ on M such that
(i) ∇ is symmetric and
(ii) ∇ is compatible with g.

This connection is known as the Riemannian connection or the Levi-Civita connection on the Riemannian manifolds (M, g).

Proof. For uniqueness, suppose that ∇ is an affine connection satisfying (i) and (ii). Then for any $X, Y, Z \in \mathfrak{X}(M)$,

$$
\begin{aligned}
& X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
= & g\left(\nabla_{X} Y+\nabla_{Y} X, Z\right)+g([X, Z], Y)+g([Y, Z], X) \\
= & g\left([X, Y]+2 \nabla_{Y} X, Z\right)+g([X, Z], Y)+g([Y, Z], X) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
g\left(\nabla_{Y} X, Z\right)= & \frac{1}{2}(X(g(Y, Z))+Y(g(Z, X)))-Z(g(X, Y)) \tag{16.1}\\
& -g([X, Z], Y)-g([Y, Z], X)-g([X, Y], Z) .
\end{align*}
$$

Since Z is arbitrary, Equation 16.1) uniquely determines $\nabla_{Y} X$.
For existence, one defines $\nabla_{Y} X$ by (16.1) and shows that this is an affine connection satisfying (i) and (ii).

In terms of local coordinates: in 16.1), let

$$
X=\frac{\partial}{\partial x_{j}}, \quad Y=\frac{\partial}{\partial x_{i}}, \quad Z=\frac{\partial}{\partial x_{k}} .
$$

We obtain

$$
g\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right)=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} g_{i k}+\frac{\partial}{\partial x_{i}} g_{k j}-\frac{\partial}{\partial x_{k}} g_{i j}\right),
$$

where $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\sum_{l=1}^{n} \Gamma_{i j}^{l} \frac{\partial}{\partial x_{l}}$, so

$$
\sum_{l=1}^{n} \Gamma_{i j}^{l} g_{l k}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} g_{i k}+\frac{\partial}{\partial x_{i}} g_{k j}-\frac{\partial}{\partial x_{k}} g_{i j}\right)
$$

and hence

$$
\Gamma_{i j}^{l}=\frac{1}{2} \sum_{k=1}^{n} g^{l k}\left(\frac{\partial}{\partial x_{j}} g_{i k}+\frac{\partial}{\partial x_{i}} g_{k j}-\frac{\partial}{\partial x_{k}} g_{i j}\right)
$$

where $g^{l k}$ is the l, k entry of the inverse of g.

17. Wednesday, November 11, 2015

Recall that the Levi-Civita connection on a Riemannian manifold (M, g) is the unique affine connection which is symmetric and compatible with the Riemannian metric g.

Definition 17.1. Let ∇ be an affine connection on a smooth manifold M. The torsion of ∇ is defined to be

$$
\begin{aligned}
T_{\nabla}: \mathfrak{X}(M) \times \mathfrak{X}(M) & \rightarrow \mathfrak{X}(M) \\
(X, Y) & \mapsto \nabla_{X} Y-\nabla_{Y} X-[X, Y] .
\end{aligned}
$$

It is straighforward to check that:
Lemma 17.2. (i) T_{∇} is antisymmetric: $T_{\nabla}(X, Y)=-T_{\nabla}(Y, X)$.
(ii) T_{∇} is $C^{\infty}(M)$-bilinear.

So $T_{\nabla} \in C^{\infty}\left(M, \Lambda^{2} T^{*} M \otimes T M\right)$ is a (1,2)-tensor on M.
By definition, an affine connection ∇ is symmetric if and only of $T_{\nabla}=0$. So the "symmetric" condition is also known as the "torsion free" condition.

Proposition 17.3. Let (M, g) be a Riemannian manifold, and let ∇ be an affine connection on M compatible with the Riemannian metric g. If V, W are smooth vector fields along a smooth curve $c: I \rightarrow M$ then

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle
$$

where \langle,$\rangle is the inner product defined by g$, and $\frac{D}{d t}$ is the covariant derivative along c determined by ∇. In particular, if V, W are parallel vector fields along c then $\langle V, W\rangle$ is a constant function on I.

We will see later that Proposition 17.3 is a special case of a more general result.
Example 17.4. Let $M=\mathbb{R}^{n}$ and let $g_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}$. Since all the $g_{i j}$'s are constant, we find that $\Gamma_{i j}^{k}=0$. This means that $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$. This implies that if $X=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}$ and $Y=\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}$, then we see that

$$
\nabla_{X} Y=\sum_{i, j}\left(a_{i} \frac{\partial b_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}
$$

Recall that

$$
L_{X} Y=\sum_{i, j}\left(a_{i} \frac{\partial b_{j}}{\partial x_{i}}-b_{i} \frac{\partial a_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}=\nabla_{X} Y-\nabla_{Y} X
$$

This shows that ∇ is indeed torsion free.
Example 17.5. Let S^{2} be equipped with the round metric. Use spherical coordinates

$$
\left\{\begin{array}{l}
x=\sin \phi \cos \theta \\
y=\sin \phi \sin \theta \\
z=\cos \phi
\end{array} .\right.
$$

In these coordinates, we know that $g_{\text {can }}=d \phi^{2}+\sin ^{2} \phi d \theta^{2}$. Write $\left(x_{1}, x_{2}\right)=(\phi, \theta)$. In terms of these coordinates, we have

$$
g=\left[\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2} \phi
\end{array}\right] \quad \text { and } \quad g^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\sin ^{2} \phi}
\end{array}\right]
$$

Let $g_{i j, k}=\frac{\partial}{\partial x_{k}} g_{i j}$. We compute the Christoffel symbols of the Levi-Civita connection to be

$$
\begin{aligned}
& \Gamma_{11}^{1}=0 \\
& \Gamma_{11}^{2}=0 \\
& \Gamma_{12}^{1}=\Gamma_{21}^{1}=0 \\
& \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{2} g^{22}\left(g_{22,1}+g_{12,2}-g_{12,2}\right)=\frac{1}{2} \frac{1}{\sin ^{2} \phi} 2 \sin \phi \cos \phi=\cot \phi \\
& \Gamma_{22}^{1}=\frac{1}{2} g^{11}\left(2 g_{21,2}-g_{22,1}\right)=-\sin \phi \cos \phi \\
& \Gamma_{22}^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=\Gamma_{11}^{1} \frac{\partial}{\partial \phi}+\Gamma_{11}^{2} \frac{\partial}{\partial \theta}=0 \\
& \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}=\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}=\Gamma_{12}^{1} \frac{\partial}{\partial \phi}+\Gamma_{12}^{2} \frac{\partial}{\partial \theta}=\cot \phi \frac{\partial}{\partial \theta} \\
& \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}=\Gamma_{22}^{1} \frac{\partial}{\partial \phi}+\Gamma_{22}^{2} \frac{\partial}{\partial \theta}=-\sin \phi \cos \phi \frac{\partial}{\partial \phi} .
\end{aligned}
$$

Parallel transport along a meridian $\theta=\theta_{0}$.
The vector field $\frac{\partial}{\partial \phi}$ is parallel along $\theta=\theta_{0}$ since $\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0$. From Proposition 17.3 the vector field $\frac{1}{\sin \phi} \frac{\partial}{\partial \theta}$ is also parallel along $\theta=\theta_{0}$ since it is perpendicular to $\frac{\partial}{\partial \phi}$ and of constant length 1 . We now verify this directly:

$$
\nabla_{\frac{\partial}{\partial \phi}}\left(\frac{1}{\sin \phi} \frac{\partial}{\partial \theta}\right)=\frac{-\cos \phi}{\sin ^{2} \phi} \frac{\partial}{\partial \theta}+\frac{1}{\sin \phi} \cdot \cot \phi \frac{\partial}{\partial \theta}=0
$$

Any parallel vector field along a meridian $\theta=\theta_{0}$ is of the form

$$
a \frac{\partial}{\partial \phi}+b \cdot \frac{1}{\sin \phi} \frac{\partial}{\partial \theta}
$$

where $a, b \in \mathbb{R}$ are constants.
Parallel transport along a parallel $\phi=\phi_{0}$. Write $\left(x_{1}(\theta), x_{2}(\theta)\right)=\left(\phi_{0}, \theta\right)$. A vector field $V(\theta)=a_{1}(\theta) \frac{\partial}{\partial \phi}+a_{2}(\theta) \frac{\partial}{\partial \theta}$ along $\phi=\phi_{0}$ is parallel if and only if

$$
\left\{\begin{array}{l}
\frac{d a_{1}}{d \theta}+\Gamma_{22}^{1} a_{2}=0 \\
\frac{d a_{2}}{d \theta}+\Gamma_{21}^{2} a_{1}=0
\end{array}\right.
$$

where $\Gamma_{22}^{1}=-\sin \phi_{0} \cos \phi_{0}, \Gamma_{21}^{2}=\cot \phi_{0}$. The above two equations can be rewritten as

$$
\frac{d}{d \theta}\left[\begin{array}{c}
a_{1}(\theta) \\
\sin \phi_{0} a_{2}(\theta)
\end{array}\right]=\left[\begin{array}{cc}
0 & \cos \phi_{0} \\
-\cos \phi_{0} & 0
\end{array}\right]\left[\begin{array}{c}
a_{1}(\theta) \\
\sin \phi_{0} a_{2}(\theta)
\end{array}\right]
$$

The solution is

$$
\left[\begin{array}{c}
a_{1}(\theta) \\
\sin \phi_{0} a_{2}(\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\left(\cos \phi_{0}\right) \theta\right) & \sin \left(\left(\cos \phi_{0}\right) \theta\right) \\
-\sin \left(\left(\cos \phi_{0}\right) \theta\right) & \cos \left(\left(\cos \phi_{0}\right) \theta\right)
\end{array}\right]\left[\begin{array}{c}
a_{1}(0) \\
\sin \phi_{0} a_{2}(0)
\end{array}\right]
$$

Let $a_{1}(0)=1$ and $a_{2}(0)=0$, we see that the parallel transport of the unit vector $\frac{\partial}{\partial \phi}$ along $\phi=\phi_{0}$ is

$$
\cos \left(\left(\cos \phi_{0}\right) \theta\right) \frac{\partial}{\partial \phi}-\frac{\sin \left(\left(\cos \phi_{0}\right) \theta\right)}{\sin \left(\phi_{0}\right)} \frac{\partial}{\partial \theta}
$$

Let $a_{1}(0)=0$ and $a_{2}(0)=\frac{1}{\sin \phi_{0}}$, we see that the parallel transport of the unit vector $\frac{1}{\sin \phi_{0}} \frac{\partial}{\partial \theta}$ along $\phi=\phi_{0}$ is

$$
\sin \left(\left(\cos \theta_{0}\right) \theta\right) \frac{\partial}{\partial \phi}+\frac{\cos \left(\left(\cos \phi_{0}\right) \theta\right)}{\sin \phi_{0}} \frac{\partial}{\partial \theta}
$$

Another way to see it is to consider a cone C tangent to S^{2} along the circle $\phi=\phi_{0}$. Then for any p on the circle $\phi=\phi_{0}, T_{p} C=T_{p} S^{2}$. By Assignment 8 (4), the parallel tranport along $\phi=\phi_{0}$ defined by the Levi-Civita connection on C and the Levi-Civita connection on S^{2} are the same. See page 79 of GHL for details.

Geodesics

Definition 17.6. Let M be a Riemannian manifold and let $\gamma: I \rightarrow M$ be a smooth curve. Then we say that γ is geodesic at $t_{0} \in I$ if $\frac{D}{d t}\left(\frac{d \gamma}{d t}\right)\left(t_{0}\right)=0$, where we are using the Levi-Civita connection ∇. We say that γ is a geodesic if it is geodesic at each point of its domain.

By Proposition 17.3, if γ is a geodesic, then $\left|\frac{d \gamma}{d t}\right|$ is constant. Assume that $\left|\frac{d \gamma}{d t}\right|=c>0$. We may parametrize by arc length to get $\left|\frac{d \gamma}{d t}\right|=1$. In terms of local coordinates $\phi \circ \gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$, we get the equation

$$
\frac{d^{2} x_{k}}{d t^{2}}+\sum_{i, j} \Gamma_{i j}^{k} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}=0
$$

Example 17.7 (Euclidean space). $M=\mathbb{R}^{n}$ equipped with the Euclidean metric $g_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}$. Then $\Gamma_{i j}^{k}=0$. geodesic $\gamma: I \rightarrow \mathbb{R}^{2}$ satisfies $\frac{d^{2} x_{k}}{d t^{2}}=0$ and hence $x_{k}(t)=a_{k}+b_{k} t$ for $a_{k}, b_{k} \in \mathbb{R}$. It follows that γ is affine linear in each coordinate. We conclude the following: for each $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in T_{\vec{a}} \mathbb{R}^{n}$, the line $\gamma(t)=\vec{a}+\vec{b} t$ is the unique geodesic such that $\gamma(0)=\vec{a}$ and $\gamma^{\prime}(0)=\vec{b}$.

Example 17.8 (round sphere). Geodesics in a round sphere are great circles. See Assignment 9 (2).

18. Monday, November 16, 2015

Proposition 18.1. Let (M, g) be a Riemannian manifold. Let p be a point of M and $v \in T_{p} M$. Then

- (Existence) There is an open interval $I=(a, b)$, where $-\infty \leq a<0<b \leq$ $+\infty$, and a geodesic $\gamma: I \rightarrow M$, such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$.
- (Uniqueness) If $\beta: I^{\prime} \rightarrow M$ is another geodesic satisfying $\beta(0)=p$ and $\beta^{\prime}(0)=v$ then $I^{\prime} \subset I$ and $\beta=\left.\gamma\right|_{I^{\prime}}$.

There is a reformulation using the notion of a geodesic field.

Geodesic field and geodesic flow

Definition 18.2. Given a smooth curve $\gamma: I \rightarrow M$, we define $\tilde{\gamma}: I \rightarrow T M$ by $\tilde{\gamma}(t)=\left(\gamma(t), \gamma^{\prime}(t)\right)$. Then $\tilde{\gamma}$ is a smooth curve in $T M$.

Any smooth curve $w: I \rightarrow T M$ is of the form $w(t)=(c(t), V(t))$, where $c: I \rightarrow$ M is a smooth curve in M and $V(t)$ is a smooth vector field along $c(t) ; w$ is equal to $\tilde{\gamma}$ for some geodesic $\gamma: I \rightarrow M$ if and only if

$$
\begin{equation*}
c^{\prime}(t)=V(t), \quad \frac{D V}{d t}(t)=0 \tag{18.1}
\end{equation*}
$$

Suppose that $c(I)$ is contained in a coordinate neighborhood $U \subset M$. Then $w(I)$ is contained in $T U \subset T M . \phi: U \rightarrow \phi(U) \subset \mathbb{R}^{n}$ and $\tilde{\phi}: T U \rightarrow \phi(U) \times \mathbb{R}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\begin{aligned}
\phi \circ c(t) & =\left(x_{1}(t), \ldots, x_{n}(t)\right) \\
V(t) & =\left.\sum_{i=1}^{n} y_{i}(t) \frac{\partial}{\partial x_{i}}\right|_{c(t)} \\
\tilde{\phi} \circ w(t) & =\left(x_{1}(t), \ldots, x_{n}(t), y_{1}(t), \ldots, y_{n}(t)\right)
\end{aligned}
$$

Then 18.1 is equivalent to the following system of $2 n 1$ st order ODE's.

$$
\begin{equation*}
\frac{d x_{k}}{d t}(t)=y_{k}(t), \quad \frac{d y_{k}}{d t}=-\sum_{i, j} \Gamma_{i j}^{k}(x) y_{i} y_{j}, \quad k=1, \ldots, n \tag{18.2}
\end{equation*}
$$

These are equations for the integral curve of the following smooth vector field on $T U$:

$$
G=\sum_{k} y_{k} \frac{\partial}{\partial x_{k}}-\sum_{i, j, k} \Gamma_{i j}^{k}\left(x_{1}, \ldots, x_{n}\right) y_{i} y_{j} \frac{\partial}{\partial y_{k}} .
$$

G is independent of choice of coordinates. We obtain a smooth vector field G on $T M$, known as the geodesic field. Proposition 18.1 follows from the existence and uniqueness of integral curves of $G \in \mathfrak{X}(T M)$.

Given $(p, v) \in T M$, where $p \in M$ and $v \in T_{p} M$, let $\gamma: I \rightarrow M$ be the unique geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$ in Proposition 18.1 and define $\tilde{\gamma}: I \rightarrow T M$ as in Definition 18.2. Then $\tilde{\gamma}(0)=(p, v)$ and $\tilde{\gamma}^{\prime}(0)=\overline{G(p, v)} \in T_{(p, v)}(T M)$.

Applying the existence/uniqueness theorem for flows of vector fields on $T M$, we find the following: for each $(p, v) \in T M$, where $p \in M$ and $v \in T_{p} M$, there is an open neighborhood U of (p, v) in $T M$, a positive number $\delta>0$, and a smooth map

$$
\phi:(-\delta, \delta) \times U \rightarrow T M
$$

such that

$$
\left\{\begin{array}{l}
\frac{\partial \phi}{\partial t}(t, q, w)=G(\phi(t, q, w)) \\
\phi(0, q, w)=(q, w)
\end{array}\right.
$$

Let $\gamma=\pi \circ \phi:(-\delta, \delta) \times U \rightarrow M$. Then for a fixed $(q, w) \in U \subset T M$, we find that

$$
\gamma_{q, w}(t):=\gamma(t, q, w)=\pi(\phi(t, q, w))
$$

is a geodesic such that $\gamma_{q, w}(0)=q$ and $\frac{d \gamma_{q, w}}{d t}(0)=w$. For $t \in(-\delta, \delta)$, we get $\phi_{t}: U \rightarrow T M$, the flow of G, called the geodesic flow.

Example 18.3. When $(M, g)=\left(\mathbb{R}, d x^{2}\right)$, we can identify $T \mathbb{R}$ with \mathbb{R}^{2} via the map $\left(x, y \frac{\partial}{\partial x}\right) \mapsto(x, y)$. Then we see that

$$
G=y \frac{\partial}{\partial x}
$$

The flow $\phi_{t}: T \mathbb{R} \rightarrow T \mathbb{R}$ is given by

$$
\phi_{t}(x, y)=(x+t y, y)
$$

where $t \in \mathbb{R}$.
Example 18.4. More generally, when $(M, g)=\left(\mathbb{R}^{n}, g_{0}\right)$, we find that

$$
G=\sum_{i} y_{i} \frac{\partial}{\partial x_{i}}
$$

and $\phi_{t}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is given by

$$
\phi_{t}(x, y)=(x+t y, y)
$$

where $x, y \in \mathbb{R}^{n}$.

Connections on vector bundles

Definition 18.5. Let M be a smooth manifold and let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r. A connection on E is an \mathbb{R}-bilinear map $\nabla: \mathfrak{X}(M) \times$ $C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)$ written $(X, s) \mapsto \nabla_{X} s$ such that for any $X \in \mathfrak{X}(M)$, $s \in C^{\infty}(M, E)$, and $f \in C^{\infty}(M)$,
(i) $\nabla_{f X} s=f \nabla_{X} s$, i.e., ∇ is $\mathbb{C}^{\infty}(M)$-linear in the first factor;
(ii) $\nabla_{X}(f s)=X(f) s+f \nabla_{X} s$, i.e., for fixed $X \in \mathfrak{X}(M)$, the map ∇_{X} : $C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)$ sending s to $\nabla_{X} s$ satisfies the Leibniz rule.

Example 18.6. An affine connection on M is the same as a connection on $T M$.
We introduce the following notation. We denote by $\Omega^{p}(M, E)$ the space of E valued p-forms on E, that is,

$$
\Omega^{p}(M, E)=C^{\infty}\left(M, \Lambda^{p} T^{*} M \otimes E\right)
$$

With this notation, Definition 18.5 can be reformulated as follows.
Definition 18.7. A connection on E is an \mathbb{R}-linear map $\nabla: \Omega^{0}(M, E) \rightarrow \Omega^{1}(M, E)$ written $s \mapsto \nabla s$ such that for each $f \in C^{\infty}(M)$ and each $s \in \Omega^{0}(M, E)$, we have

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

Lemma 18.8. If ∇_{1} and ∇_{2} are connections on E, then $\nabla_{1}-\nabla_{2}: \Omega^{0}(M, E) \rightarrow$ $\Omega^{1}(M, E)$ is $C^{\infty}(M)$-linear.

Proof. For $f: M \rightarrow \mathbb{R}$ a smooth function and $s: M \rightarrow E$ a smooth section, we have

$$
\begin{aligned}
\left(\nabla_{1}-\nabla_{2}\right)(f s) & =\nabla_{1}(f s)-\nabla_{2}(f s) \\
& =d f \otimes s+f \nabla_{1} s-d f \otimes s-f \nabla_{2} s \\
& =f\left(\nabla_{1}-\nabla_{2}\right) s
\end{aligned}
$$

It follows that $\phi:=\nabla_{1}-\nabla_{2}$ can be viewed as an element of $\Omega^{1}(M, \operatorname{End} E)$. The space of connections on E is an affine space whose associated vector space is $\Omega^{1}(M, \operatorname{End} E)$.

In general if E, F are smooth vector bundles and $\phi: C^{\infty}(M, E) \rightarrow C^{\infty}(M, F)$ is a $C^{\infty}(M)$-linear map, then we can view ϕ as an element of $C^{\infty}\left(M, E^{*} \otimes F\right)$:

$$
\phi(s)(p)=\phi(p) s(p) \in F_{p}
$$

Now we want to express our connection in terms of local coordinates. Let (U, ϕ) be a chart for M and write $\phi=\left(x_{1}, \ldots, x_{n}\right)$. We get a smooth frame $\left\{\frac{\partial}{\partial x_{i}}\right\}$ for the tangent bundle $\left.T M\right|_{U}$. We may suppose that we have a trivialization $h:\left.E\right|_{U} \rightarrow$ $U \times \mathbb{R}^{r}$. We get a smooth frame e_{1}, \ldots, e_{r} for $\left.E\right|_{U}$. On U, we have

$$
\nabla_{\frac{\partial}{\partial x_{i}}} e_{j}=\sum_{k=1}^{r} \Gamma_{i j}^{k} e_{k}
$$

for some $\Gamma_{i j}^{k} \in C^{\infty}(U)$. The element ∇e_{j} is an E-valued one-form on U and we note that

$$
\nabla e_{j}=\sum_{i=1}^{n} \sum_{k=1}^{r} \Gamma_{i j}^{k} d x_{i} \otimes e_{k}=\sum_{k=1}^{r} \omega_{j}^{k} e_{k}
$$

where $\omega_{j}^{k}=\sum_{i=1}^{n} \Gamma_{i j}^{k} d x_{i}$ are smooth 1-forms on U. To define the connection oneforms $\omega_{j}^{k} \in \Omega^{1}(U)$ we only need a trivialization of $\left.E\right|_{U}$ but not $\left.T M\right|_{U}$

$$
\nabla e_{j}=\sum_{k=1}^{j} \omega_{j}^{k} e_{k}
$$

where $\omega_{j}^{k} \in \Omega^{1}(U)$.
Let $\left\{U_{\alpha}: \alpha \in I\right\}$ be an open cover of M such that $h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ are local trivializations. Let $\left\{e_{1, \alpha}, \ldots, e_{r, \alpha}\right\}$ be a C^{∞}-frame of $\left.E\right|_{U_{\alpha}}$, so that h_{α}^{-1} is given by $h_{\alpha}^{-1}\left(x,\left(v_{1}, \ldots, v_{r}\right)\right)=\left(x, \sum_{i=1}^{r} v_{i} e_{i, \alpha}(x)\right)$, where $x \in U_{\alpha}$ and $\left(v_{1}, \ldots, v_{r}\right) \in \mathbb{R}^{r}$. On U_{α}, define $\left(\omega_{\alpha}\right)_{j}^{k} \in \Omega^{1}\left(U_{\alpha}\right)$ by

$$
\nabla e_{j, \alpha}=\sum_{k=1}^{r}\left(\omega_{\alpha}\right)_{j}^{k} \otimes e_{k, \alpha}
$$

For a global smooth section $s \in C^{\infty}(M, E)$, we can expand s on U_{α} as

$$
s=\sum_{j=1}^{r} s_{\alpha}^{j} e_{j, \alpha}
$$

for some s_{α}^{j} in $C^{\infty}\left(U_{\alpha}\right)$. By Leibniz rule,

$$
\nabla s=\sum_{j=1}^{r} d s_{\alpha}^{j} e_{j, \alpha}+\sum_{j=1}^{r} s_{\alpha}^{j} \nabla e_{j, \alpha}=\sum_{j=1}^{r} d s_{\alpha}^{j} e_{j, \alpha}+\sum_{j, k=1}^{r} s_{\alpha}^{j}\left(\omega_{\alpha}\right)_{j}^{k} e_{k, \alpha} .
$$

On U_{α}, define $(\nabla s)_{\alpha}^{j} \in \Omega^{1}\left(U_{\alpha}\right)$ by

$$
\nabla s=\sum_{j=1}^{r}(\nabla s)_{\alpha}^{j} e_{j, \alpha}
$$

We see that

$$
(\nabla s)_{\alpha}^{j}=d s_{\alpha}^{j}+\sum_{k=1}^{r}\left(\omega_{\alpha}\right)_{k}^{j} s_{\alpha}^{k}
$$

or equivalently,

$$
\left[\begin{array}{c}
(\nabla s)_{\alpha}^{1} \tag{18.3}\\
\vdots \\
(\nabla s)_{\alpha}^{r}
\end{array}\right]=\left[\begin{array}{c}
d s_{\alpha}^{1} \\
\vdots \\
d s_{\alpha}^{r}
\end{array}\right]+\left[\begin{array}{ccc}
\left(\omega_{\alpha}\right)_{1}^{1} & \cdots & \left(\omega_{\alpha}\right)_{r}^{1} \\
\vdots & \ddots & \vdots \\
\left(\omega_{\alpha}\right)_{1}^{r} & \cdots & \left(\omega_{\alpha}\right)_{r}^{r}
\end{array}\right]\left[\begin{array}{c}
s_{\alpha}^{1} \\
\vdots \\
s_{\alpha}^{r}
\end{array}\right]
$$

We define

$$
s_{\alpha}:=\left[\begin{array}{c}
s_{\alpha}^{1} \tag{18.4}\\
\vdots \\
s_{\alpha}^{r}
\end{array}\right] \in C^{\infty}\left(U_{\alpha}, \mathbb{R}^{r}\right), \quad(\nabla s)_{\alpha}:=\left[\begin{array}{c}
(\nabla s)_{\alpha}^{1} \\
\vdots \\
(\nabla s)_{\alpha}^{r}
\end{array}\right] \in \Omega^{1}\left(U_{\alpha}, \mathbb{R}^{r}\right),
$$

and define a matrix-valued 1-form

$$
\omega_{\alpha}:=\left[\begin{array}{ccc}
\left(\omega_{\alpha}\right)_{1}^{1} & \cdots & \left(\omega_{\alpha}\right)_{r}^{1} \tag{18.5}\\
\vdots & \ddots & \vdots \\
\left(\omega_{\alpha}\right)_{1}^{r} & \cdots & \left(\omega_{\alpha}\right)_{r}^{r}
\end{array}\right] \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g l}(r, \mathbb{R})\right)
$$

Then 18.3 can be written as

$$
(\nabla s)_{\alpha}=d s_{\alpha}+\omega_{\alpha} s_{\alpha}
$$

where $(\nabla s)_{\alpha}$ and $d s_{\alpha}$ are column vectors with components that are 1-forms, ω_{α} is a matrix with entries that are 1-forms, and s_{α} is a column vector with components that are smooth functions.

19. Wednesday, November 18, 2015

Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank r over a smooth manifold M. Suppose that $\left\{U_{\alpha}: \alpha \in I\right\}$ is an open cover of M and $h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ are local trivializations. The local trivialization h_{α} gives a smooth frame $\left\{e_{i, \alpha}\right.$: $i=1, \ldots, r\}$ for $\left.E\right|_{U_{\alpha}}$ such that $h_{\alpha}^{-1}(x, \vec{v})=\left(x, \sum_{i=1}^{r} v_{i} e_{i, \alpha}(x)\right)$. When $U_{\alpha} \cap U_{\beta}$ is nonempty, we also have transition functions

$$
h_{\alpha \beta}=h_{\alpha} \circ h_{\beta}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r} \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}, \quad(x, v) \mapsto\left(x, t_{\alpha \beta}(x) v\right)
$$

where $t_{\alpha \beta}$ is a smooth map from $U_{\alpha} \cap U_{\beta}$ to $G L(r, \mathbb{R})$. Then $t_{\alpha \alpha}(x)=I_{r}$ for all $x \in U_{\alpha}$, where I_{r} is the $r \times r$ identity matrix, and $t_{\alpha \beta}(x) t_{\beta \gamma}(x) t_{\gamma \alpha}(x)=I_{r}$ for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Conversely, given an open cover $\left\{U_{\alpha}: \alpha \in I\right\}$ of M and smooth maps $t_{\alpha \beta}: U_{\alpha} \cap$ $U_{\beta} \rightarrow G L(r, \mathbb{R})$ satisfying $t_{\alpha \alpha}(x)=I_{r}$ for all $x \in U_{\alpha}$ and $t_{\alpha \beta}(x) t_{\beta \gamma}(x) t_{\gamma \alpha}(x)=I_{r}$ for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we may construct a smooth rank r vector bundle E over M by gluing the rank r product vector bundles $\left\{U_{\alpha} \times \mathbb{R}^{r} \rightarrow U_{\alpha}: \alpha \in I\right\}$ along $\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{r}$ using $t_{\alpha \beta}$.

Let $s \in C^{\infty}(M, E)$ be a global section, and let $s_{\alpha} \in C^{\infty}\left(U_{\alpha}, \mathbb{R}^{r}\right)$ be defined as the previous lecture. Then $h_{\alpha}(x)=\left(x, s_{\alpha}(x)\right)$ for $x \in U_{\alpha}$. On $U_{\alpha} \cap U_{\beta}$,

$$
\left(x, s_{\alpha}(x)\right)=h_{\alpha}(x)=h_{\alpha} \circ h_{\beta}^{-1} \circ h_{\beta}(x)=h_{\alpha} \circ h_{\beta}^{-1}\left(x, s_{\beta}(x)\right)=\left(x, t_{\alpha \beta}(x) s_{\beta}(x)\right)
$$

So we have

$$
\begin{equation*}
s_{\alpha}=t_{\alpha \beta} s_{\beta} . \tag{19.1}
\end{equation*}
$$

In a similar fashion, let $(\nabla s)_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathbb{R}^{r}\right)$ be defined as in the previous lecture. The

$$
\begin{equation*}
(\nabla s)_{\alpha}=t_{\alpha \beta}(\nabla s)_{\beta} \tag{19.2}
\end{equation*}
$$

The left hand side of (19.2) is

$$
d s_{\alpha}+\omega_{\alpha} s_{\alpha}=d\left(t_{\alpha \beta} s_{\beta}\right)+\omega_{\alpha} t_{\alpha \beta} s_{\beta}=\left(d t_{\alpha \beta}\right) s_{\beta}+t_{\alpha \beta}\left(d s_{\beta}\right)+\omega_{\alpha} t_{\alpha \beta} s_{\beta}
$$

and the right hand side of 19.2 is

$$
t_{\alpha \beta} d s_{\beta}+t_{\alpha \beta} \omega_{\beta} s_{\beta}
$$

Therefore,

$$
\begin{equation*}
\omega_{\beta}=t_{\alpha \beta}^{-1} d t_{\alpha \beta}+t_{\alpha \beta}^{-1} \omega_{\alpha} t_{\alpha \beta} \tag{19.3}
\end{equation*}
$$

on $U_{\alpha} \cap U_{\beta}$. A connection $\nabla: \Omega^{0}(M, E) \rightarrow \Omega^{1}(M, E)$ is equivalent to a collection $\left\{\omega_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g l}(r, \mathbb{R})\right)\right\}$ satisfying 19.3) on $U_{\alpha} \cap U_{\beta}$.

Pullback bundle

Let $f: M \rightarrow N$ be a smooth map between smooth manifolds, and let $\pi: E \rightarrow N$ be a smooth vector bundle on N. Then we can define a bundle $\tilde{\pi}: f^{*} E \rightarrow M$ called the pullback bundle in the following manner. As a set

$$
f^{*} E=\bigcup_{p \in M} E_{f(p)}=\{(p, q) \in M \times E: f(p)=\pi(p)\}
$$

The smooth structure is determined in the following manner. If $s: N \rightarrow E$ is a smooth section of E, then $f^{*} s: M \rightarrow f^{*} E$ given by

$$
f^{*} s(p)=s(f(p)) \in E_{f(p)}=:\left(f^{*} E\right)_{p}
$$

is a smooth section of $f^{*} E$. If e_{1}, \ldots, e_{r} are a smooth frame for $\left.E\right|_{U}$, where U is an open set in N, then $f^{*} e_{1}, \ldots, f^{*} e_{r}$ are a smooth frame of $\left.f^{*} E\right|_{f^{-1}(U)}$. A section $s:\left.f^{-1}(U) \rightarrow f^{*} E\right|_{f^{-1}(U)}$ is smooth if and only if we can write

$$
s=\sum_{j=1}^{r} a_{j} f^{*} e_{j}
$$

where the a_{j} are smooth functions on $f^{-1}(U)$. We have a pullback map

$$
f^{*}: C^{\infty}(N, E) \rightarrow C^{\infty}\left(M, f^{*} E\right)
$$

Suppose that $\left\{U_{\alpha}: \alpha \in I\right\}$ is an open cover of N with local trivializations $h_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{r}$, and define transition functions $t_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(r, \mathbb{R})$ as before. Then

$$
f^{*} t_{\alpha \beta}:=t_{\alpha \beta} \circ f: f^{-1}\left(U_{\alpha} \cap U_{\beta}\right)=f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right) \rightarrow G L(r, \mathbb{R})
$$

are the transition functions of $f^{*} E$.
Definition 19.1 (pullback connection). Let $f: M \rightarrow N$ be a smooth map between smooth manifolds, and let $\pi: E \rightarrow N$ be a smooth vector bundle together with a connection ∇. Then there is a unique connection $f^{*} \nabla$ on $f^{*} E$, called the pullback connection, such that

$$
\left(f^{*} \nabla\right)\left(f^{*} s\right)=f^{*}(\nabla s)
$$

for a smooth section $s: N \rightarrow E$.
In other words, if $s: N \rightarrow E$ is a smooth section, p is a point of M, and $X \in T_{p} M$, then

$$
\left(f^{*} \nabla\right)_{X}\left(f^{*} s\right)=f^{*}\left(\nabla_{d f_{p}(X)} s\right)
$$

In terms of local trivializations, we know that if e_{1}, \ldots, e_{r} are a smooth frame of $\left.E\right|_{U}$, then $f^{*} e_{1}, \ldots, f^{*} e_{r}$ are a smooth frame for $\left.f^{*} E\right|_{f^{-1}(U)}$. On U, we know that

$$
\nabla e_{j}=\sum_{k=1}^{r} \omega_{j}^{k} \otimes e_{k}
$$

Then

$$
\left(f^{*} \nabla\right)\left(f^{*} e_{j}\right)=f^{*}\left(\nabla e_{j}\right)=\sum_{k=1}^{r} f^{*} \omega_{j}^{k} \otimes f^{*} e_{k}
$$

Therefore, if $\left\{\omega_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g l}(r, \mathbb{R})\right): \alpha \in I\right\}$ are connection 1-forms of the connection ∇ on $E \rightarrow N$, then $\left\{f^{*} \omega_{\alpha} \in \Omega^{1}\left(f^{-1}\left(U_{\alpha}\right), \mathfrak{g l}(r, \mathbb{R})\right): \alpha \in I\right\}$ are connection 1-forms of the pullback connection $f^{*} \nabla$ on $f^{*} E \rightarrow M$.

We next consider the special case $E=T N$.
Definition 19.2. Let $F: M \rightarrow N$ be a smooth map between smooth manifolds. Define a pushforward map

$$
F_{*}: \mathfrak{X}(M)=C^{\infty}(M, T M) \rightarrow C^{\infty}\left(M, F^{*} T N\right)
$$

by

$$
\left(F_{*} X\right)(p)=\left(d F_{p}\right)(X(p)) \in T_{F(p)} N=\left(F^{*} T N\right)_{p}
$$

and define a pullback map

$$
F^{*}: \mathfrak{X}(N)=C^{\infty}(N, T N) \rightarrow C^{\infty}\left(M, F^{*} T N\right)
$$

by

$$
\left(F^{*} Y\right)(p)=Y(F(p)) \in T_{F(p)} N=\left(F^{*} T N\right)_{p}
$$

Remark 19.3. Let $X \in \mathfrak{X}(M)$ be a smooth vector field on M, and let $Y \in \mathfrak{X}(N)$ be a smooth vector field on N. Then X and Y are F-related in the sense of Definition 13.10 if and only of

$$
F_{*} X=F^{*} Y \in C^{\infty}\left(M, F^{*} T N\right)
$$

Definition 19.4. An element in $C^{\infty}\left(M, F^{*} T N\right)$ is a smooth map $V: M \rightarrow F^{*} T N$ is such that the diagram

commutes. Following [d], we call V a smooth vector field along $F: M \rightarrow N$.
As special cases of the above definition:

- In [dC, Chapter 2], we consider vector fields along a parametrized curve $\gamma: I \rightarrow N$, where I is an open interval in \mathbb{R} and γ is a smooth map.
- In [dC, Chapter 3], we consider vector fields along a parametrized surface $s: A \rightarrow N$, where A is an open set in \mathbb{R}^{2} and s is a smooth map.

Proposition 19.5. Suppose that we have a smooth map $F: M \rightarrow N$ from a smooth manifold M to a Riemannian manifold (N, h), so that we have a pushforward map $F_{*}: \mathfrak{X}(M) \rightarrow C^{\infty}\left(M, f^{*} T N\right)$. Let ∇ be an affine connection on N, and let $D:=$ $F^{*} \nabla$ be the pull-back connection on $F^{*} T N$.
(i) If ∇ is compatible with the Riemannian metric h then
(19.4) $X\langle V, W\rangle=\left\langle D_{X} V, W\right\rangle+\left\langle V, D_{X} W\right\rangle \forall X \in \mathfrak{X}(M) \forall V, W \in C^{\infty}\left(M, F^{*} T N\right)$.

Here the inner product \langle,$\rangle is defined by h$.
(ii) If ∇ is symmetric then

$$
\begin{equation*}
D_{X} F_{*} Y-D_{Y} F_{*} X=F_{*}([X, Y]) \quad \forall X, Y \in \mathfrak{X}(M) \tag{19.5}
\end{equation*}
$$

In particular, if ∇ is the Levi-Civita connection then the pullback connection D satisfies 19.4 and 19.5).

Proof. Assignment 10 (1).
Let N be a smooth manifold with an affine connection ∇.
Let $\gamma: I \rightarrow N$ be a smooth curve in N, and let V be a smooth vector field along γ. The covariant derivative along γ is given by

$$
\frac{D V}{d t}=\left(\gamma^{*} \nabla\right)_{\frac{\partial}{\partial t}} V
$$

The following proposition, which is the same as Proposition 17.3 , is a special case of part (i) of Proposition 19.5 .

Proposition 19.6. If ∇ is compatible with a Riemannian metric h on N then the covariant derivative along a parametrize curve $\gamma: I \rightarrow N$ satisfies

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{D V}{d t}, W\right\rangle+\left\langle V, \frac{D W}{d t}\right\rangle
$$

for any vector fields V, W along γ, where the inner product \langle,$\rangle is defined by h$.
Let $s: A \rightarrow N$ be a parametrized surface in N, where A is an open set in \mathbb{R}^{2}. Let (u, v) be coordinates on \mathbb{R}^{2}. Then $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$ is a smooth frame for $T A$. Let

$$
\frac{\partial s}{\partial u}:=s_{*} \frac{\partial}{\partial u}, \frac{\partial s}{\partial v}:=s_{*} \frac{\partial}{\partial v} \in C^{\infty}\left(A, s^{*} T N\right)
$$

Let W be a vector field along this parametrized surface, that is, $W \in C^{\infty}\left(A, s^{*} T N\right)$. Then we define

$$
\frac{D W}{\partial u}:=\left(s^{*} \nabla\right)_{\frac{\partial}{\partial u}} W, \frac{D W}{\partial v}:=\left(s^{*} \nabla\right)_{\frac{\partial}{\partial v}} W \in C^{\infty}\left(A, s^{*} T N\right) .
$$

Proposition 19.7. If ∇ is symmetric then the covariant derivative along the parametrized surface $s: A \rightarrow N$ satisfies

$$
\frac{D}{\partial v} \frac{\partial s}{\partial u}=\frac{D}{\partial u} \frac{\partial s}{\partial v}
$$

Proof. Let $D:=s^{*} \nabla$ be the pullback connection on $s^{*} T N$. Then

$$
\frac{D}{\partial v} \frac{\partial s}{\partial u}-\frac{D}{\partial u} \frac{\partial s}{\partial v}=D_{\frac{\partial}{\partial v}}\left(s_{*} \frac{\partial}{\partial u}\right)-D_{\frac{\partial}{\partial u}}\left(s_{*} \frac{\partial}{\partial v}\right)=s_{*}\left(\left[\frac{\partial}{\partial v}, \frac{\partial}{\partial u}\right]\right)=0
$$

where the second equality follows from part (ii) of Proposition 19.5 .
We now study the homogeneity of the geodesics. Let

$$
\phi:(-\delta, \delta) \times U \rightarrow T M
$$

be the geodesic flow defined on some open subset $U \subset T M$. Let $\gamma=\pi \circ \phi$: $(-\delta, \delta) \times U \rightarrow M$. Then $\phi(t, q, v)=\left(\gamma(t, q, v), \frac{\partial \gamma}{\partial t}(t, q, v)\right)$.

Lemma 19.8. If the map $\gamma(t, q, v)$ is defined for $t \in(-\delta, \delta)$, then for each $a>0$, the map $\gamma(t, q, a v)$ is defined for $t \in(-\delta / a, \delta / a)$ and $\gamma(t, q, a v)=\gamma(a t, q, v)$.

Proof. Observe that, if $\beta:(-\delta, \delta) \rightarrow M$ is a geodesic with $\beta(0)=q \in M$ and $\beta^{\prime}(0)=v \in T_{q} M$, then $\tilde{\beta}:(-\delta / a, \delta / a) \rightarrow M$ defined by $\tilde{\beta}(t)=\beta(a t)$ is a geodesic with $\tilde{\beta}(t)=q$ and $\tilde{\beta}^{\prime}(0)=a v$.

Remark 19.9. If M is compact, the tangent bundle $T M$ is not compact, so the flow may not exist for all time t. However, we can consider the sphere bundle $S(T M)=\{(x, v) \in T M:|v|=1\}$, which is compact. The geodesic field G on $T M$ is tangent to $S(T M)$, so it restricts to a vector field \tilde{G} on $S(T M)$. By Lemma 7.8, the flow of \tilde{G} is defined on $\mathbb{R} \times S(T M): \tilde{\phi}: \mathbb{R} \times S(T M) \rightarrow S(T M)$. By the above Lemma 19.8 , the geodesic flow ϕ is defined on $\mathbb{R} \times T M$.

20. Monday, November 23, 2015

Given $p \in M$, there is an open neighborhood V of p in M, an $\epsilon>0$ and a $\delta>0$ such that $\gamma(t, q, v)$ is defined for $-\delta<t<\delta, q \in V$, and $|v|<\epsilon$. By Lemma 19.8 , $\gamma(t, q, v)$ is defined for $-2<t<2, q \in V$, and $|v|<\epsilon \delta / 2$. So for any $p \in M$, there is an open neighborhood V of p in M and an $\epsilon>0$ such that $\gamma(t, q, v)$ is defined for $-2<t<2, q \in V$, and $|v|<\epsilon$.

Definition 20.1 (Exponential Map). Let $U_{(V, \epsilon)}=\{(q, w) \in T M: q \in V,|w|<\epsilon\}$. Define

$$
\exp : U_{(V, \epsilon)} \longrightarrow M, \quad \exp (q, w)=\gamma(1, q, w) .
$$

Also define

$$
\exp _{p}: B_{\epsilon}(0) \longrightarrow M, \quad \exp _{p}(v)=\gamma(1, p, v)
$$

where $B_{\epsilon}(0) \subset T_{p} M$ is the open ball with center at the origin and with radius $\epsilon>0$. (Geometrically, this means that we find the unique geodesic passing through p with velocity v and we flow for unit amount of time.)

Lemma 20.2. The map $\left(d \exp _{p}\right)_{0}: T_{0}\left(T_{p} M\right)=T_{p} M \rightarrow T_{p} M$ is the identity map.
Proof.

$$
\left(d \exp _{p}\right)_{0}(v)=\left.\frac{d}{d t}\right|_{t=0} \exp _{p}(t v)=\left.\frac{d}{d t}\right|_{t=0} \gamma(1, p, t v)=\left.\frac{d}{d t}\right|_{t=0} \gamma(t, p, v)=v
$$

Corollary 20.3. There is an open neighborhood U of 0 in $T_{p} M$ such that $\exp _{p}$: $U \rightarrow V:=\exp _{p}(U)$ is a diffeomorphism.
Definition 20.4. In Corollary 20.3, the open neighborhood V is called a normal neighborhood of p in M. If $\overline{B_{\epsilon}(0)} \subset U$, then $B_{\epsilon}(p):=\exp _{p}\left(B_{\epsilon}(0)\right) \subset M$ is called a normal ball (or geodesic ball) of radius $\epsilon>0$ centered at p. The boundary $S_{\epsilon}(p)=\partial B_{\epsilon}(p)$ of this geodesic ball is called the normal sphere (or geodesic sphere) of radius $\epsilon>0$ centered at p.

Example 20.5. The exponential $\exp _{p}: T_{p} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $\exp _{p}(v)=p+v$, which is a global diffeomorphism.

Example 20.6. The map $\exp _{p}: T_{p} S^{n} \rightarrow S^{n}$ is given by

$$
\exp _{p}(v)= \begin{cases}p, & v=0 \\ \cos (|v|) p+\sin (|v|) \frac{v}{|v|}, & v \neq 0\end{cases}
$$

This is a diffeomorphism of $B_{\pi}(0)$ onto $S^{n} \backslash\{-p\}$.

Minimizing properties of geodesics

Lemma 20.7 (Gauss). Let $p \in M$ and $v \in T_{p} M$ such that $\exp _{p}(v)$ is defined. Identify $T_{p} M$ with $T_{v}\left(T_{p} M\right)$. Then for $w \in T_{p} M$, we have

$$
\left\langle\left(d \exp _{p}\right)_{v}(v),\left(d \exp _{p}\right)_{v}(w)\right\rangle=\langle v, w\rangle
$$

Proof. There exist $\delta, \epsilon>0$ small enough such that $f(s, t):=\exp _{p}(t(v+s w))$ is defined for $t \in(-\delta, 1+\delta)$ and $s \in(-\epsilon, \epsilon)$. For any $s \in(-\epsilon, \epsilon)$, the curve f_{s} : $(-\delta, 1+\delta) \rightarrow M$ defined by $f_{s}(t):=f(s, t)=\exp _{p}(t(v+s w))$ is a geodesic with $f_{s}(0)=p$ and $f_{s}^{\prime}(0)=v+s w$. So we have

$$
\begin{equation*}
\frac{D}{\partial t} \frac{\partial f}{\partial t}(s, t)=\frac{D}{d t} f_{s}^{\prime}(t)=0 \tag{20.1}
\end{equation*}
$$

and $\left|\frac{\partial f}{\partial t}(s, t)\right|=\left|f_{s}^{\prime}(t)\right|=\left|f_{s}^{\prime}(0)\right|=|v+s w| \Rightarrow$

$$
\begin{equation*}
\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}\right\rangle(s, t)=|v+s w|^{2}=|v|^{2}+2 s\langle v, w\rangle+s^{2}|w|^{2} . \tag{20.2}
\end{equation*}
$$

We also have

$$
\begin{aligned}
\frac{\partial f}{\partial s}(s, t)=\left(d \exp _{p}\right)_{t(v+s w)}(t w) & \Rightarrow \frac{\partial f}{\partial s}(0, t)=\left(d \exp _{p}\right)_{t v}(t w) \\
\frac{\partial f}{\partial t}(s, t)=\left(d \exp _{p}\right)_{t(v+s w)}(v+s w) & \Rightarrow \frac{\partial f}{\partial t}(0, t)=\left(d \exp _{p}\right)_{t v}(v)
\end{aligned}
$$

So

$$
\begin{aligned}
& \left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0,1)=\left\langle\left(d \exp _{p}\right)_{v}(v),\left(d \exp _{p}\right)_{v}(w)\right\rangle \\
& \left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0,0)=0 . \\
& \left.\begin{array}{l}
\left\langle\left(d \exp _{p}\right)_{v}(v),\left(d \exp _{p}\right)_{v}(w)\right\rangle \\
=\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0,1)-\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0,0)=\int_{0}^{1} \frac{\partial}{\partial t}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0, t) d t . \\
\\
\frac{\partial}{\partial t}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle=\left\langle\frac{D}{d t} \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle+\left\langle\frac{\partial f}{\partial t}, \frac{D}{\partial t} \frac{\partial f}{\partial s}\right\rangle \\
=\left\langle\frac{\partial f}{\partial t}, \frac{D}{\partial t} \frac{\partial f}{\partial s}\right\rangle=\left\langle\frac{\partial f}{\partial t}, \frac{D}{\partial s} \frac{\partial f}{\partial t}\right\rangle=\frac{1}{2} \frac{\partial}{\partial s}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}\right\rangle \\
=
\end{array}\right] \frac{1}{2} \frac{\partial}{\partial s}\left(|v|^{2}+2 s\langle v, w\rangle+s^{2}|w|^{2}\right) \\
& =\langle v, w\rangle+s|w|^{2} .
\end{aligned}
$$

The first equality follows from part (i) of Proposition 19.5 the second equality follows from 20.1); the third equality follows from part (ii) of Proposition 19.5, the
fourth equality follows from part (i) of Proposition 19.5 the fifth equality follows from 20.2.

$$
\frac{\partial}{\partial t}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(0, t)=\langle v, w\rangle \Rightarrow\left\langle\left(d \exp _{p}\right)_{v}(v),\left(d \exp _{p}\right)_{v}(w)\right\rangle=\int_{0}^{1}\langle v, w\rangle d t=\langle v, w\rangle
$$

Proposition 20.8. Let (M, g) be a Riemannian manifold, $p \in M$, and U a normal neighborhood of p. Let $B \subset U$ be a normal ball with center p, that is, $B=\exp _{p}\left(B_{\delta}(0)\right)$ for some $\delta>0$. Suppose that $\gamma:[0,1] \rightarrow B$ is a geodesic segment such that $\gamma(0)=p$ and $\gamma(1)=q$. Let $c:[0,1] \rightarrow M$ be a piecewise smooth curve such that $c(0)=p$ and $c(1)=q$. Then $l(\gamma) \leq l(c)$, with equality if and only if the curves c and γ have the same image.

Proof. We may assume that $c([0,1]) \subset B$, since $l(c) \geq l\left(\left.c\right|_{\left[0, t_{1}\right]}\right)$ where $c\left(t_{1}\right) \in \partial B$ and $c(t) \subset B$ for $0 \leq t<t_{1}$. We may also assume that $c(t) \neq p$ for $t>0$, otherwise consider $\left.c\right|_{\left[t_{2}, 1\right]}$ where $c\left(t_{2}\right)=p$ and $c(t) \neq p$ for $t_{2}<t \leq 1$.

Define $b:[0,1] \rightarrow B_{\delta}(0) \subset T_{p} M$ by $b(t)=\exp _{p}^{-1}(c(t))$. Then $b:[0,1] \rightarrow T_{p} M$ is a piecewise smooth curve in $T_{p} M$, and $c(t)=\exp _{p}(b(t))$. Since $c(t) \neq p$ for $t>0$, $b(t) \neq 0$ for $t>0$, so for $t \in(0,1]$ we may write

$$
b(t)=r(t) v(t)
$$

where $r(t)=|b(t)|>0$ and $v(t)=b(t) /|b(t)|$ are piecewise smooth. We have

$$
\begin{gathered}
\langle v(t), v(t)\rangle=1, \quad\left\langle v(t), v^{\prime}(t)\right\rangle=0 \\
\frac{d c}{d t}(t)=\left(d \exp _{p}\right)_{b(t)}\left(b^{\prime}(t)\right)=r^{\prime}(t)\left(d \exp _{p}\right)_{b(t)}(v(t))+r(t)\left(d \exp _{p}\right)_{b(t)}\left(v^{\prime}(t)\right)
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\left|\frac{d c}{d t}(t)\right|^{2}= & r^{\prime}(t)^{2}\left|\left(d \exp _{p}\right)_{(b(t))}(v(t))\right|^{2}+r(t)^{2}\left|\left(d \exp _{p}\right)_{b(t)}\left(v^{\prime}(t)\right)\right|^{2} \\
& +2 r^{\prime}(t) r(t)\left\langle\left(d \exp _{p}\right)_{(b(t))}(v(t)),\left(d \exp _{p}\right)_{(b(t))}\left(v^{\prime}(t)\right)\right\rangle
\end{aligned}
$$

Note that $v(t)$ is a scalar multiple of $b(t)$, so by Gauss's lemma.

$$
\begin{aligned}
& \left|\left(d \exp _{p}\right)_{(b(t))}(v(t))\right|^{2}=|v(t)|^{2}=1 \\
& \left\langle\left(d \exp _{p}\right)_{(b(t))}(v(t)),\left(d \exp _{p}\right)_{(b(t))}\left(v^{\prime}(t)\right)\right\rangle=\left\langle v(t), v^{\prime}(t)\right\rangle=0
\end{aligned}
$$

Therefore,

$$
\left|\frac{d c}{d t}(t)\right|=\sqrt{r^{\prime}(t)^{2}+r(t)^{2}\left|\left(d \exp _{p}\right)_{b(t)}\left(v^{\prime}(t)\right)\right|^{2}} \geq\left|r^{\prime}(t)\right| \geq r^{\prime}(t)
$$

So the length of c satisfies

$$
l(c)=\int_{0}^{1}\left|\frac{d c}{d t}(t)\right| d t \geq \int_{0}^{1} r^{\prime}(t) d t=r(1)-r(0)=l(\gamma)
$$

Equality holds if and only if $v^{\prime}(t)=0$ and $\frac{d r}{d t} \geq 0$. In this case, $v(t)=v$ is a constant unit vector, and

$$
c(t)=\exp _{p}(r(t) v)
$$

which has the same image as $\gamma(t)=\exp _{p}(l(\gamma) t v)$.

21. Wednesday, November 25, 2015

Theorem 21.1. Let (M, g) be a Riemannian manifold and let p be a point of M. Then there is an open neighborhood W of p in M and $\delta>0$ such that for any $q \in W, \exp _{q}$ is a diffeomorphism from $B_{\delta}(0) \subset T_{q} M$ onto the geodesic ball $B_{\delta}(q)$, and $W \subset B_{\delta}(q)$.

In particular, W is a normal neighborhood of q for any $q \in W$. We call W a totally geodesic neighborhood of p in M.

Proof. There is an open neighborhood V of p in M and an $\epsilon>0$ such that $\gamma(t, q, v)$ is defined for any $t \in(-2,2), q \in V$, and $|v|<\epsilon$. Then $\exp _{q}(v)=\gamma(1, q, v)$ is defined for $(q, v) \in U_{(V, \epsilon)}:=\{(q, v) \in T M: q \in V,|v|<\epsilon\}$.

Define $F: U_{(V, \epsilon)} \rightarrow M \times M$ be

$$
F(q, v)=\left(q, \exp _{q}(v)\right)
$$

We now compute

$$
d F_{(p, 0)}: T_{(p, 0)} T M=T_{p} M \times T_{p} M \longrightarrow T_{(p, p)}(M \times M)=T_{p} M \times T_{p} M
$$

For any $q \in V$, we have $F(q, 0)=\left(q, \exp _{q}(0)\right)=(q, q)$. This implies that

$$
d F_{(p, 0)}(u, 0)=(u, u)
$$

For any $v \in T_{q} M$, we have $F(p, v)=\left(p, \exp _{p} v\right)$. This implies that

$$
d F_{(p, 0)}(0, v)=\left(0,\left(d \exp _{p}\right)_{0}(v)\right)=(0, v)
$$

Therefore

$$
d F_{(p, 0)}=\left[\begin{array}{ll}
I & 0 \\
I & I
\end{array}\right]
$$

where $I: T_{p} M \rightarrow T_{p} M$ is the identity map. In particular, $d F_{(p, 0)}$ is a linear isomorphism. By the Inverse Function Theorem, there exists an open neighborhood V^{\prime} of p in $M, V^{\prime} \subset V$, and $\delta \in(0, \epsilon)$, such that $\left.F\right|_{U_{\left(V^{\prime}, \delta\right)}}$ is a diffeomorphism onto its image $W^{\prime}:=F\left(U_{\left(V^{\prime}, \delta\right)}\right)$, which is an open neighborhood of (p, p) in $M \times M$. There is an open neighborhood W of p in M such that

$$
W \times W \subset W^{\prime}=\bigcup_{q \in V^{\prime}}\{q\} \times B_{\delta}(q)
$$

Therefore $W \subset B_{\delta}(q)$ for all $q \in W$.
Corollary 21.2. For any $q_{1}, q_{2} \in W$, there is a unique geodesic γ joining q_{1} and q_{2}.

Corollary 21.3. Let $\gamma:[a, b] \rightarrow M$ be a piecewise smooth curve and write $\gamma(a)=p$ and $\gamma(b)=q$. Suppose that for any piecewise smooth curve $\beta:[c, d] \rightarrow M$ such that $\beta(c)=p$ and $\beta(d)=q$, the length of β is at least the length of γ. Then γ is a geodesic.

Definition 21.4. Let (M, g) be a Riemannian manifold. We say that an open subset $S \subset M$ is strongly convex if for each pair q_{1}, q_{2} in the closure \bar{S} of S, there is a unique minimizing geodesic γ such that $\gamma(0)=q_{1}, \gamma(1)=q_{2}$, and $\gamma((0,1)) \subset S$.

Example 21.5. Let $(M, g)=\left(\mathbb{R}^{n}, g_{0}\right)$ be the Euclidean space. Then strongly convex implies convex in the usual sense: $S \subset \mathbb{R}^{n}$ is convex if for any $q_{1}, q_{2} \in S$, the line segment $\overline{q_{1} q_{2}}$ connecting q_{1} and q_{2} is contained in S. An open ball in
$\left(\mathbb{R}^{n}, g_{0}\right)$ is strongly convex, thus convex. The set $(0,1)^{n}$ is convex but not strongly convex.

Proposition 21.6. For each $p \in M$ there is a $\beta>0$ such that $B_{\beta}(p)$ is strongly convex.

Proof. See [dC, Chapter 3, Section 4].
Example 21.7. Let p be any point in the Euclidean space $\left(\mathbb{R}^{n}, g_{0}\right)$. Then the geodesic ball $B_{r}(p)$ is strongly convex for $r>0$.

Let p be a point in the round sphere $\left(S^{n}, g_{\text {can }}\right)$ of radius 1 . Then the geodesic ball $B_{r}(p)$ is strongly convex when $0<r<\pi / 2$, but not strongly convex when $\pi / 2 \leq r<\pi$.

Curvature

Let (M, g) be a Riemannian manifold with ∇ the Levi-Civita connection. Let $\mathfrak{X}(M)$ be the space of smooth vector fields on M.

Definition 21.8. For $X, Y \in \mathfrak{X}(M)$, define an \mathbb{R}-linear map $R(X, Y): \mathfrak{X}(M) \rightarrow$ $\mathfrak{X}(M)$ by the rule

$$
R(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z=\left[\nabla_{Y}, \nabla_{X}\right] Z-\nabla_{[Y, X]} Z
$$

Proposition 21.9. The map $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ given by $(X, Y, Z) \mapsto R(X, Y) Z$
(i) is anti-symmetric in X, Y
(ii) is $C^{\infty}(M)$-linear in X, Y, Z.

Therefore R can be viewed as an element of

$$
\Omega^{2}(M, \operatorname{End} T M):=C^{\infty}\left(M, \Lambda^{2} T^{*} M \otimes T^{*} M \otimes T M\right)
$$

that is, R is an $\operatorname{End}(T M)$ valued 2 -form on M. In particular, R is a (1,3)-tensor.
Proof. (i) is clear from the definition. Given (i), it remains to show that for any $X, Y, Z \in \mathfrak{X}(M)$ and any $f \in C^{\infty}(M)$,
(a) $R(f X, Y) Z=f R(X, Y) Z$, and
(b) $R(X, Y)(f Z)=f R(X, Y) Z$

$$
\begin{aligned}
R(f X, Y) Z= & \nabla_{Y} \nabla_{f X} Z-\nabla_{f X} \nabla_{Y} Z+\nabla_{[f X, Y]} Z \\
= & \nabla_{Y}\left(f \nabla_{X} Z\right)-f \nabla_{X} \nabla_{Y} Z+\nabla_{f[X, Y]-Y(f) X} Z \\
= & Y(f) \nabla_{X} Z+f \nabla_{Y} \nabla_{X} Z-f \nabla_{X} \nabla_{Y} Z+f \nabla_{[X, Y]} Z-Y(f) \nabla_{X} Z \\
= & f R(X, Y) Z \\
R(X, Y)(f Z)= & \nabla_{Y} \nabla_{X}(f Z)-\nabla_{X} \nabla_{Y}(f Z)+\nabla_{[X, Y]}(f Z) \\
= & \nabla_{Y}\left(X(f) Z+f \nabla_{X} Z\right)-\nabla_{X}\left(Y(f) Z+f \nabla_{Y} Z\right)+([X, Y] f) Z+f \nabla_{[X, Y]} Z \\
= & Y X(f) Z+X(f) \nabla_{Y} Z+Y(f) \nabla_{X} Z+f \nabla_{X} \nabla_{Y} Z \\
& -X Y(f) Z-Y(f) \nabla_{X} Z-X(f) \nabla_{Y} Z-f \nabla_{Y} \nabla_{X} Z \\
& +(X Y(f)-Y X(f)) Z+f \nabla_{[X, Y]} Z \\
= & f R(X, Y) Z
\end{aligned}
$$

Proposition 21.10 (Bianchi identity). We have

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

Proof. See dC page 91.
Definition 21.11. For $X, Y, Z, T \in \mathfrak{X}(M)$, define

$$
R(X, Y, Z, T):=\langle R(X, Y) Z, T\rangle
$$

Then $R(X, Y, Z, T)$ is $C^{\infty}(M)$-linear in each slot, so it is a $(0,4)$ tensor.
Proposition 21.12. The $(0,4)$ tensor $R(X, Y, Z, T)$ satisfies the following properties.
(a) $R(X, Y, Z, T)+R(Y, Z, X, T)+R(Z, X, Y, T)=0$. (the Bianchi identity)
(b) $R \in C^{\infty}\left(M, \operatorname{Sym}^{2}\left(\Lambda^{2} T^{*} M\right)\right.$, i.e.
(b1) $R(X, Y, Z, T)=-R(Y, X, Z, T)$
(b2) $R(X, Y, Z, T)=-R(X, Y, T, Z)$
(b3) $R(X, Y, Z, T)=R(Z, T, X, Y)$
Proof. See dC] page 91-92.

22. Monday, November 30, 2015

The Riemannian curvature tensor in local coordinates

Let (U, ϕ) be a C^{∞} chart in M. Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates on U. Let T be any (r, s) tensor on M. Then on U,

$$
T=\sum_{\substack{i_{1}, \ldots, i_{r} \\ j_{1}, \ldots, j_{s}}} T_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x_{j_{1}} \otimes \cdots \otimes d x_{j_{s}}
$$

where $T_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}} \in C^{\infty}(U)$.
As a $(1,3)$ tensor,

$$
R=\sum_{i, j, k, m} R_{i j k}^{m} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes \frac{\partial}{\partial x_{m}}
$$

where $R_{i j k}{ }^{m} \in C^{\infty}(U)$ is determined by

$$
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{l} R_{i j k}^{m} \frac{\partial}{\partial x_{m}} .
$$

As a $(0,4)$ tensor,

$$
R=\sum_{i, j, k, l} R_{i j k l} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes d x_{l}
$$

where
$R_{i j k l}=R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}}\right)=\left\langle R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}}\right\rangle=\sum_{m} R_{i j k}{ }^{m} g_{m l} \in C^{\infty}(U)$.
By Proposition 21.12 ,
$R_{i j k l}+R_{j k i l}+R_{k i j l}=0, \quad R_{i j k l}=-R_{j i k l}, \quad R_{i j k l}=-R_{i j l k}, \quad R_{i j k l}=R_{k l i j}$.
We now express $R_{i j k}{ }^{m}$ in terms of the Christoffel symbol $\Gamma_{i j}^{k}$.

$$
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\nabla_{\frac{\partial}{\partial x_{j}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k}}-\nabla_{\frac{\partial}{\partial x_{i}}} \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}}+\nabla_{\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]} \frac{\partial}{\partial x_{k}}
$$

where $\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0$, and

$$
\begin{aligned}
\nabla_{\frac{\partial}{\partial x_{j}}} \nabla_{\partial \frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k}} & =\nabla_{\frac{\partial}{\partial x_{j}}}\left(\sum_{l} \Gamma_{i k}^{l} \frac{\partial}{\partial x_{l}}\right) \\
& =\sum_{l} \frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}} \frac{\partial}{\partial x_{l}}+\sum_{l} \Gamma_{i k}^{l} \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{l}} \\
& =\sum_{m} \frac{\partial \Gamma_{i k}^{m}}{\partial x_{j}} \frac{\partial}{\partial x_{m}}+\sum_{l, m} \Gamma_{i k}^{l} \Gamma_{j l}^{m} \frac{\partial}{\partial x_{m}}
\end{aligned}
$$

So

$$
\begin{gathered}
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{m}\left(\frac{\partial \Gamma_{i k}^{m}}{\partial x_{j}}-\frac{\partial \Gamma_{j k}^{m}}{\partial x_{i}}+\sum_{l} \Gamma_{i k}^{l} \Gamma_{j l}^{m}-\sum_{l} \Gamma_{j k}^{l} \Gamma_{i l}^{m}\right) \frac{\partial}{\partial x_{m}} . \\
R_{i j k}^{m}=\frac{\partial \Gamma_{i k}^{m}}{\partial x_{j}}-\frac{\partial \Gamma_{j k}^{m}}{\partial x_{i}}+\sum_{l} \Gamma_{i k}^{l} \Gamma_{j l}^{m}-\sum_{l} \Gamma_{j k}^{l} \Gamma_{i l}^{m}
\end{gathered}
$$

Sectional Curvature

If we fix a point p in a Riemannian manifold (M, g), then $V=T_{p} M$ is an inner product space.

In general, an inner product on a vector space $V \cong \mathbb{R}^{n}$ induces an inner product on $\Lambda^{2} V$ as follows: if $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V then $\left\{e_{i} \wedge e_{j}: 1 \leq\right.$ $i<j \leq n\}$ is an orthonormal basis of $\Lambda^{2} V$. Equivalently, if $x, y \in V$ then

$$
|x \wedge y|^{2}=\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2} .
$$

Definition 22.1. Let (M, g) be a Riemannian manifold with p a point of M and σ a 2 dimensional subspace of $T_{p} M$. Define the sectional curvature of σ, denoted $K(\sigma, p)$, to be

$$
K(\sigma, p)=\frac{R(p)(x, y, x, y)}{|x \wedge y|^{2}}
$$

where $\{x, y\}$ is a basis of σ.
This is well-defined because if $\left\{x^{\prime}, y^{\prime}\right\}$ is another basis of σ then $x^{\prime}=a x+b y$ and $y^{\prime}=c x+d y$ for some

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{R}) .
$$

The by (b1) and (b2) of Proposition 21.12,

$$
R(p)\left(x^{\prime}, y^{\prime}, x^{\prime}, y^{\prime}\right)=(a d-b c)^{2} R(p)(x, y, x, y) .
$$

We also have

$$
x^{\prime} \wedge y^{\prime}=(a d-b c) x \wedge y \Rightarrow\left|x^{\prime} \wedge y^{\prime}\right|^{2}=(a d-b c)^{2}|x \wedge y|^{2} .
$$

Lemma 22.2. Let V be an inner product space. Suppose that $r, r^{\prime}: V \times V \times V \times V \rightarrow$ \mathbb{R} are \mathbb{R}-linear in each factor and satisfy
(a) $r(x, y, z, t)+r(y, z, x, t)+r(z, x, y, t)=0$.
(b1) $r(x, y, z, t)=-r(y, x, z, t)$.
(b2) $r(x, y, z, t)=-r(x, y, t, z)$.
(b3) $r(x, y, z, t)=r(z, t, x, y)$.

Define $K, K^{\prime}: G r(2, V) \rightarrow \mathbb{R}$ by

$$
K(\sigma)=\frac{r(x, y, x, y)}{|x \wedge y|^{2}}, \quad K^{\prime}(\sigma)=\frac{r^{\prime}(x, y, x, y)}{|x \wedge y|^{2}}
$$

where $\{x, y\}$ is any basis of the 2-dimensional subspace σ of V; this is well-defined by (b1) and (b2). If $K=K^{\prime}$, then $r=r^{\prime}$.

Proof. Let $\Delta=r-r^{\prime}: V \times V \times V \times V \rightarrow \mathbb{R}$. Then
(1) Δ is \mathbb{R}-linear in each factor.
(2) Δ satisfies (a), (b1), (b2), (b3).
(3) $\Delta(x, y, x, y)=0$ for any $x, y \in V$.

We want to show that $\Delta \equiv 0$.
For each $x, y, z \in V$, by (3), we have

$$
\begin{array}{rlrl}
0 & =\Delta(x+z, y, x+z, y)-\Delta(x, y, x, y)-\Delta(z, y, z, y) & \\
& =\Delta(x, y, z, y)+\Delta(z, y, x, y) & & \text { by linearity } \\
& =2 \Delta(x, y, z, y) & & \text { by }(\mathrm{b} 3) .
\end{array}
$$

For any $x, y, z, t \in V$, we have

$$
\begin{array}{rlr}
0 & =\Delta(x, y+t, z, y+t)-\Delta(x, y, z, y)-\Delta(x, t, z, t) & \text { by last paragraph } \\
& =\Delta(x, y, z, t)+\Delta(x, t, z, y) & \text { linearity } \\
& =\Delta(x, y, z, t)+\Delta(z, y, x, t) & (\mathrm{b} 3) \\
& =\Delta(x, y, z, t)-\Delta(y, z, x, t) & (\mathrm{b} 1) \tag{b1}
\end{array}
$$

Therefore,

$$
\Delta(x, y, z, t)=\Delta(y, z, x, t)=\Delta(z, x, y, t)
$$

By (a),

$$
\Delta(x, y, z, t)+\Delta(y, z, x, t)+\Delta(z, x, y, t)=0
$$

We conclude that

$$
\Delta(x, y, z, t)=0
$$

for all $x, y, z, t \in V$. This completes the proof.
Corollary 22.3. The sectional curvature determines the Riemannian curvature tensor.

Definition 22.4. We say that (M, g) has constant sectional curvature K_{0} if for each $p \in M$ and for any $\sigma \in \operatorname{Gr}\left(2, T_{p} M\right)$, we have $K(\sigma)=K_{0}$.

Lemma 22.5. Define $r^{\prime}: V \times V \times V \times V \rightarrow \mathbb{R}$ by

$$
r^{\prime}(x, y, z, t)=\langle x, z\rangle\langle y, t\rangle-\langle x, t\rangle\langle y, z\rangle .
$$

Then
(1) r^{\prime} is \mathbb{R}-linear in each factor
(2) r^{\prime} satisfies (a), (b1), (b2), (b3) in Lemma 22.2.
(3) For any $x, y \in V$, we have $r^{\prime}(x, y, x, y)=|x \wedge y|^{2}$.

Corollary 22.6. The Riemannian manifold (M, g) has constant sectional curvature K_{0} if and only if for each $X, Y, Z, T \in \mathfrak{X}(M)$, we have

$$
R(X, Y, Z, T)=K_{0}(\langle X, Z\rangle\langle Y, T\rangle-\langle X, T\rangle\langle Y, Z\rangle)
$$

Definition 22.7. We say a Riemannian manifold (M, g) is flat if its Riemannian curvature tensor is identically zero.

Remark 22.8. By Corollary 22.6, (M, g) is flat if and only if M has constant sectional curvature equal to zero.
Example 22.9. Euclidean space ($\mathbb{R}^{n}, g_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}$) is flat, since the Christoffel symbols are zero and hence $R_{i j k l}$ are zero. Hence (\mathbb{R}^{n}, g_{0}) has constant sectional curvature equal to zero.

Lemma 22.10. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be a local isometry, that is, f is a local diffeomorphism and $f^{*} g_{2}=g_{1}$. Let R_{1} be the curvature tensor of $\left(M_{1}, g_{1}\right)$ and let R_{2} be the curvature tensor of $\left(M_{2}, g_{2}\right)$. Then $R_{1}=f^{*} R_{2}$.

Proof. In terms of local coordinates, we see that the local coordinates are equal and the $g_{i j}$ are equal, hence so are the curvature tensors.

Example 22.11 (Flat n-torus). There is a local isometry from $\left(\mathbb{R}^{n}, g_{0}\right)$ to ($T^{n}=$ $\left.\left(S^{1}\right)^{n}, g:=\left(g_{\text {can }}\right)^{n}\right)$. Therefore $\left(T^{n}, g\right)$ is flat.

Example 22.12. - At a future time, we will see that $\left(S^{n}, g_{\text {can }}\right)$ has constant sectional curvature equal to +1 . As a consequence, $\left(S^{n}, r^{2} g_{\text {can }}\right)$ (the round sphere of radius $r>0$) has constant sectional curvature equal to $K=1 / r^{2}$.

- We will also see that $\mathcal{H}^{n}=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: y_{n}>0\right\}$ (upper half space) equipped with

$$
g_{n}=\frac{d y_{1}^{2}+\cdots+d y_{n}^{2}}{y_{n}^{2}}
$$

has constant sectional curvature $K=-1$.

Two-dimensional case

Let (M, g) be a 2-dimensional Riemannian manifold. Let (U, ϕ) be a C^{∞} chart on M, and let $\left(x_{1}, x_{2}\right)$ be local coordinates on U. Then on U we have

$$
\begin{gathered}
g=g_{11} d x_{1}^{2}+g_{12} d x_{1} d x_{2}+g_{21} d x_{2} d x_{1}+g_{22} d x_{2}^{2}=g_{11} d x_{1}^{2}+2 g_{12} d x_{1} d x_{2}+g_{22} d x_{2}^{2} \\
R=\sum_{i, j, k, l=1}^{2} R_{i j k l} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes d x_{l}=R_{1212}\left(d x_{1} \wedge d x_{2}\right) \otimes\left(d x_{1} \wedge d x_{2}\right)
\end{gathered}
$$

The only 2-dimensional subspace of $T_{p} M$ is itself. So in this case the sectional curvature K is a smooth function on $M: K(p)=K\left(p, T_{p} M\right)$ for $p \in M$.

$$
K=\frac{R_{1212}}{g_{11} g_{22}-g_{12}^{2}}
$$

Example 22.13. $(M, g)=\left(S^{2}, g_{\mathrm{can}}=d \phi^{2}+\sin ^{2} \phi d \theta^{2}\right)$. By Example 17.5 ,

$$
\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0, \quad \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}=\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}=\cot \theta \frac{\partial}{\partial \theta}, \quad \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}=-\sin \phi \cos \phi \frac{\partial}{\partial \phi} .
$$

Let $\left(x_{1}, x_{2}\right)=(\phi, \theta)$. Then

$$
R_{1212}=\left\langle R\left(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta}\right\rangle\right.
$$

where

$$
\begin{gathered}
R\left(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta}\right) \frac{\partial}{\partial \phi}=\nabla_{\frac{\partial}{\partial \theta}} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}-\nabla_{\frac{\partial}{\partial \phi}} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\left[\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta}\right]} \frac{\partial}{\partial \phi} \\
=0-\nabla_{\frac{\partial}{\partial \phi}}\left(\cot \phi \frac{\partial}{\partial \theta}\right)+0=\csc ^{2} \phi \frac{\partial}{\partial \theta}-\cot ^{2} \phi \frac{\partial}{\partial \theta}=\frac{\partial}{\partial \theta} \\
R_{1212}=\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right\rangle=\sin ^{2} \phi \\
g_{11} g_{22}-g_{12}^{2}=\sin ^{2} \phi
\end{gathered}
$$

So

$$
K=\frac{R_{1212}}{g_{11} g_{22}-g_{12}^{2}}=1
$$

Ricci curvature

Definition 22.14. For any $p \in M$, define a symmetric bilinear form Q_{p} on $T_{p} M$ by

$$
\begin{aligned}
Q_{p}(x, y) & :=\operatorname{Trace}\left(T_{p} M \ni v \mapsto R(x, v, y) \in T_{p} M\right) \\
& =\sum_{i=1}^{n} R\left(x, e_{i}, y, e_{i}\right)
\end{aligned}
$$

for an orthonormal basis $\left\{e_{i}\right\}$ of $T_{p} M$. We then define

$$
\operatorname{Ric}_{p}=\frac{1}{n-1} Q_{p}
$$

which is a symmetric $(0,2)$-tensor on (M, g). (Note that this is the same type of tensor as g.)

Why do we use $\frac{1}{n-1}$? Suppose that (M, g) has constant sectional curvature K_{0}. Then
$Q_{p}(x, y)=\sum_{i=1}^{n} K_{0}\left(\langle x, y\rangle\left\langle e_{i}, e_{i}\right\rangle-\left\langle x, e_{i}\right\rangle\left\langle y, e_{i}\right\rangle\right)=K_{0}(n\langle x, y\rangle-\langle x, y\rangle)=(n-1) K_{0}\langle x, y\rangle$.
So then $\operatorname{Ric}_{p}(x, y)=K_{0}\langle x, y\rangle$.
In terms of local coordinates, we let

$$
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}=\sum_{l} R_{i k j} \frac{\partial}{\partial x_{l}} .
$$

We let

$$
R_{i j}:=Q\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\operatorname{Trace}\left(\frac{\partial}{\partial x_{k}} \mapsto R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}\right)=\sum_{k} R_{i k j}^{k}=\sum_{k, l} R_{i k j l} g^{k l} .
$$

Then $Q=\sum_{i, j} R_{i j} d x_{i} \otimes d x_{j}$, where $R_{i j}=R_{j i}$. So

$$
\text { Ric }=\frac{1}{n-1} \sum_{i, j} R_{i j} d x_{i} \otimes d x_{j}, \quad \text { where } R_{i j}=\sum_{k, l} R_{i k j l} g^{k l}
$$

Scalar curvature

Definition 23.1. Let (M, g) be a Riemannian manifold. The scalar curvature S of (M, g) is a smooth function on M defined as follows. For each point $p \in M$, define a linear $\operatorname{map} K_{p}: T_{p} M \rightarrow T_{p} M$ by

$$
\left\langle K_{p}(x), y\right\rangle=Q_{p}(x, y)
$$

Then K_{p} is self-adjoint, meaning $\left\langle K_{p}(x), y\right\rangle=\left\langle x, K_{p}(y)\right\rangle$. We then define

$$
\begin{aligned}
S(p) & :=\frac{1}{n(n-1)} \operatorname{Trace}\left(K_{p}\right)=\frac{1}{n(n-1)} \sum_{i=1}^{n} Q_{p}\left(e_{i}, e_{i}\right) \\
& =\frac{1}{n(n-1)} \sum_{i, j} R(p)\left(e_{i}, e_{j}, e_{i}, e_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Ric}_{p}\left(e_{i}, e_{i}\right)
\end{aligned}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is any orthonormal basis of $T_{p} M$.
We see that if (M, g) has constant sectional curvature K_{0}, we have Ric $=K_{0} g$ and hence $S(p)=K_{0}$ for all $p \in M$.

In terms of local coordinates, we have

$$
n(n-1) S=R_{i}^{i}=R_{i j} g^{i j}=R_{i j k l} g^{i k} g^{j l}
$$

In the special case, when $n=2$, we have

$$
R=R_{1212}\left(d x_{1} \wedge d x_{2}\right) \otimes\left(d x_{1} \wedge d x_{2}\right)
$$

and

$$
\begin{aligned}
S & =\frac{1}{2}\left(R_{1212} g^{11} g^{22}+R_{2112} g^{21} g^{12}+R_{1221} g^{12} g^{21}+R_{2121} g^{22} g^{11}\right) \\
& =\frac{1}{2} R_{1212}\left(2 g^{11} g^{22}-2\left(g^{12}\right)^{2}\right)=R_{1212}\left(g^{22} g^{11}-\left(g^{12}\right)^{2}\right)=\frac{R_{1212}}{g_{11} g_{22}-g_{12}^{2}}=K
\end{aligned}
$$

Covariant derivatives for tensors

References: dC, Chapter 4 Section 5], [GHL, 2B.3])
Proposition 23.2. Let ∇ be an affine connection on a smooth manifold M. Let X be a smooth vector field on M and let $\nabla_{X}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ denote the covariant derivative along X. Then ∇_{X} has a unique extension

$$
\nabla_{X}: C^{\infty}\left(M, T_{s}^{r} M\right) \rightarrow C^{\infty}\left(M, T_{s}^{r} M\right)
$$

such that
(i) $\nabla_{X}(c(S))=c\left(\nabla_{X}(S)\right)$ for any tensor S and any contraction c
(ii) $\nabla_{X}(S \otimes T)=\left(\nabla_{X} S\right) \otimes T+S \otimes \nabla_{X} T$ for any tensors S, T.

Proof. For $f \in C^{\infty}(M)$, we must define $\nabla_{X} f=X(f)$ by the Leibniz rule and (ii). For a $(0,1)$-tensor $\alpha \in \Omega^{1}(M)$ and a vector field Y, we must have

$$
\begin{aligned}
X(\alpha(Y)) & =\nabla_{X}(\alpha(Y))=\nabla_{X}(c(Y \otimes \alpha))=c\left(\nabla_{X}(Y \otimes \alpha)\right) \\
& =c\left(\nabla_{X} Y \otimes \alpha+Y \otimes \nabla_{X} \alpha\right)=\alpha\left(\nabla_{X} Y\right)+\left(\nabla_{X} \alpha\right)(Y) .
\end{aligned}
$$

This implies that

$$
\left(\nabla_{X} \alpha\right)(Y)=X(\alpha(Y))-\alpha\left(\nabla_{X} Y\right)
$$

By (ii) the covariant derivative ∇_{X} along X on (r, s) tensors is uniquely determined by the covariant derivative on $(1,0)$ tensors (vector fields) and $(0,1)$ tensors (1-forms). In particular, if T is a $(0, s)$-tensor and $Y_{1}, \ldots, Y_{s} \in \mathfrak{X}(M)$ then

$$
\nabla_{X} T\left(Y_{1}, \ldots, Y_{s}\right)=X\left(T\left(Y_{1}, \ldots, Y_{s}\right)\right)-\sum_{i=1}^{s} T\left(Y_{1}, \ldots, Y_{i-1}, \nabla_{X} Y_{i}, Y_{i+1}, \ldots, Y_{s}\right)
$$

Recall that the Lie derivative behaved similarly. In particular, we had

$$
L_{X} T\left(Y_{1}, \ldots, Y_{s}\right)=X\left(T\left(Y_{1}, \ldots, Y_{s}\right)\right)-\sum_{i=1}^{s} T\left(Y_{1}, \ldots, L_{X} Y_{i}, \ldots, Y_{s}\right)
$$

This definition does not depend on the connection. However, the definition of $\nabla_{X} T$ does.

Remark 23.3. Geometrically, the Lie derivative L_{X} is the derivative of the pullback of a tensor under a flow ϕ_{t} of a vector field X. Also, there is a geometric interpretation of ∇_{X}. We take an integral curve γ of X and we look at $\left.\frac{D}{d t} T(\gamma(t))\right|_{t=0}$.

The map $X \mapsto \nabla_{X} T$ is $C^{\infty}(M)$-linear in X, but the map $X \mapsto L_{X} T$ is \mathbb{R}-linear but not $C^{\infty}(M)$-linear in X.

We may view ∇ as a map

$$
\nabla: C^{\infty}\left(M, T_{s}^{r} M\right) \rightarrow C^{\infty}\left(M, T_{s+1}^{r} M\right)
$$

by the map $T \mapsto \nabla T$ where

$$
\nabla T\left(X_{1}, \ldots, X_{s+1}\right)=\left(\nabla_{X_{s+1}} T\right)\left(X_{1}, \ldots, X_{s}\right)
$$

On a coordinate neighborhood U, let $\Gamma_{i j}^{k} \in C^{\infty}(U)$ be defined by

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}
$$

(The right hand side is a sum over k. We will continue to use this summation convention.)

$$
\left(\nabla_{\frac{\partial}{\partial x_{i}}} d x_{j}\right)\left(\frac{\partial}{\partial x_{k}}\right)=\frac{\partial}{\partial x_{i}}\left(d x_{j}\left(\frac{\partial}{\partial x_{k}}\right)\right)-d x^{j}\left(\Gamma_{i k}^{l} \frac{\partial}{\partial x_{l}}\right)=-\Gamma_{i k}^{j}
$$

So we find that

$$
\nabla_{\frac{\partial}{\partial x_{i}}} d x^{j}=-\Gamma_{i k}^{j} d x^{k}
$$

If T is an (r, s) tensor, then on U we can write

$$
T=T_{j_{1} \cdots j_{s}}^{i_{1} \ldots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x^{j_{1}} \otimes \cdots \otimes d x^{j_{s}}
$$

On U we may write

$$
\nabla T=(\nabla T)_{j_{1} \cdots j_{s+1}}^{i_{1} \cdots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x^{j_{1}} \otimes \cdots \otimes d x^{j_{s+1}}
$$

Our goal is to find $(\nabla T)_{j_{1} \cdots j_{s+1}}^{i_{1} \cdots i_{r}}$. We introduce the notation

$$
T_{j_{1} \cdots j_{s}, j_{s+1}}^{i_{1} \cdots i_{r}}=(\nabla T)_{j_{1} \cdots j_{s+1}}^{i_{1} \cdots i_{r}}=\left(\nabla_{\frac{\partial}{\partial x_{j_{s+1}}}} T\right)_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{r}} .
$$

By this notation, we find that

$$
\nabla_{\frac{\partial}{\partial x_{k}}} T=T_{j_{1} \cdots j_{s}, k}^{i_{1} \cdots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x^{j_{1}} \otimes \cdots \otimes d x^{j_{s}} .
$$

On the other hand, we can apply Leibniz rule, and the above boxed equations to find that (see Assignment 12 Problem 4):

$$
T_{j_{1} \cdots j_{s}, k}^{i_{1} \cdots i_{r}}=\frac{\partial}{\partial x_{k}}\left(T_{j_{1} \cdots j_{s}}^{i_{1} \ldots i_{r}}\right)+\sum_{\alpha=1}^{r} \Gamma_{k l}^{i_{\alpha}} T_{j_{1} \cdots j_{s}}^{i_{1} \cdots i_{\alpha-1} l i_{\alpha+1} \cdots i_{r}}-\sum_{\beta=1}^{s} \Gamma_{k i_{\beta}}^{l} T_{j_{1} \cdots j_{\beta-1} l i_{\beta+1} \cdots i_{s}}^{i_{1} \cdots i_{r}}
$$

Proposition 23.4. Let ∇ be an affine connection on a Riemannian manifold (M, g). Then ∇ is compatible with g if and only if $\nabla g=0$.

Proof. If $\nabla g=0$, then $\nabla g(X, Y, Z)=0$ for all $X, Y, Z \in \mathfrak{X}(M)$. But this implies that

$$
0=\nabla g(X, Y, Z)=\left(\nabla_{Z} g\right)(X, Y)=Z(g(X, Y))-g\left(\nabla_{Z} X, Y\right)-g\left(X, \nabla_{Z} Y\right)
$$

which implies that ∇ is compatible with g. This argument is reversible.
Proposition 23.5. Let ∇ be an affine connection. Then ∇ is symmetric (that is, $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$) if and only if for any 1-form α on M and any vector fields $X, Y \in \mathfrak{X}(M)$, we have

$$
(d \alpha)(X, Y)=(\nabla \alpha)(Y, X)-(\nabla \alpha)(X, Y)
$$

Proof. We have

$$
d \alpha(X, Y)=X(\alpha(Y))-Y(\alpha(X))-\alpha([X, Y])
$$

and

$$
(\nabla \alpha)(Y, X)=\left(\nabla_{X} \alpha\right)(Y)=X(\alpha(Y))-\alpha\left(\nabla_{X} Y\right)
$$

The claim now follows easily.
Let ∇ be the Levi-Civita connection on (M, g). For a smooth function f, we get a one-form $\nabla f \in \Omega^{1}(M)$, defined by

$$
(\nabla f)(X)=\nabla_{X} f=X(f)
$$

so

$$
\nabla f=d f
$$

In particular, we find that

$$
d f=f_{, i} d x^{i} \quad f_{, i}=\frac{\partial f}{\partial x_{i}}
$$

Gradient, Divergence, Hessian, and Laplacian

Definition 23.6. For a smooth function $f \in C^{\infty}(M)$, we define a vector field $\operatorname{grad}(f) \in \mathfrak{X}(M)$, called the gradient of f, by the rule

$$
\langle\operatorname{grad}(f), X\rangle=d f(X)
$$

Write $\operatorname{grad}(f)=\operatorname{grad}(f)^{j} \frac{\partial}{\partial x_{j}}$. Then

$$
f_{, j}=\frac{\partial f}{\partial x_{j}}=d f\left(\frac{\partial}{\partial x_{j}}\right)=\left\langle\operatorname{grad}(f), \frac{\partial}{\partial x_{j}}\right\rangle=\operatorname{grad}(f)^{i} g_{i j}
$$

Therefore,

$$
\operatorname{grad} f=f_{,}{ }^{i} \frac{\partial}{\partial x_{i}} \quad f_{,}{ }^{i}=f_{, j} g^{i j}=\frac{\partial f}{\partial x_{j}} g^{i j}
$$

Definition 23.7. For a vector field Y on M, we define a smooth function $\operatorname{div} Y$, called the divergence of Y by the rule

$$
\operatorname{div} Y=c(\nabla Y)
$$

where c denotes contraction.
Write $Y=Y^{i} \frac{\partial}{\partial x_{i}}$. Then

$$
\nabla Y=Y_{, j}^{i} \frac{\partial}{\partial x_{i}} \otimes d x_{j}, \quad Y_{, j}^{i}=\frac{\partial Y^{i}}{\partial x_{j}}+\Gamma_{j k}^{i} Y^{k}
$$

Therefore,

$$
\operatorname{div} Y=Y_{, i}^{i}=\frac{\partial Y^{i}}{\partial x_{i}}+\Gamma_{i k}^{i} Y^{k}
$$

where $Y=Y^{i} \frac{\partial}{\partial x_{i}}$.
Definition 23.8. For a smooth function f, we define a $(0,2)$-tensor, called the Hessian of f by the rule

$$
\operatorname{Hess} f=\nabla \nabla f=\nabla d f=\nabla\left(f_{, i} d x^{i}\right)=f_{, i j} d x^{i} \otimes d x^{j}
$$

We compute that

$$
f_{, i j}=\frac{\partial f_{, i}}{\partial x_{j}}-\Gamma_{j i}^{k} f_{, k}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}-\Gamma_{j i}^{k} \frac{\partial f}{\partial x_{k}}=f_{, j i}
$$

It follows that $\operatorname{Hess} f$ is a symmetric (0,2)-tensor.
We also compute that

$$
\begin{aligned}
& \operatorname{Hess}(f)(X, Y)=(\nabla d f)(X, Y)=\left(\nabla_{Y} d f\right)(X) \\
& =Y(d f(X))-d f\left(\nabla_{Y} X\right)=Y(X(f))-\left(\nabla_{Y} X\right)(f) .
\end{aligned}
$$

Definition 23.9. For a smooth function f, we define a smooth function Δf, called the Laplacian of f, by the rule

$$
\Delta f=\operatorname{div}(\operatorname{grad} f)=\operatorname{div}\left(f_{,}^{i} \frac{\partial}{\partial x_{i}}\right)=f_{, i}^{i}=f_{, i j} g^{i j}
$$

Locally the Laplacian is given by

$$
\Delta f=g^{i j}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\Gamma_{i j}^{k} \frac{\partial f}{\partial x_{k}}\right)
$$

In normal coordinates at $p \in M$, we know that $g_{i j}(p)=g^{i j}(p)=\delta_{i j}$ and $\Gamma_{i j}^{k}(p)=0$. So we can compute that

$$
\begin{aligned}
(\operatorname{grad} f)(p) & =\left.\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) \frac{\partial}{\partial x_{i}}\right|_{p} \\
(\operatorname{div} Y)(p) & =\sum_{i=1}^{n} \frac{\partial Y^{i}}{\partial x_{i}}(p) \\
(\operatorname{Hess} f)(p) & =\left.\left.\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p) d x^{i}\right|_{p} \otimes d x^{j}\right|_{p} \\
(\Delta f)(p) & =\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(p)
\end{aligned}
$$

24. Monday, December 7, 2015

Curvature of a connection on a vector bundle

Let $E \rightarrow M$ be a smooth vector bundle. Recall that a connection ∇ on E is an \mathbb{R}-linear map

$$
\begin{aligned}
\nabla: \Omega^{0}(M, E) & \rightarrow \Omega^{1}(M, E) \\
s & \mapsto \nabla s
\end{aligned}
$$

such that for $f \in C^{\infty}(M)$ and $s \in \Omega^{0}(M, E)$,

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

Given a vector field $X \in \mathfrak{X}(M)$ and a section $s \in \Omega^{0}(M, E)$, write $\nabla_{X} s=$ $\nabla s(X) \in \Omega^{0}(M, E)$. For vector fields $X, Y \in \mathfrak{X}(M)$, define

$$
R_{\nabla}(X, Y): C^{\infty}(M, E) \rightarrow C^{\infty}(M, E)
$$

by the rule

$$
R_{\nabla}(X, Y) s=\nabla_{X} \nabla_{Y} s-\nabla_{X} \nabla_{Y} s-\nabla_{[X, Y]} s
$$

Then
(i) $R_{\nabla}(X, Y)=-R_{\nabla}(Y, X)$
(ii) $R_{\nabla}(X, Y)$ is $C^{\infty}(M)$-linear in X, Y, and s.

We may therefore view R_{∇} as an element of

$$
\Omega^{2}(M, \operatorname{End} E)=C^{\infty}\left(M, \Lambda^{2} T^{*} M \otimes \operatorname{End} E\right)
$$

We call R_{∇} the curvature of ∇.
For a smooth map $f: N \rightarrow M$, we get a pullback connection $f^{*} \nabla$ on the pullback bundle $f^{*} E \rightarrow N$. Then the curvature $R_{f^{*} \nabla}$ of the pull back connection $f^{*} \nabla$ is the pull back of the curvature R_{∇} of ∇ :

$$
R_{f^{*} \nabla}=f^{*} R_{\nabla} \in \Omega^{2}\left(N, \operatorname{End} f^{*} E\right)
$$

Jacobi Fields

Let (M, g) be a Riemannian manifold. A Jacobi field $J(t)$ is a smooth vector field along a geodesic $\gamma: I \rightarrow M$ which arises in the following way. Consider a smooth map

$$
\begin{aligned}
f:(-\epsilon, \epsilon) \times[0, a] & \rightarrow M \\
(s, t) & \mapsto f_{s}(t)=f(s, t)
\end{aligned}
$$

(which we think of as a family of geodesics parametrized by $s \in(-\epsilon, \epsilon)$) such that for any $s \in(-\epsilon, \epsilon)$, the map $f_{s}:[0, a] \rightarrow M$ is a geodesic and such that $f_{0}=\gamma$. We then set

$$
J(t)=\frac{\partial f}{\partial s}(0, t)
$$

Lemma 24.1. Let $A=(-\epsilon, \epsilon) \times[0, a] \subset \mathbb{R}^{2}$. Let $f: A \rightarrow M$ be any smooth map. Then $\frac{\partial}{\partial s}, \frac{\partial}{\partial t}$ are global vector fields on A. Recall that we have defined

$$
\frac{\partial f}{\partial s}:=f_{*}\left(\frac{\partial}{\partial s}\right), \quad \frac{\partial f}{\partial t}:=f_{*}\left(\frac{\partial}{\partial s}\right) \in C^{\infty}\left(A, f^{*} T M\right)
$$

Let ∇ be the Levi-Civita connection on (M, g) and let $D=f^{*} \nabla$ be the pullback connection on $f^{*} T M$. Then

$$
\begin{gather*}
\frac{D}{\partial s} \frac{\partial f}{\partial t}-\frac{D}{\partial t} \frac{\partial f}{\partial s}=0 \tag{24.1}\\
\frac{D^{2}}{d t^{2}} \frac{\partial f}{\partial s}-\frac{D}{d s}\left(\frac{D}{d t} \frac{\partial f}{\partial t}\right)+R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right) \frac{\partial f}{\partial t}=0 \tag{24.2}
\end{gather*}
$$

Proof. By the symmetric of the pullback connection, we have

$$
\begin{equation*}
0=f_{*}\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]=D_{\frac{\partial}{\partial s}} f_{*} \frac{\partial}{\partial t}-D_{\frac{\partial}{\partial t}} f_{*} \frac{\partial}{\partial s} . \tag{24.3}
\end{equation*}
$$

which can be rewritten as 24.1.
We also have

$$
\begin{equation*}
D_{\frac{\partial}{\partial t}} D_{\frac{\partial}{\partial s}} f_{*} \frac{\partial}{\partial t}-D_{\frac{\partial}{\partial s}} D_{\frac{\partial}{\partial t}} f_{*} \frac{\partial}{\partial t}+D_{\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]} f_{*} \frac{\partial}{\partial t}=f^{*} R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)\left(f_{*} \frac{\partial}{\partial t}\right) \tag{24.4}
\end{equation*}
$$

where $\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]=0$. By (24.3) and 24.4,

$$
\frac{D^{2}}{d t^{2}} \frac{\partial f}{\partial s}-\frac{D}{d s}\left(\frac{D}{d t} \frac{\partial f}{\partial t}\right)=R\left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}\right) \frac{\partial f}{\partial t},
$$

which is equivalent to 24.2 .
We now note that: $f_{s}:[0, a] \rightarrow M$ is a geodesic for any $s \in(-\epsilon, \epsilon)$ if and only if

$$
\frac{D}{d t} \frac{\partial f}{\partial t}(s, t)=0 \quad \text { for any } s, t
$$

Therefore, for a family of geodesics $f_{s}, 24.2$ becomes

$$
\frac{D^{2}}{d t^{2}} \frac{\partial f}{\partial s}+R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right) \frac{\partial f}{\partial t}=0
$$

In particular, for $s=0$, if we set

$$
\frac{\partial f}{\partial t}(0, t)=\gamma^{\prime}(t) \quad \text { and } \quad \frac{\partial f}{\partial s}(0, t)=J(t)
$$

then we see that

$$
\begin{equation*}
\frac{D^{2} J}{d t^{2}}+R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=0 \tag{24.5}
\end{equation*}
$$

Definition 24.2. A vector field $J(t)$ along a geodesics $\gamma:[0, a] \rightarrow M$ is called a Jacobi field if it satisfies the Jacobi equation 24.5.

Proposition 24.3. Let $\gamma:[0, a] \rightarrow M$ be a geodesic, with $\gamma(0)=p$ and $\gamma^{\prime}(0)=$ $v \in T_{p} M$ (so that $\gamma(t)=\exp _{p}(t v)$. Then
(a) For any $u, w \in T_{p} M$, there is a unique Jacobi field $J(t)$ along $\gamma(t)$ with $J(0)=u$ and $\frac{D J}{d t}(0)=w$.
(b) If $J(t)$ is a Jacobi field along $\gamma(t)$, then there is a smooth map $f:(-\epsilon, \epsilon) \times$ $[0, a] \rightarrow M$ written $f(s, t)=f_{s}(t)$ such that
(i) for each $s \in(-\epsilon, \epsilon)$, the map $f_{s}:[0, a] \rightarrow M$ is a geodesic,
(ii) $f_{0}=\gamma$, and
(iii) $\frac{\partial f}{\partial s}(0, t)=J(t)$.

Example 24.4. In Proposition 24.3, suppose that $(M, g)=\left(\mathbb{R}^{n}, g_{0}\right)$ is the Euclidean space, then $\gamma(t)=p+t v$. The Jacobi equation is reduced to $\frac{D^{2} J}{d t^{2}}=0$. The unique solution in part (a) is given by $J(t)=u+t w$, and the smooth map f in part (b) can be given by $f(s, t)=(p+s u)+t(v+s w)$.
Proof of Proposition 24.3.
(a) Let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{p} M$ and let $e_{i}(t)$ be parallel transport of e_{i} along $\gamma(t)$, that is, $e_{i}(t)$ is the unique parallel vector field along $\gamma(t)$ such that $e_{i}(0)=e_{i}$. Then for any $t \in[0, a]$, we see that $\left\{e_{i}(t)\right\}$ is an orthonormal basis of $T_{\gamma(t)} M$. If $J(t)$ is a smooth vector field along $\gamma(t)$, then we may write

$$
J(t)=\sum_{i=1}^{n} f_{i}(t) e_{i}(t)
$$

for some smooth $f_{i}:[0, a] \rightarrow \mathbb{R}$. We see that $J(t)$ is a Jacobi field along $\gamma(t)$ if and only if the Jacobi equation holds, which holds if and only if

$$
\sum_{i=1}^{n} f_{i}^{\prime \prime}(t) e_{i}(t)+\sum_{j=1}^{n} f_{j}(t) R\left(\gamma^{\prime}(t), e_{j}(t)\right) \gamma^{\prime}(t)=0
$$

Taking inner product of the above equation and e_{i}, we see that the above equation is equivalent to

$$
f_{i}^{\prime \prime}(t)+\sum_{j=1}^{n} f_{j}(t) R\left(\gamma^{\prime}(t), e_{j}(t), \gamma^{\prime}(t), e_{i}(t)\right)=0, \quad i=1, \ldots, n
$$

Define $a_{i j}(t) \in C^{\infty}([0, a])$ by

$$
a_{i j}(t)=R\left(\gamma^{\prime}(t), e_{j}(t), \gamma^{\prime}(t), e_{i}(t)\right)
$$

Then $a_{i j}(t)=a_{i j}(t)$. We see that $J(t)$ is a Jacobi field along $\gamma(t)$ if and only if

$$
f_{i}^{\prime \prime}(t)+\sum_{j=1}^{n} a_{i j}(t) f_{j}(t)=0 \quad \text { for } i=1, \ldots, n
$$

if and only if

$$
\frac{d^{2}}{d t^{2}} \vec{f}(t)+A(t) \vec{f}(t)=0
$$

where $\vec{f}(t)=\left[\begin{array}{c}f_{1}(t) \\ \vdots \\ f_{n}(t)\end{array}\right]$, and $A(t)$ is the matrix $\left(a_{i j}(t)\right)$. We also have

$$
\left\{\begin{array} { l }
{ J (0) = u } \\
{ \frac { D J } { d t } (0) = w }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\vec{f}(0)=\vec{u} \\
\frac{d \vec{f}}{d t}(0)=\vec{w}
\end{array}\right.\right.
$$

where

$$
\vec{u}=\left[\begin{array}{c}
\left\langle u, e_{1}\right\rangle \\
\vdots \\
\left\langle u, e_{n}\right\rangle
\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}
\left\langle w, e_{1}\right\rangle \\
\vdots \\
\left\langle w, e_{n}\right\rangle
\end{array}\right]
$$

The uniqueness of ODE's implies there is a unique solution satisfying these conditions.
(b) (cf. dC Chapter 5 Exercise 2)
(Idea of the proof: set $u:=J(0), w:=\frac{D J}{d t}(0) \in T_{p} M$. When $(M, g)=\left(\mathbb{R}^{n}, g_{0}\right)$, we have $f(s, t)=(p+s u)+t(v+s w)=\exp _{p+s u}(t(v+s w))$. This motivates the construction of $f(s, t)$ in the general case: $f(s, t)=\exp _{\lambda(s)}(t(v(s)+s w(s)))$, where $\lambda(s)=\exp _{p}(s u)$ and $v(s), w(s) \in T_{\lambda(s)} M$ are the parallel tranports of $v, w \in T_{p} M$ along the curve $\lambda(s)$.)

Let $J(t)$ be a Jacobi field along $\gamma(t)=\exp _{p}(t v)$. Let $u:=J(0), w:=\frac{D J}{d t}(0) \in$ $T_{p} M$. Define $\lambda:(-\epsilon, \epsilon) \rightarrow M$ by $\lambda(s)=\exp _{p}(s u)$. Then $\lambda(0)=0$ and $\lambda^{\prime}(0)=u$. Let $v(s)$ (resp. $w(s)$) be the unique parallel vector field along the curve $\lambda(s)$ such that $v(0)=v($ resp. $w(0)=w)$. Define a smooth map $f:(-\epsilon, \epsilon) \times[0, a] \rightarrow M$ by

$$
f(s, t)=\exp _{\lambda(s)}(t(v(s)+s w(s)))
$$

Then
(i) For any $s \in(-\epsilon, \epsilon), f_{s}:[0, a] \rightarrow M$ defeind by $f_{s}(t)=f(s, t)$ is the unique geodesic with $f_{s}(0)=\lambda(s)$ and $f_{s}^{\prime}(0)=v(s)+s w(s)$.
(ii) $f_{0}(t)=\exp _{p}(t v)=\gamma(t)$.
(iii) $\bar{J}(t):=\frac{\partial f}{\partial s}(0, t)$ is a Jacobi field along $\gamma(t)$.

It remains to show that $\bar{J}(0)=u$ and $\frac{D \bar{J}}{d t}(0)=w(\Rightarrow \bar{J}(t)=J(t))$.

$$
\begin{gathered}
f(s, 0)=\lambda(s) \Rightarrow \bar{J}(0)=\frac{\partial f}{\partial s}(0,0)=\lambda^{\prime}(0)=u . \\
\frac{\partial f}{\partial t}(s, 0)=f_{s}^{\prime}(0)=v(s)+s w(s) \Rightarrow \frac{D}{\partial s} \frac{\partial f}{\partial t}(s, 0)=w(s) . \\
\frac{D \bar{J}}{d t}(0,0)=\frac{D}{\partial t} \frac{\partial f}{\partial s}(0,0)=\frac{D}{\partial s} \frac{\partial f}{\partial t}(0,0)=w(0)=w .
\end{gathered}
$$

We now consider the special case $u=0$ in part (b) of the above proof. Say that $J(t)$ is a Jacobi field along $\gamma(t)=\exp _{p}(t v)$ such that $J(0)=0$ and $\frac{D J}{d t}(0)=w$. Applying the construction from part (b) of the proof, we see that $\lambda(s)=p$ (the constant map) and $f(s, t)=\exp _{p}(t(v+s w))$. We see that

$$
\frac{\partial f}{\partial s}(s, t)=\left(d \exp _{p}\right)_{t(v+s w)}(t w)
$$

and hence

$$
J(t)=\left(d \exp _{p}\right)_{t v}(t w)
$$

Proposition 24.5. Let $\gamma:[0, a] \rightarrow M$ be a geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=$ $v \in T_{p} M$ (so that $\gamma(t)=\exp _{p}(t v)$). Let $J(t)$ be a Jacobi field along $\gamma(t)$ such that $J(0)=0$ and $\frac{D J}{d t}(0)=w$. Then

$$
J(t)=\left(d \exp _{p}\right)_{t v}(t w)
$$

for $t \in[0, a]$.
Lemma 24.6. Let $\gamma:[0, a] \rightarrow M$ be a geodesic and $J(t)$ a Jacobi field along $\gamma(t)$. Then

$$
\left\langle J(t), \gamma^{\prime}(t)\right\rangle=\left\langle J(0), \gamma^{\prime}(0)\right\rangle+t\left\langle J^{\prime}(0), \gamma^{\prime}(0)\right\rangle
$$

where $J^{\prime}(0)=\frac{D J}{d t}(0)$.
Proof. Define a smooth function $f:[0, a] \rightarrow \mathbb{R}$ by $f(t)=\left\langle J(t), \gamma^{\prime}(t)\right\rangle$. The lemma says $f(t)=f(0)+f^{\prime}(0) t$. It suffices to show that $f^{\prime \prime}(t)=0$.

Recall that because γ is a geodesic, we have $\frac{D}{d t} \gamma^{\prime}(t)=0$. Let $J^{\prime}=\frac{D J}{d t}$ and $J^{\prime \prime}=\frac{D^{2} J}{d t^{2}}$. Then

$$
\begin{aligned}
f^{\prime} & =\left\langle J^{\prime}, \gamma^{\prime}(t)\right\rangle \\
f^{\prime \prime} & =\left\langle J^{\prime \prime}, \gamma^{\prime}\right\rangle=-\left\langle R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, \gamma^{\prime}\right\rangle=R\left(\gamma^{\prime}, J, \gamma^{\prime}, \gamma^{\prime}\right)=0
\end{aligned}
$$

where we use the Jacobi equation $J^{\prime \prime}+R\left(\gamma^{\prime}, J\right) \gamma=0$.
Remark 24.7. Note that $\gamma^{\prime}(t)$ and $t \gamma^{\prime}(t)$ are Jacobi fields along $\gamma(t)$ (by the Jacobi equation). By Lemma 24.6, for any Jacobi field $J(t)$ along $\gamma(t)$, we have

$$
J(t)=\left(\left\langle J(0), \gamma^{\prime}(0)\right\rangle+t\left\langle J^{\prime}(0), \gamma^{\prime}(0)\right\rangle\right) \frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(0)\right|^{2}}+J^{\perp}(t)
$$

where $J^{\perp}(t)$ is also a Jacobi field along $\gamma(t)$ and

$$
\left\langle J^{\perp}, \gamma^{\prime}\right\rangle=0
$$

25. Wednesday, December 9, 2015

Jacobi fields on a manifold with constant sectional curvature

Let (M, g) be a Riemannian manifold with constant sectional curvature K. Let $\gamma:[0, a] \rightarrow M$ be a normalized geodesic (i.e. $\left|\gamma^{\prime}\right|=1$). Let $p=\gamma(0) \in M$ and $v=\gamma^{\prime}(0) \in T_{p} M$. Let $J(t)$ be a Jacobi field along $\gamma(t)$ such that

$$
J(0)=0, \quad \frac{D J}{d t}(0)=w, \quad\langle w, v\rangle=0
$$

Then $\left\langle J(t), \gamma^{\prime}(t)\right\rangle=0$ for all $t \in[0, a]$. For any smooth vector field $V(t)$ along $\gamma(t)$,

$$
\left\langle R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, V\right\rangle=K\left(\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle\langle J, V\rangle-\left\langle\gamma^{\prime}, V\right\rangle\left\langle\gamma^{\prime}, J\right\rangle\right)=\langle K J, V\rangle
$$

Therefore $R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=K J$. So J satisfies

$$
\frac{D^{2}}{d t^{2}}+K J=0
$$

Let $J(t)=f(t) w(t)$, where f is a smooth function on $[0, a]$ and $w(t)$ is the unique parallel vector field along $\gamma(t)$ with $w(0)=w$. Then

$$
\frac{D^{2} J}{d t^{2}}+K J=0, \quad J(0)=0, \quad \frac{D J}{d t}(0)=w
$$

are equivalent to

$$
f^{\prime \prime}+K f=0, \quad f(0)=0, \quad f^{\prime}(0)=0
$$

$$
f(t)= \begin{cases}\frac{\sin (\sqrt{K} t)}{\sqrt{K}}, & K>0 \\ t, & K=0 \\ \frac{\sinh (\sqrt{-K} t)}{\sqrt{-K}}, & K<0\end{cases}
$$

Therefore, the unique Jacobi field $J(t)$ along $\gamma(t)$ with $J(0)=0, \frac{D J}{d t}(0)=w$, where $\left\langle w, \gamma^{\prime}(0)\right\rangle=0$, is given by

$$
J(t)= \begin{cases}\frac{\sin (\sqrt{K} t)}{\sqrt{K}} w(t), & K>0 \\ t w(t), & K=0 \\ \frac{\sinh (\sqrt{-K} t)}{\sqrt{-K}} w(t), & K<0\end{cases}
$$

where $w(t)$ is the unique parallel vector field along $\gamma(t)$ with $w(0)=w$.
Similarly, the unique Jacobi field $J(t)$ along $\gamma(t)$ with $J(0)=u, \frac{D J}{d t}(0)=0$, where $\left\langle u, \gamma^{\prime}(0)\right\rangle=0$, is given by

$$
J(t)= \begin{cases}\cos (\sqrt{K} t) u(t), & K>0 \\ u(t), & K=0 \\ \cosh (\sqrt{-K} t) u(t), & K<0\end{cases}
$$

where $u(t)$ is the unique parallel vector field along $\gamma(t)$ with $u(0)=u$.

Taylor Expansion of $g_{i j}$ in local coordinates

Proposition 25.1. Let (M, g) be a Riemannian manifold and p a point M. Let $\gamma:[0, a] \rightarrow M$ be a geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$. (This means that $\left.\gamma(t)=\exp _{p}(t v).\right)$ Let $J(t)$ be a Jacobi field along $\gamma(t)$ with $J(0)=0$ and $\frac{D J}{d t}(0)=$ $w \in T_{p} M$. (This means that $J(t)=\left(d \exp _{p}\right)_{t v}(t w)$.) Then

$$
\begin{aligned}
|J(t)|^{2}= & \langle w, w\rangle t^{2}-\frac{1}{3} R(v, w, v, w) t^{4}-\frac{1}{6}\left(\nabla_{v} R\right)(v, w, v, w) t^{5} \\
& +\left[\frac{2}{45}\langle R(v, w) v, R(v, w) v\rangle-\frac{1}{20}\left(\nabla_{v} \nabla_{v} R\right)(v, w, v, w)\right] t^{6}+o\left(t^{6}\right)
\end{aligned}
$$

Corollary 25.2. If v and w are orthonormal, then

$$
|J(t)|^{2}=t^{2}-\frac{1}{3} K(p, \sigma) t^{4}+o\left(t^{4}\right)
$$

where σ is the span of v and w. As a result, we also have (when $t>0$)

$$
|J(t)|=t-\frac{1}{6} K(p, \sigma) t^{3}+o\left(t^{3}\right)
$$

We now prove the proposition.

Proof of Proposition 25.1. Let $f=\langle J, J\rangle$. Need to compute $f^{(k)}(0)$ for $0 \leq k \leq 6$.

Note that

$$
\begin{aligned}
f^{\prime} & =2\left\langle J^{\prime}, J\right\rangle \\
f^{\prime \prime} & =2\left\langle J^{\prime \prime}, J\right\rangle+2\left\langle J^{\prime}, J^{\prime}\right\rangle \\
f^{(3)} & =2\left\langle J^{(3)}, J\right\rangle+6\left\langle J^{\prime \prime}, J^{\prime}\right\rangle \\
f^{(4)} & =2\left\langle J^{(4)}, J\right\rangle+8\left\langle J^{(3)}, J^{\prime}\right\rangle+6\left\langle J^{\prime \prime}, J^{\prime \prime}\right\rangle \\
f^{(5)} & =2\left\langle J^{(5)}, J\right\rangle+10\left\langle J^{(4)}, J^{\prime}\right\rangle+20\left\langle J^{(3)}, J^{\prime \prime}\right\rangle \\
f^{(6)} & =2\left\langle J^{(6)}, J\right\rangle+12\left\langle J^{(5)}, J^{\prime}\right\rangle+30\left\langle J^{(4)}, J^{\prime \prime}\right\rangle+20\left\langle J^{(3)}, J^{(3)}\right\rangle .
\end{aligned}
$$

We now know that $J(0)=0$ and $J^{\prime}(0)=w$. We need to compute $J^{(k)}(0)$ for $2 \leq k \leq 5$. But we have the Jacobi equation, so we know that

$$
\begin{aligned}
& J^{\prime \prime}=-R\left(\gamma^{\prime}, J\right) \gamma^{\prime} \Rightarrow J^{\prime \prime}(0) \\
& J^{(3)}=-R^{\prime}\left(\gamma^{\prime}, J\right) \gamma^{\prime}-R\left(\gamma^{\prime}, J^{\prime}\right) \gamma^{\prime} \Rightarrow J^{(3)}(0)=-R(v, w) v \\
& J^{(4)}=-R^{\prime \prime}\left(\gamma^{\prime}, J\right) \gamma^{\prime}-2 R^{\prime}\left(\gamma^{\prime}, J^{\prime}\right) \gamma^{\prime}-R\left(\gamma^{\prime}, J^{\prime \prime}\right) \gamma^{\prime} \Rightarrow J^{(4)}(0)=-2\left(\nabla_{v} R\right)(v, w) v \\
& \left.J^{(5)}=-R^{\prime \prime \prime}\left(\gamma^{\prime}, J\right) \gamma^{\prime}-3 R^{\prime \prime}\left(\gamma^{\prime}, J^{\prime}\right) \gamma^{\prime}-3 R^{\prime}\left(\gamma^{\prime}, J^{\prime \prime}\right) \gamma^{\prime}-R\left(\gamma^{\prime}, J^{(} 3\right)\right) \gamma^{\prime} \\
& \Rightarrow J^{(5)}(0)=-3\left(\nabla_{v} \nabla_{v} R\right)(v, w) v+R(v, R(v, w) v) v
\end{aligned}
$$

We then plug these results into the above expressions for $f^{(k)}$ to find

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =0 \\
f^{\prime \prime}(0) & =2\langle w, w\rangle \\
f^{(3)}(0) & =0 \\
f^{(4)}(0) & =-8\langle R(v, w) v, w\rangle \\
f^{(5)}(0) & =-20\left\langle\left(\nabla_{v} R\right)(v, w) v, w\right\rangle \\
f^{(6)}(0) & =12\left\langle-3\left(\nabla_{v} \nabla_{v} R\right)(v, w) v+R(v, R(v, w) v) v, w\right\rangle+20\langle R(v, w) v, R(v, w) v\rangle \\
& =-36\left\langle\left(\nabla_{v} \nabla_{v} R\right)(v, w) v, v\right\rangle+32\langle R(v, w) v, R(v, w) v\rangle
\end{aligned}
$$

Using the usual Taylor expansion, we find the desired result.
Proposition 25.1 implies

$$
\begin{aligned}
& \left\langle\left(d \exp _{p}\right)_{t v}(u),\left(d \exp _{p}\right)_{t v} w\right\rangle \\
= & \langle u, w\rangle-\frac{1}{3} R(v, u, v, w) t^{2}-\frac{1}{6}\left(\nabla_{v} R\right)(v, u, v, w) t^{3} \\
& +\left[\frac{2}{45}\langle R(v, u) v, R(v, w) v\rangle-\frac{1}{20}\left(\nabla_{v} \nabla_{v} R\right)(v, u, v, w)\right] t^{4}+O\left(t^{5}\right)
\end{aligned}
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $T_{p} M$. Then

$$
\begin{aligned}
& \left\langle\left(d \exp _{p}\right)_{v}\left(e_{i}\right),\left(d \exp _{p}\right)_{v} e_{j}\right\rangle \\
= & \left\langle e_{i}, e_{j}\right\rangle-\frac{1}{3} R\left(v, e_{i}, v, e_{j}\right)-\frac{1}{6}\left(\nabla_{v} R\right)\left(v, e_{i}, v, e_{j}\right) \\
& +\left[\frac{2}{45}\left\langle R\left(v, e_{i}\right) v, R\left(v, e_{j}\right) v\right\rangle-\frac{1}{20}\left(\nabla_{v} \nabla_{v} R\right)\left(v, e_{i}, v, e_{j}\right)\right]+O\left(|v|^{5}\right)
\end{aligned}
$$

Suppose that $B_{\epsilon}(p)$ is a geodesic ball with center p and radius $\epsilon>0$. Then

$$
q=\exp _{p}\left(\sum_{k=1}^{n} x_{k} e_{k}\right) \in B_{\epsilon}(q)
$$

where $\left(x_{1}, \ldots, x_{n}\right)$ are the normal coordinates determined by $\left(e_{1}, \ldots, e_{n}\right)$. Then

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{q}=\left(d \exp _{p}\right)_{\sum_{k=1}^{n} x_{k} e_{k}}\left(e_{i}\right)
$$

So

$$
g_{i j}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\left(d \exp _{p}\right)_{\sum_{k=1}^{n} x_{k} e_{k}}\left(e_{i}\right),\left(d \exp _{p}\right)_{\sum_{l=1}^{n} x_{l} e_{l}}\left(e_{j}\right)\right\rangle
$$

On $B_{\epsilon}(p)$,

$$
\nabla R=\sum_{i, j, k, l, m} R_{i j k l, m} d x^{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l} \otimes d x^{m}
$$

and

$$
\nabla \nabla R=\sum_{i, j, k, l, m, r, s} R_{i j k l, r s} d x^{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l} \otimes d x^{r} \otimes d x^{s}
$$

We obtain the following Taylor expansion of $g_{i j}$:

$$
\begin{aligned}
g_{i j}(x)= & \delta_{i j}-\frac{1}{3} \sum_{k, l} R_{i k j l}(p) x_{k} x_{l}-\frac{1}{6} \sum_{k, l, m} R_{i j k l, m}(p) x_{k} x_{l} x_{m} \\
& -\frac{1}{20} \sum_{k, l, r, s} R_{i k j l, r s}(p) x_{k} x_{l} x_{r} x_{s}+\frac{2}{45} \sum_{k, l, r, s, m} R_{i k l m}(p) R_{j r s m}(p) x_{k} x_{l} x_{r} x_{s}+O\left(|x|^{5}\right)
\end{aligned}
$$

Taylor Expansion of $\sqrt{\operatorname{det}\left(g_{i j}\right)}$

Let $g(x)=\left(g_{i j}(x)\right)$. Then

$$
g(x)=I+g^{(2)}(x)+g^{(3)}(x)+g^{(4)}(x)+O\left(|x|^{5}\right)
$$

where I is the $n \times n$ identity matrix.

$$
\sqrt{\operatorname{det}(g(x))}=\exp \left(\frac{1}{2} \operatorname{Tr} \log (g(x))\right)
$$

where

$$
\begin{gathered}
\log (g(x))=g^{(2)}(x)+g^{(3)}(x)+g^{(4)}(x)-\frac{1}{2} g^{(2)}(x)^{2}+O\left(|x|^{5}\right) \\
-\frac{1}{2}\left(g^{(2)}(x)^{2}\right)_{i j}=-\frac{1}{18} \sum_{k, l, r, s, m} R_{i k m l}(p) R_{j r m s}(p) x_{k} x_{l} x_{r} x_{s} \\
=-\frac{1}{18} \sum_{k, l, r, s, m} R_{i k l m}(p) R_{j r s m}(p) x_{k} x_{l} x_{r} x_{s} \\
\operatorname{Tr} \log (g(x))=-\frac{1}{3} \sum_{k, l} R_{k l}(p) x_{k} x_{l}-\frac{1}{6} \sum_{k, l, m} R_{k l, m}(p) x_{k} x_{l} x_{m} \\
-\frac{1}{20} \sum_{k, l, r, s} R_{k l, r s}(p) x_{k} x_{l} x_{r} x_{s}-\frac{1}{90} \sum_{i, k, l, r, s, m} R_{i k l m}(p) R_{i r s m}(p) x_{k} x_{l} x_{r} x_{s}+O\left(|x|^{5}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt{\operatorname{det}(g(x))}=1-\frac{1}{6} \sum_{k, l} R_{k l}(p) x_{k} x_{l}-\frac{1}{12} \sum_{k, l, m} R_{k l, m}(p) x_{k} x_{l} x_{m} \\
& \sum_{k, l, r, s}\left(-\frac{1}{40} \sum_{k, l, r, s} R_{k l, r s}(p)-\frac{1}{180} \sum_{i, m} R_{i k l m}(p) R_{i r s m}(p)+\frac{1}{72} R_{k l}(p) R_{r s}(p)\right) x_{k} x_{l} x_{r} x_{s}+O\left(|x|^{5}\right)
\end{aligned}
$$

26. Monday, December 14, 2015

Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ be the round sphere of radius 1 , and let $p=(0,0,1)$ be the north pole. The exponential map $\exp _{p}: T_{p} S^{2} \rightarrow S^{2}$ sends a circle of radius $\rho>0$ centered at the origin to the circle

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\sin ^{2} \rho, z=\cos \rho\right\}
$$

Let (ρ, θ) be the polar coordinates on $T_{p} S^{2}=\mathbb{R}^{2}$. Then

$$
\exp _{p}^{*}\left(d x^{2}+d y^{2}+d z^{2}\right)=d \rho^{2}+\sin ^{2} \rho d \theta^{2}
$$

More generally, given $K>0$, let $S^{2}\left(\frac{1}{\sqrt{K}}\right)=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=\frac{1}{K}\right\}$ be the round sphere of radius $\frac{1}{\sqrt{K}}$, which has constant sectional curvature $K>0$. Let $p=\left(0,0, \frac{1}{\sqrt{K}}\right)$ be the north pole. The $\operatorname{exponential} \operatorname{map} \exp _{p}: T_{P} S^{2}\left(\frac{1}{\sqrt{K}}\right) \rightarrow$ $S^{2}\left(\frac{1}{\sqrt{K}}\right)$ sends a circle of radius $\rho>0$ centered at the origin to the circle

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\frac{\sin ^{2}(\sqrt{K} \rho)}{K}, z=\frac{\cos (\sqrt{K} \rho)}{\sqrt{K}}\right\}
$$

Let (ρ, θ) be the polar coordinates on $T_{p} S^{2}\left(\frac{1}{\sqrt{K}}\right)=\mathbb{R}^{2}$. Then

$$
\exp _{p}^{*}\left(d x^{2}+d y^{2}+d z^{2}\right)=d \rho^{2}+\left(\frac{\sin (\sqrt{K} \rho)}{\sqrt{K}}\right)^{2} d \theta^{2}
$$

Let (M, g) be a Riemannnian manifold with constant sectional curvature K. Let $\gamma:[0, a] \rightarrow M$ be a normalized geodesic, and let $J(t)$ be a Jacobi field along $\gamma(t)$ with $J(0)=0, \frac{D J}{d t}(0)=w$, where $\left\langle w, \gamma^{\prime}(0)\right\rangle$. Then

$$
J(t)=f_{K}(t) w(t)
$$

where

$$
f_{K}(t)= \begin{cases}\frac{\sin (\sqrt{K} t)}{\sqrt{K}}, & K>0 \\ t, & K=0 \\ \frac{\sinh (\sqrt{-K} t)}{\sqrt{-K}}, & K<0\end{cases}
$$

Let $B_{\delta}(p)$ be the geodesic ball with center p and radius $\delta>0$. Define a C^{∞} map

$$
F:(0, \delta) \times S^{n-1} \rightarrow B_{\delta}(p), \quad(\rho, v) \mapsto \exp _{p}(\rho v)
$$

Then

$$
d F_{(\rho, v)}: T_{(\rho, v)}\left((0, \delta) \times S^{n-1}\right)=\mathbb{R} \frac{\partial}{\partial \rho} \oplus T_{v} S^{n-1} \rightarrow T_{\exp _{p}(\rho v)} M
$$

is given by

$$
\begin{aligned}
d F_{(\rho, v)}\left(\frac{\partial}{\partial \rho}\right) & =\left(d \exp _{p}\right)_{\rho v}(v) \\
d F_{(\rho, v)}(w) & =\left(d \exp _{p}\right)_{\rho v}(\rho w)
\end{aligned}
$$

where $w \in T_{v} S^{n-1}=\left\{w \in \mathbb{R}^{n}:\langle v, w\rangle=0\right\}$. By Gauss's lemma,

$$
\begin{aligned}
\left\langle\left(d \exp _{p}\right)_{\rho v}(v),\left(d \exp _{p}\right)_{\rho v}(v)\right\rangle & =\langle v, v\rangle=1 \\
\left\langle\left(d \exp _{p}\right)_{\rho v}(v),\left(d \exp _{p}\right)_{\rho v}(\rho w)\right\rangle & =\rho\langle v, w\rangle=0
\end{aligned}
$$

We have

$$
\left(d \exp _{p}\right)_{\rho v}(\rho w)=f_{K}(\rho) w(\rho v)
$$

where $w(\rho v) \in T_{\exp _{p}(\rho v)} M$ is the parallel transport of $w \in T_{p} M$ along the geodesic $t \mapsto \exp _{p}(t v)$. So

$$
\left|\left(d \exp _{p}\right)_{\rho v}(\rho w)\right|^{2}=f_{K}(\rho)^{2}|w|^{2}
$$

Therefore,

$$
F^{*} g=d \rho^{2}+f_{K}(\rho)^{2} g_{\mathrm{can}}^{S^{n-1}}= \begin{cases}d \rho^{2}+\left(\frac{\sin (\sqrt{K} \rho)}{\sqrt{K}}\right)^{2} g_{\mathrm{can}}^{S^{n-1}}, & K>0 \\ d \rho^{2}+\rho^{2} g_{\mathrm{can}}^{S^{n-1}}, & K=0 \\ d \rho^{2}+\left(\frac{\sinh (\sqrt{-K} \rho)}{\sqrt{-K}}\right)^{2} g_{\mathrm{can}}^{S^{n-1}}, & K<0\end{cases}
$$

Conjugate points

See dC] Chapter 5 Section 3.

Divergence and Laplacian Revisited

Let (M, g) be a Riemannian manifold.
Given a vector field $Y \in \mathfrak{X}(M)$, we may write $Y=Y^{i} \frac{\partial}{\partial x_{i}}$ in a coordinate neighborhood U with local coordinates $\left(x_{1}, \ldots, x_{n}\right)$, where $Y^{i} \in C^{\infty}(U)$. Then

$$
\operatorname{div} Y=Y_{, i}^{i}=\frac{\partial Y^{i}}{\partial x_{i}}+\Gamma_{i k}^{i} Y^{k}
$$

Lemma 26.1.

$$
\operatorname{div} Y=\frac{1}{\sqrt{\operatorname{det}(g)}} \sum_{i} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det}(g)} Y^{i}\right)
$$

Proof.

$$
\begin{aligned}
\sum_{i} \Gamma_{i k}^{i} & =\frac{1}{2} \sum_{i, j} g^{i j}\left(\frac{\partial}{\partial x_{i}} g_{k j}+\frac{\partial}{\partial x_{k}} g_{j i}-\frac{\partial}{\partial x_{j}} g_{i k}\right)=\frac{1}{2} \sum_{i, j} g^{i j} \frac{\partial}{\partial x_{k}} g_{j i} \\
= & \frac{1}{2} \operatorname{Tr}\left(g^{-1} \frac{\partial}{\partial x_{k}} g\right)=\frac{\partial}{\partial x_{k}} \log \sqrt{\operatorname{det}(g)}=\frac{1}{\sqrt{\operatorname{det}(g)}} \frac{\partial}{\partial x_{k}}(\sqrt{\operatorname{det}(g)}) \\
\operatorname{div} Y & =Y_{, i}^{i}=\sum_{i} \frac{\partial Y^{i}}{\partial x_{i}}+\sum_{k}\left(\frac{1}{\sqrt{\operatorname{det}(g)}} \frac{\partial}{\partial x_{k}}(\sqrt{\operatorname{det}(g)})\right) Y^{k} \\
& =\frac{1}{\sqrt{\operatorname{det}(g)}} \sum_{i} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det}(g)} Y^{i}\right)
\end{aligned}
$$

Corollary 26.2. Let (M, g) be an oriented Riemannian manifold, and let ω be the volume form determined by the Riemannian metric g and the orientation. Then

$$
\begin{equation*}
d\left(i_{Y} \omega\right)=\operatorname{div}(Y) \omega \tag{26.1}
\end{equation*}
$$

Proof. It suffice to verify this in each coordinate neighborhood U. Choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ compatible with the orientation. Then

$$
\begin{align*}
& \omega= \sqrt{\operatorname{det}(g)} d x_{1} \wedge \cdots \wedge d x_{n}, \\
& i_{Y} \omega= \sum_{i=1}^{n}(-1)^{i-1} Y^{i} \sqrt{\operatorname{det}(g)} d x_{1} \wedge \cdots d x_{i-1} \wedge d x_{i+1} \wedge \cdots \wedge d x_{n} \\
& d\left(i_{Y} \omega\right)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(Y^{i} \sqrt{\operatorname{det}(g)}\right) d x_{1} \wedge \cdots \wedge d x_{n} \tag{26.2}\\
&(\operatorname{div} Y) \omega=\operatorname{div} Y \sqrt{\operatorname{det}(g)} d x_{1} \cdots d x_{n} . \tag{26.3}
\end{align*}
$$

Equation (26.1) follows from (26.2), 26.3), and Lemma 26.1
Corollary 26.3. In local coordinates, the Laplacian of a smooth function f is given by

$$
\Delta f=\frac{1}{\sqrt{\operatorname{det}(g)}} \sum_{i, j} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det}(g)} g^{i j} \frac{\partial f}{\partial x_{j}}\right),
$$

References

[Bo] William M. Boothby, An Introduction to Differential Manifolds and Riemannian Geometry, revised second edition.
[dC] Manfredo Perdigao do Carmo, Riemannian Geometry.
[GHL] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian Geometry, third edition.
[Mi] John Milnor, "Curvatures of left invariant metrics on Lie groups," Advances in Math. 21 (1976), no. 3, 293-329.

