
Topic: Topology and Knots

We would like to explain the notion of a knot to a certain degree of mathematical precision. To do this,

we require some ideas from basic point-set topology.

A good (yet extensive) reference for basic point-set topology is the book by Munkres. We won’t require

too many results from point-set topology though, so a thorough reading of the book is not necessary.

I’ll follow closely the first chapter of Cromwell for the (preliminary) definition of a knot.
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1.1 Topological spaces

Definition 1.1. A topology on a set X consists of a collection τ of subsets of X satisfying the following

three properties.

(i) The subsets X and ∅ are elements of τ .

(ii) If {Uα : α ∈ A} is a collection of elements of τ , then the union ∪α∈AUα belongs to τ .

(iii) If {U1, . . . , Un} is a finite collection of elements of τ , then the intersection ∩ni=1Ui belongs to τ .

A topological space is a pair (X, τ) where X is a set and τ is a topology on X. For a topological space

(X, τ), the elements of τ are called open subsets of X.

A topology on a set X should be thought of specifying which points of X are close together. In particular,

the points of an open subset U are to be considered close together.

Example 1.2. Let us describe a topology on the finite set X = {1, 2, 3}. We let

τ = {∅, {1, 2, 3}, {1}, {1, 3}, {1, 2}}.

We claim that τ is a topology on X. The reader can check that axioms (i) through (iii) are satisfied. This is

certainly not the only topology on the set X! Indeed the interested reader can count the number of distinct

topologies on X. (Answer: 29)
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Exercise 1.3. Check that the intersection of any collection of topologies on a space X is a topology on X.

Exercise 1.4. Show by example that the union of two topologies on a space X may not be a topology on

X.

Though topologies on a finite set are a good first example to exemplify the axioms of a topology, they are

somewhat uninteresting and stray from geometry. We are more interested in topologies on Euclidean space

Rn and its subsets. In fact, Rn has a standard topology, which we will denote by τ0, and we will assume

that Rn is equipped with this topology for the remainder of our notes. Let us describe this topology τ0.

For a vector x = (x1, . . . , xn) ∈ Rn, we let

|x| = (x21 + · · ·+ x2n)1/2

denote the norm of x. For a positive number ε > 0, we let Bε(x) denote the ball of radius ε about x defined

by

Bε(x) = {y ∈ Rn : |y − x| < ε}.

We then say that a subset U of Rn belongs to τ0 if for each point x ∈ U , there is a positive real number

ε > 0 such that the ball Bε(x) is contained in U . We leave it to the reader to verify that τ0 indeed defines

a topology on Rn. We call the elements of τ0 open subsets of Rn. From this point forward, when Rn is

considered as a topological space, we will assume that it is equipped with this standard topology.

Exercise 1.5. The collection τ0 of subsets of Rn forms a topology on Rn.

Any subset S of Rn acquires a topology in a standard fashion, which we describe next. In fact, more

generally, any subset S of a topological space (X, τ) inherits a topology τS determined by S and τ . This

topology is called the subspace topology, and it can be described as follows: the elements of τS are those

subsets of S of the form S ∩U for U ∈ τ . The reader can check that this indeed defines a topology τS on S.

Exercise 1.6. Check that the subspace topology τS is indeed a topology on S.

By the preceding remarks, any subset S of Rn acquires a topology: the open subsets of S are those of

the form U ∩ S where U is open in Rn. We caution the reader, however, that the open subsets of S can be

very different from the open subsets of Rn itself, as demonstrated in the exercise below.

Exercise 1.7. Let S = [0, 1] ⊂ R. Equip S with the subspace topology as a subset of R. Show that the set

(1/2, 1] is open in S but that (1/2, 1] is not open in R.

There is another topology on Rn, which is called the product topology, and which is a result of realizing

that Rn = R × · · · × R is the Cartesian product of topological spaces. More generally, if X1, . . . , Xn are

topological spaces, there is a natural topology on X1 × · · · × Xn called the product topology, which is
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defined as follows: A subset W of X1 × · · · ×Xn is open if it can be expressed as a union

W =
⋃
α∈A

Uα1 × · · · × Uαn

where each Uαi is open in Xi. We let the reader check that this indeed defines a topology on X1 × · · · ×Xn.

Exercise 1.8. Check that the product topology is indeed a topology.

In this way, we obtain a product topology on Rn. At first glance, this topology seems to determine

different open subsets than the standard topology τ0. However, it turns out that the two topologies coincide.

A proof of this is outlined in the following exercise.

Exercise 1.9. This exercise will show that the product topology on R2 coincides with the standard topology

τ0 on R2.

(i) A base of a set X is a collection B of subsets of X satisfying the following two properties

(a) The collection B covers X

(b) For each pair of elements U, V ∈ B and each point x ∈ U ∩ B, there is another basis element

W ∈ B such that x ∈W ⊂ (U ∩ V ).

Verify that a base B generates a topology τB on X whose elements consist of unions of elements of

B. More precisely, a subset U of X belongs to τB if and only if we may write U = ∪α∈ABα for some

collection {Bα : α ∈ A} ⊂ B.

(ii) Show that the topology τB satisfies the following universal property: If τ is any topology on X such

that B ⊂ τ , then τB ⊂ τ . Conclude that τB is the intersection of all topologies on X containing B.

(iii) Check that if B and B′ are two bases such that B ⊂ B′, then τB ⊃ τB′ . (Note that the containment is

reversing!)

(iv) For X = R2, check that the collection B0 of ε-balls around points of X form a base for the standard

topology τ0. (Hint: Take an open set in the standard topology and show that it can be written as a

union of ε-balls.)

(v) For X = R2, show that the collection B′ of subsets of the form (a, b) × (c, d) form a basis for the

product topology on R2.

(vi) For X = R2, verify that B ⊂ τB′ and that B′ ⊂ τB.

(vii) Conclude that the product topology on R2 coincides with the standard topology.
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1.2 Continuous maps

We now describe maps between topological spaces. These maps should preserve the topological structures

in some sense, and the next definition makes more precise in what sense.

Definition 1.10. Let (X, τ) and (Y, σ) be topological spaces. A map f : X → Y is called continuous if

for each open subset V of Y , the preimage f−1(V ) is an open subset of X.

This definition coincides with the usual definition of continuity for maps between Euclidean spaces. We

invite the interested reader to work out the details in the exercise below. It follows that many familiar

functions are continuous. .

Exercise 1.11. Prove directly that any constant map f : X → Y given by f(x) = c for some fixed c ∈ Y is

continuous.

Exercise 1.12. Suppose that a function f : Rn → Rm satisfies the following property

(*) For each point x ∈ Rn and each ε > 0, there is a δ > 0 so that f(Bδ(x)) ⊂ Bε(f(x)).

Show that f is a continuous map of topological spaces. Conclude that functions which are known to be

continuous from Calculus are also continuous in this new topological sense.

Exercise 1.13. When X × Y is equipped with the product topology, show that the projection maps πX :

X × Y → X and πY : X × Y → Y are continuous.

Exercise 1.14. Check that the composition of two continuous maps is continuous.

Exercise 1.15. Let X,X1, X2 be topological spaces, and for a map f : X → X1 × X2, write f(x) =

(f1(x), f2(x)) for some fi : X → Xi. Show that f is continuous if and only if both f1 and f2 are.

Exercise 1.16. On the other hand, let f : X1 ×X2 → X be a map between topological spaces. For a fixed

x1 ∈ X1, we may define fx1
: X2 → X by fx1

(x2) = f(x1, x2). We may similarly define fx2
: X1 → X for a

fixed x2 ∈ X2. If both fx1
and fx2

are continuous for each x1 ∈ X1 and each x2 ∈ X2, is it true that f is

continuous? Proof or counterexample.

Exercise 1.17. Show that the product topological space X1×X2 satisfies the following universal property:

there are continuous maps π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2 such that for each topological space

Y and each pair of continuous maps f1 : Y → X1 and f2 : Y → X2, there is a unique continuous map

f : Y → X1 ×X2 such that the following diagram commutes

Y
f1

zz

f2

$$
f

��
X1 X1 ×X2π1

oo
π2

// X2
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1.3 Homeomorphisms and embeddings

We now describe an equivalence relation on topological spaces, called homeomorphism. This equivalence

relation should be considered as a way of saying whether two topological spaces are “topologically the same,”

meaning that their underlying sets and topological structures on these sets virtually indistinguishable.

A continuous map f : X → Y is called a homemorphism if it admits a continuous inverse f−1 : Y → X.

In such a case, we say that X is homeomorphic to Y . It is routine to check that this defines an equivalence

relation. We call the resulting equivalence class of X the homeomorphism class of X.

Exercise 1.18. Check that the relation defined by homeomorphism defines an equivalence relation on the

set of all topological spaces.

Exercise 1.19. Let (a, b) be an open interval of R. Construct a homeomorphism from (a, b) onto R.

Exercise 1.20. For which real values of c is the map L(x) = cx a homeomorphism from Rn onto itself?

Exercise 1.21. A space X is called path-connected if for any pair of points x, y ∈ X, there is a continuous

map φ : [0, 1]→ X such that φ(0) = x and φ(1) = y.

(i) Show that the unit circle S1 is path connected.

(ii) A subset S of Rn is called convex if for any pair of points x, y ∈ S, the line segment {tx+ (1− t)y :

t ∈ [0, 1]} belongs to S. Show that a convex subset is path connected.

(iii) On the other hand, find a path connected subset that is not convex.

(iv) Show that the unit circle S1 is not homeomorphic to the unit interval (0, 1). (Hint: What happens

when you remove a point of S1 and what happens when you remove a point of (0, 1)?)

Exercise 1.22. If f1 : X1 → Y1 and f2 : X2 → Y2 are homeomorphisms, construct a homeomorphism

f : X1 ×X2 → Y1 × Y2.

A continuous map f : X → Y is called an embedding if f is a homeomorphism onto its image f(X)

when f(X) is equipped with the subspace topology in Y .

Exercise 1.23. For a positive integer n, construct two embeddings φ1, φ2 : R → R2 such that their inter-

section φ1(R) ∩ φ2(R) consists of exactly n points.

1.4 Quotient spaces and the unit circle S1

If X is a topological space, there is a way to form a new topological space from gluing points of X together.

For example, if X is the unit interval X = [0, 1], then we might expect that by gluing the endpoints of the

interval together, we could form a new topological space, which would look like the unit circle S1. This

process is formulated precisely by the notion of a quotient space.
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Let us do the example first, and then the more general construction later. Define an equivalence relation

on X = [0, 1] by the rule x ∼ y if and only if one of the following three conditions is satisfied

• x = y

• x = 0 and y = 1

• x = 1 and y = 0.

Let Y denote the set of equivalence classes under this equivalence relation. This means that

Y = {[x] : x ∈ X}.

Informally, Y consists of those points of X, but we have now identified the points 0 and 1 in Y (and these

points only).

The set Y inherits a topology from X in a natural way. In particular, there is a natural projection map

π : X → Y that is described by sending an element x ∈ X to the equivalence class [x] ∈ Y it represents. A

subset V of Y is then declared to be open if and only if its preimage π−1(V ) is open in X. This can easily

be checked to be a topology (see exercise below).

In the general case, if X is a topological space equipped with an equivalence relation ∼ and π : X → Y

denotes the natural projection to the set Y of equivalence classes, then Y inherits a topology called the

quotient topology, described by declaring a subset V of Y to be open if and only if its preimage π−1(V )

is open in X.

Exercise 1.24. Check that the quotient topology is a topology.

Exercise 1.25. Let Y denote the quotient space of X = [0, 1] with the equivalence relation described above,

and let f : [0, 1] → S1 ⊂ C be the map described by f(t) = e2πit. Show that f induces a well-defined map

φ : Y → S1 which is a homeomorphism.

Exercise 1.26. Let X be a topological space with equivalence relation ∼, and let π : X → Y denote the

natural projection onto the set of equivalence classes Y , equipped with the quotient topology. Show that the

quotient map π : X → Y satisfies the following universal property: If Z is another topological space, and

f : Y → Z is any map, then f is continuous if and only if f ◦ π is continuous.

1.5 Homotopies and isotopies

For fixed topological spaces X and Y , we now describe an equivalence relation on continuous maps from

X into Y . This relation makes precise what is meant by saying that a map f : X → Y can be deformed

continuously into another map g : X → Y .
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Let f, g : X → Y be two continuous maps between topological spaces. A homotopy from f to g is a

continuous map H : X × [0, 1]→ Y satisfying

H(x, 0) = f(x) and H(x, 1) = g(x) for x ∈ X.

For such a homotopy H : X × I → Y , for a fixed t ∈ [0, 1], we use the notation Ht : X → Y for

Ht(x) = H(x, t). The family of maps Ht should be thought of as a continuous one-parameter family of maps

connecting f to g. If there is a homotopy H from f to g, we say that f is homotopic to g. The relation

determined by homotopy defines an equivalence relation on the set of all continuous map from X into Y .

Showing this will require more work than in the case of the relation of homeomorphism, and we let the

interested reader work through the details. We let [f ] denote the equivalence class of the map f : X → Y

under this relation.

Exercise 1.27. Show that the relation determined by homotopy is an equivalence relation.

Exercise 1.28. Let B1(0) = {x ∈ Rn : |x| < 1} denote the unit ball in Rn. Let f : B1(0) → B1(0) denote

the identity map and g : B1(0)→ B1(0) by the constant map g(x) = 0. Find a homotopy from f to g.

Exercise 1.29. Let Sn denote the unit sphere in Rn+1. Let f : Rn+1 \0→ Rn+1 \0 denote the identity map

on on the complement of the origin in Rn+1. Let g : Rn+1 \ 0→ Sn ⊂ Rn+1 \ 0 denote the map described by

g(x) =
x

|x|
.

Show that f is homotopic to g.

Let f, g : X → Y be embeddings of X into Y . A homotopy H : X × [0, 1] → Y from f to g is called

an isotopy if every corresponding Ht : X → Y defines an embedding of X into Y . This means that an

isotopy from f to g is a continuous family of embeddings connecting the embedding f to the embedding g.

The relation of isotopy determines an equivalence relation on the set of all embeddings of X into Y . An

equivalence class under this relation is called an isotopy class.

1.6 Knots and knot invariants

We are now in a position to define a knot.

Definition 1.30. A knot is a subset of K of R3 that is homeomorphic to S1.

For example, the trivial knot is a circle, which can be viewed as the image of the continuous map

t 7→ (cos(t), sin(t), 0).

However, this definition is not the full story. We will see later that there is a small subtlety to this

definition, involving a property called local flatness, which we will iron out later.
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Moreover, we would like to consider knots up to some sort of equivalence. Indeed, just as strings bend

and can be moved, we want our knots to be flexible as well. So we need to introduce some sort of equivalence

relation that captures this flexibility.

This equivalence relation will involve the notions of homotopy and isotopy. However, we claim that

neither homotopy nor isotopy will suffice, so we will require a new notion of ambient isotopy.

To see why neither homotopy nor isotopy suffice, consider a knot K ⊂ R3, and let f : S1 → R3 denote

the corresponding embedding of S1. I claim that there is a homotopy from f to the trivial knot g : S1 → R3.

Indeed, just take any continuous deformation of the knot to the planar circle in R3. Moreover, I claim that

we can make this homotopy into an isotopy. Indeed, imagine stretching an outer section of the knot K very

far, so that K looks almost like the unit circle, except for a small section where all of the knotting happens.

Then imaging pulling the knot tighter and tighter until the knotted section shrinks to no thickness at all,

thereby obtaining the trivial knot. This procedure describes an isotopy from K to the trivial knot, known

as bachelor’s unknotting.

Therefore, we require a different type of equivalence, which is called an ambient isotopy, namely, an

isotopy of the ambient space R3.

Definition 1.31. Two knots K1 and K2 are called equivalent, if there is a continuous map H : R3×[0, 1]→

R3, written H(x, t) = Ht(x)

• Ht : R3 → R3 is injective for all t ∈ [0, 1]

• H0(K1) = H(K1, 0) = K1 and H1(K2) = H(K2, 1) = K2.

The map H is called an ambient isotopy.

Exercise 1.32. Check that ambient isotopy describes an equivalence relation on knots.

A knot type is an equivalence class of knots under the equivalence relation of ambient isotopy. We

sometimes abuse notation and use the term “knot” to mean an equivalence class of knots. We hope that no

confusion will arise.

Definition 1.33. A knot invariant with values in S is a function from the set of knots to the set S whose

value depends only on knot type.

Clearly, if two knots K1 and K2 are equivalent and µ is any knot invariant, then µ(K1) = µ(K2). However,

it may not be true that if µ(K1) = µ(K2), then K1 and K2 are equivalent. Thus, to study differences in

knots, we can try to study knot invariants, which is in fact one of our main goals this summer.
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