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4.5 Uniqueness of Factorization

Big Picture

The big focus of this chapter is to show that the factorization operation that we have defined on
knots and links closely resembles the intuition that we get from our factorization operation on
positive integers. In particular, we will show that the factorization operation on knots satisfies
numerous properties that are similar to those that our satisfied by the factorization operation on
positive integers.

Natural Numbers Knots and Links

1. An integer has a finite number of factors.

2. If a is prime and a|bc, then a|b or a|b.

3. If a 6= 0 and ab = ac, then b = c.

4. Every integer greater than 1 is the unique
product of primes.

1. A knot has a finite number of factors.

2. If a prime knot is a factor of the product of
two knots, then it is a factor of one of the
two factors.

3. If KP is prime and KP#KA = KP#KB,
then KA = KB.

4. The prime factors of a knot are uniquely
determined up to order.

Note: Although the proofs that follow concentrate on knots, the results of these proofs generalize
to links.

Definition: Complexity Function

A complexity function � from the set of knots to a discrete ordered set (like N0) must satisfy
the following properties:

1. �(�) = 0

2. �(�) < �(K) whenever K is not the trivial knot

3. �(K1) < �(K1#K2) whenever K2 is not the trivial knot

In a later chapter, we will define the genus, a link invariant that satisfies this definition of a
complexity function.
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Theorem 1: A knot has a finite number of factors.

Proof. The complexity function is reduced each time a knot is factorized. Furthermore, it is bounded
below by �(�), 0. This means that the existence of the complexity function implies that the
factorization of a given knot is terminated in finitely many steps. ⌅

Theorem 2: Let K be a knot which factorizes as KA#KB. Let KP be a prime knot which is a
factor of K so that K can also be decomposed as KP#KQ. Then one of the following holds:

1. KP is a factor of KA and KB is a factor of KQ : KA = KP#KC and KC#KB = KQ for some
knot KC .

2. KP is a factor of KB and KA is a factor of KQ : KB = KP#KC and KC#KA = KQ for some
knot KC .

Proof. Let U be a ball such that @U is a sphere which factorizes K as KP#KQ, and K\U becomes
the factor KP when completed by an arc in @U . Let S be the sphere that factorizes K as KA#KB.
We consider two cases.

1. If S \ @U = ;, then KP must be a factor of either KA or KB and the other must be a factor
of KQ. This immediately leads to the result we seek.

2. We now turn our attention to the general case that S intersects @U in a set of loops that are
disjoint from each other and from the knot K. Since K \ S \ @U = ;, then the four points
(K \ S) [ (K \ @U) are distinct.

Suppose � 2 S \ @U is a loop that is innermost on S and bounds a disc � ⇢ S such
that � \ @U = @� = � and� \ K = ;. The loop � bounds two discs in @U , one of
which must contain both points of K \ @U . Let �U be the other disc so that �U ⇢ @U ,
@�U = @� and�U \K = ;.

�U [ � is a sphere that does not meet K. The disc �U can be isotoped in S3 � K by
pushing it across the ball bounded by �U [� until it lies just beyond �. This removes the
loop � from the set S \ @U .

This means that we can assume all loops in S \ @U have linking number ±1 with K. This
means that on each factorizing sphere, the loops are arranged in parallel and separate the two
points of K. Thus S is divided into two polar discs and some annuli.

Suppose one of the discs lies inside U . Then there is a disc � ⇢ S such that � ⇢ U and� \
@U = @�. The disc � meets K in a single point and divides U into two arc-ball pairs. Since
KP is prime, one of these arc-ball pairs must be trivial and � can be isotoped to lie outside
U without a↵ectng the decompositions of K into KA#KB and KP#KQ.

Thus, we may assume that every component of S \ U is an annulus. Let R ⇢ S \ U be
an annulus which is outermost in U , meaning that it is furthest from K. Then the two loops
of @R also bound an annulus RU ⇢ @U . Together, these two annuli form a torus T = R[RU .
If this torus bounds a solid torus in U , then R is parallel to RU and can be isotoped in S3�K
to lie outside U , thus reducing the number of intersections of S with @U . Otherwise T bounds
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a ball with a knotted hole in U and is a swallow-follow torus for K which follows the arc
K \ U and swallows the rest of K. In other words, T follows KP and swallows KQ.

Let UA be the ball bounded by S such that K \ UA becomes the factor KA when com-
pleted by an arc in S. By a small isotopy in S3 �K, R can be moved slightly so that R[RU

does not meet S. Thus the swallow-follow torus lies entirely on one side of S. Suppose that
T ⇢ UA. Then T is also a swallow-follow torus for KA and th followed factor, KP must be a
factor of KA. Let KC denote the factor of KA that is swalloed by T so that KA = KP#KC .
In S3, the torus swallows KC andKB. Hence KQ = KC#KB.

⌅

Theorem 3: Let KP be a prime knot and suppose KP#KQ = KA#KB. If KP = KA, then
KQ = KB.

Proof. If we apply Theorem 2, we have two cases to consider.

1. First, suppose that there exists a knot KC such that KA = KP#KC andKC#KB = KQ.
Using the complexity function from Theorem 1 on the factorization of KA, we have that

�(KP ) = �(KA) = �(KP#KC) � �(KP )

Equality holds only when KC is the trivial knot. Therefore,

KQ = �#KB = KB

2. Now suppose that there exists a knot KC such that KB = KP#KC andKC#KA = KQ.
Since, we assumed that KA = KP , then KB and KQ have the same factors: both are equal to
KP#KC .
Therefore, KB = KQ.

⌅

Theorem 4: The factors of a knot are uniquely determined up to order.

Proof. Suppose that a knot K is factorized into prime knots in the following two ways:

K = A1#...#Am and K = B1#...#Bn

We need to show that n = m and that there is a permutation ⇡ of the integers 1, ..., n such that
Ai = B⇡(i).
If K is the trivial knot then m = n = 0.
Suppose that m = 1. From Theorem 2, A1 must be a factor of B1 or of B2#...#Bn. Repeating
this argument inductively, A1 must be a factor of Bi for some i. Since Bi is prime, A1 = Bi. By
Theorem 3, we can essentially cancel A1 and Bi from the equation. We then have that

� = B1#...#Bi�1#Bi+1#...#Bn

Since the trivial knot has no non-trivial factors, for all j 6= iBj must be trivial. Therefore,m = n = 1
and A1 = B1.
We can repeat this argument for the general case and use induction on m to complete the proof. ⌅
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4.6 Product Operation

Big Picture

Factorization has a partial inverse. Factorization allows us to reduce a link L down to its prime
factors. We may reverse this process with the product operation. Namely, the product operation
allows us to form a link L with given factors L1 and L2.

Definition: Product Operation

Let L1 and L2 be two links. Let S be a sphere that separates the two constitutents of the split link
L1tL2. Choose a rectangular disc R whose boundary is composed of four arcs, @R = a, b, c, d, such
that L1 \ R = a and L2 \ R = c and R \ S is a single simple arc, implying that b and d each meet
S in a single point.
The product or connected sum L of L1 and L2 is formed by switching the arcs in @R. More
formally,

L = L1#L2 = (L1 � a) [ (L2 � c) [ b [ d

Theorem: Given a non-trivial knot K, there is no ’anti-knot’ K�1 such that the product K#K�1

is the trivial knot.

Proof. This is a corollary to an earlier theorem which states that the trivial knot has no non-
trivial factors. The existence of a product as written in the statement above would contradict this
result. ⌅

Theorem: (K,#) is an Abelian semigroup with unit and unique factorization.

An Abelian semigroup is a set whose elements are related by a binary operation that is closed,
associative, and commutative. The set (K,#) satisfies all three of these properties.
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