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With this lesson, we will expand the tools we have for looking at graphs slightly. The topics should not

be to di�cult. For the definitions of this lesson, let G be a connected oriented graph with vertex set V and

edge set E. By oriented we mean that 8 edge e 2 E, e is an ordered pair [vi, vj ] which is oriented from vi to

vj .

Definition 0.1. Now consider the set S of all formal linear combinations of edges with coe�cients taken

from the abelian group (Z,+). We can thus express any element c 2 S in the form c =
nP

i=1
�iei where n is

the number of edges of G, and �i 2 Z. We call these elements of S (written in linear combonation form)

1-chains.

Figure 1:

Any path or circuit in G has a corresponding 1-chain. To find this one-chain,

we let �i be the integer corresponding to the number of times a given path

follows edge ei. Also, when counting we make sure to consider the orientation

of the edge ei so that we add -1 to �i whenever the path follows ei in the

oppositie direction of its orientation. We can observe that a simple path will

have a 1-chain in which all �i are 0 or ±1.

Example 0.2. Try and write the full 1-chain corresponding to the path defined

by the vertices of the graph in Figure 1 taken in numerical order.

We now consider combining two one chains using the following rule:

nX

i=1

�iei +
nX

i=1

µiei =
nX

i=1

(�i + µi)ei

With this operation, the set of 1-chains becomes an abelian group, denoted by C1(G), isomorphic to Z �

· · ·� Z = Zn.

Definition 0.3. We can follow a similar procedure and define a group of 0-chains C0(G), based on formal

linear combinations of the vertices of G. Vertices cannot be oriented so there is no convention about �v.

To move onto the next topic discussed we will need to look at definition I could not seem to find in

Cromwell. It is a definition I found online at http://cims.nyu.edu/ kiryl/teaching/aa/les110703.pdf.

Definition 0.4. Given two groups (G, ⇤) and (H,%), a function f : G �! H is a homomorphism if

f(x ⇤ y) = f(x)%f(y) 8x, y 2 G.

Definition 0.5. Now we look at a group homomorphism @ : C1(G) �! C0(G) known as the boundary

operator and defined by @([vi, vj ]) = vj � vi.

1



Cromwell claims this map is linear, and so we say that:

@

 
nX

i=1

�iei

!
=

nX

i=1

�i@(ei)

Definition 0.6. The kernel (or null space) of this map is a special subgroup of C1(G)). The 1-chains that

map to zero have no boundary and are called 1-cycles. This subgroup of 1-cycles is denoted Z1(G).

One can observe that the element 0 2 Z1(G), where 0 is the 1-cycle that contains no edges. We call this

the trivial 1-cycle. From this information, we can move onto the two results of this section.

Theorem 0.7. A tree has no non-trivial 1-cycles.

Proof: Let z be a 1-cycle in a tree G. The proof proceeds by induction on n, the number of edges in G. If

n = 1, then

0 = @(z) = �1@(e1) = �1v2 � �1v1.

Since there are no other edges to contribute extra terms, we have that �1 = 0. Thus z is trivial.

Suppose now that n > 1 and that edge en is a leaf connecting vertices v1 and v2 where v1 is the terminal

node. Then

0 = @(z) = @

 
nX

i=1

�iei

!
= @

 
n�1X

i=1

�iei

!
+ �n@(en).

We also have ±@(en) = v2 � v1. Since v1 is a terminal vertex, there are nos other terms involving it and we

deduce that �n = 0. Hence z is a cycle on the tree G � en, which has n � 1 edges. The result follows by

induction. ⇤

Definition 0.8. A basis for Z1(G) is a set of cycles such that each 1-cycle in Z1(G) can be expressed

uniquiely as a linear combination of the basis elements. It is in this sense that a graph has a maximum

number of independent circuits.

We will now describe a method for constructing a basis for Z1(G). We will then prove the process does

in fact produce a basis.

1. Let T be a spanning tree forG.

2. Label the edges ofG so that the first r edges are not in the tree: e1, ..., er /2 T , and er+1, ..., en 2

T .

3. For each edge ei not in T , the graph T [ ei contains a uniqe circuit: let zi 2 Z1(G) be the

1-cycle corresponding to this circuit with the orientation chosen so that the coe�cient of ei is

+1. This gives a set of r 1-cycles.
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Note that r is the rank of the graph and is independent of the tree chosen.

Theorem 0.9. The set of 1-cycles just constructed forms a basis for Z1(G).

Proof: If G is a tree, r = 0 and the basis is empty. By the previous theorem, there are no non-trivial

1-cycles, sot the theorem is tre in this case. Now assume that G is not a tree and r > 0.

Suppose that z 2 Z1(G) is a 1-cycle. We need to find coe�cients nui 2 Z such that

z =
rX

i=1

⌫izi.

Since z is a 1-cycle, it is also a 1-chain and we can write it as

z =
nX

i=1

�iei.

The first r of these �i are the required coe�cients. To see this we show that the di↵erence is zero. Condier

z �
rX

i=1

�izi.

This expression is a cycle since it is a sume of cycles. As a 1-chain, it has coe�cient zero on edges e1, ..., er

by construction, so it is a 1-cycle in the tree T. A tree has no non-trivial 1-cycles, hence the coe�cients on

edges er+1, ..., en are also zero.

It remains to show that the coe�cients are unique, which Cromwell graciously leaves as an exercise. ⇤
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