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With this lesson, we will expand the tools we have for looking at graphs slightly. The topics should not
be to difficult. For the definitions of this lesson, let G be a connected oriented graph with vertex set V' and
edge set E. By oriented we mean that V¥ edge e € E, e is an ordered pair [v;, v;] which is oriented from v; to

Uj.

Definition 0.1. Now consider the set S of all formal linear combinations of edges with coefficients taken
n

from the abelian group (Z,+). We can thus express any element ¢ € S in the form ¢ = > \;e; where n is
i=1

the number of edges of G, and A\; € Z. We call these elements of S (written in linear combonation form)

1-chains.

Any path or circuit in G has a corresponding 1-chain. To find this one-chain,

we let \; be the integer corresponding to the number of times a given path

Figure 1:
follows edge e;. Also, when counting we make sure to consider the orientation _r”_‘:r.,i a5 fﬁ_|
of the edge e; so that we add -1 to \; whenever the path follows e; in the I__'l' k .a!l_
oppositie direction of its orientation. We can observe that a simple path will F’é x_é 4 r‘?”i )
have a 1-chain in which all \; are 0 or %1. l/ "‘ Il‘, J:J y /I
Example 0.2. Try and write the full 1-chain corresponding to the path defined :E—g:""x ‘I_Fl'/ e

by the vertices of the graph in Figure 1 taken in numerical order.

We now consider combining two one chains using the following rule:
n n n
Z )\1'61' + Z Hi€; = Z()\z + Mz')e,;
i=1 i=1 i=1
With this operation, the set of 1-chains becomes an abelian group, denoted by C(G), isomorphic to Z @
DT =7,

Definition 0.3. We can follow a similar procedure and define a group of 0-chains Cy(G), based on formal

linear combinations of the vertices of G. Vertices cannot be oriented so there is no convention about —wv.

To move onto the next topic discussed we will need to look at definition I could not seem to find in

Cromwell. Tt is a definition I found online at http://cims.nyu.edu/ kiryl/teaching/aa/les110703.pdf.

Definition 0.4. Given two groups (G, *) and (H,%), a function f : G — H is a homomorphism if
fxxy) = f@)%fly) Vo,yed.

Definition 0.5. Now we look at a group homomorphism 9 : C1(G) — Cy(G) known as the boundary
operator and defined by 9([v;, v;]) = v; — v;.



Cromwell claims this map is linear, and so we say that:

Definition 0.6. The kernel (or null space) of this map is a special subgroup of Cy(G)). The 1-chains that

map to zero have no boundary and are called 1-cycles. This subgroup of 1-cycles is denoted Z;(G).

One can observe that the element 0 € Z;(G), where 0 is the 1-cycle that contains no edges. We call this

the trivial 1-cycle. From this information, we can move onto the two results of this section.
Theorem 0.7. A tree has no non-trivial 1-cycles.

Proof: Let z be a 1-cycle in a tree G. The proof proceeds by induction on n, the number of edges in G. If
n = 1, then
0= 8(2) = /\18(61) = )\1’02 — )\11}1.

Since there are no other edges to contribute extra terms, we have that \; = 0. Thus z is trivial.
Suppose now that n > 1 and that edge e, is a leaf connecting vertices v; and vy where vy is the terminal

node. Then .
0=0(z)=0 (Z )\iei> =0 (Z )\iei> + And(en).
i=1 i=1

We also have +0(e,,) = vy — v1. Since vy is a terminal vertex, there are nos other terms involving it and we
deduce that A\, = 0. Hence z is a cycle on the tree G — e,,, which has n — 1 edges. The result follows by

induction. O

Definition 0.8. A basis for Z;(G) is a set of cycles such that each 1l-cycle in Z;(G) can be expressed
uniquiely as a linear combination of the basis elements. It is in this sense that a graph has a maximum

number of independent circuits.

We will now describe a method for constructing a basis for Z;(G). We will then prove the process does

in fact produce a basis.

1. Let T be a spanning tree forG.

2. Label the edges of G so that the first r edges are not in the tree: ey, ...,e,. ¢ T, and e, 1, ..., e, €
T.

3. For each edge e; not in T, the graph T U e; contains a unige circuit: let z; € Z;(G) be the
1-cycle corresponding to this circuit with the orientation chosen so that the coefficient of e; is

+1. This gives a set of r 1-cycles.



Note that r is the rank of the graph and is independent of the tree chosen.
Theorem 0.9. The set of 1-cycles just constructed forms a basis for Z1(G).

Proof: If G is a tree, r = 0 and the basis is empty. By the previous theorem, there are no non-trivial
1-cycles, sot the theorem is tre in this case. Now assume that G is not a tree and r > 0.

Suppose that z € Z;1(G) is a 1-cycle. We need to find coefficients nu; € Z such that

T
Z = E ViZ;.
i=1

Since z is a 1-cycle, it is also a 1-chain and we can write it as

n
=1

The first 7 of these \; are the required coefficients. To see this we show that the difference is zero. Condier

T
z — E )\ZZ,
i=1

This expression is a cycle since it is a sume of cycles. As a 1-chain, it has coefficient zero on edges eq, ..., e,
by construction, so it is a 1-cycle in the tree T. A tree has no non-trivial 1-cycles, hence the coefficients on
edges €41, ..., e, are also zero.

It remains to show that the coefficients are unique, which Cromwell graciously leaves as an exercise. [



