
SEIFERT MATRIX
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1. Defining the Seifert Matrix

Recall that oriented surfaces have positive and negative sides. We will be
looking at embeddings of connected oriented surfaces in R3.

Definition 1.1. Let b : F ⇥ [�1, 1] ! R3 be a homeomorphism with the
following properties:

• b(F ⇥ 0) = F

• b(F ⇥ 1) lies on the positive side of F

Any subset X ⇢ F can be lifted out of the surface on either side, so we let

• X+ = b(X ⇥ 1)

• X� = b(X ⇥�1)

We consider the case when X is a loop in the surface F . Two loops in F
could intersect, but if we lift one out of F this cannot happen. In this case,
the two loops have a linking number, and we use that to define a map:

⇥ : H1(F )⇥H1(F ) ! Z (1.1)

(a, b) ! lk(a, b+) (1.2)

We call this the Seifert pairing or linking form of the embedded surface F .
A Seifert Matrix is a matrix of the form:

Mi,j = lk(ai, a
+
j ) (1.3)

We will now calculate the Seifert Matrix of a right-handed trefoil.

2. Creating a Link Invariant

Seifert matrices are not link invariants because links can be boundaries of
surfaces with di↵erent qualities. We do know that two surfaces spanning a
link are related by a sequence of piping and compressing, so we look to find
a way in which this matrix can be invariant under these operations.

Lemma 2.1. Let M be a Seifert matrix of a connected surface F , and F̂
be a surface made by adding a tube to F . Then there is a basis for H1(F̂ )
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which contains basis elements of H1(F ) as a subset, and such that the Seifert

matrix of F̂ has the form

0

BBBBB@

⇤ 0

M
.

.

.

.

.

.

⇤ 0
0 · · · 0 0 1
0 · · · 0 0 0

1

CCCCCA

or

0

BBBBB@

0 0

M
.

.

.

.

.

.

0 0
⇤ · · · ⇤ 0 0
0 · · · 0 1 0

1

CCCCCA

Proof. Suppose we add a tube to the surface, as shown in Figure 6.2 in
Cromwell. Let m be the meridian of the tube and l a curve that runs around
the tube and back through F . Let the outside of the tube be the positive side
of the surface. We see that lk(m, l+) = 0 = lk(m,m+) and lk(l,m+) = 1.
We can also choose l so that lk(l, l+) = 0. If lk(l, l+) = � 6= 0, we can
replace l with l � �m and do the following:

lk((l � �m), (l � �m)+) = lk(l, l+)� �lk(m, l+)� �lk(l,m+) + �2lk(m,m+)

= lk(l, l+)� �

= 0

Let (a1, . . . , an) be a basis for H1(F ). Clearly lk(ai,m
+) = lk(m, a+i ) = 0

for all i. We do not know how the added tube interacts with other parts
of the surface, so we can not know what ways a+i links with l or how ai
links with l+. Let �i = lk(l, a+i ). Therefore we see that adding a tube to F
essentially enlarges the matrix M in the following way:

0

BBBBBBB@

a+1 · · · a+n l+ m+

a1 ⇤ 0
... M

...
...

an ⇤ 0
l �1 · · · �n 0 1
m 0 · · · 0 0 0

1

CCCCCCCA

Using the trick as above we can change the basis of H1(F̂ ) so that each �i

becomes zero. Replace each ai with bi = ai � �im. Then

lk(l, b+i ) = lk(l, (ai � �im)+) = lk(l, a+i )� �ilk(l,m
+) = 0
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We still have that lk(bi,m
+) = lk(m, b+i ) = lk(bi, l

+) = 0. We also have
that

lk(bi, b
+
j ) = lk((ai � �im), (aj � �jm)+)

= lk(ai, a
+
j )� �ilk(m, a+j )� �jlk(ai,m

+) + �i�jlk(m,m+)

= lk(ai, a
+
j )

We now have a matrix that looks like the first one stated in the theorem. If
we chose the outside of the tube as the negative side, it would look like the
other matrix. ⇤

Matrices related by finite sequences of these enlargement and reduction
operations, as well as with the congruence transformations M ! P TMP
from a change of basis, are called S -equivalent. We also know that surfaces
related by surgery are S-equivalent. This grants us the following theorem.

Theorem 2.2. Two surfaces that are S-equivalent have S-equivalent Seifert

matrices.

From this, properties of Seifert matrices that are invariant under S-equivalence
are also link invariants.

Definition 2.3. The determinant of a link L, which we denote det(L), is
the absolute value of the determinant of M +MT , where M is any Seifert
matrix for L.

Definition 2.4. The signature of a link L, which we denote �(L), is the
signature of M +MT where M is any Seifert matrix for L.

Remark 2.5. Recall that any symmetric matrix A with real entries is con-
gruent to a diagonal matrix, i.e. there is an invertible orthogonal matrix P
with real entries and determinant equal to ±1 such that P TAP has all of
its non-zero entries on its diagonal. The signature of a diagonal matrix is
the number of positive entries minus the number of negative entries. Two
diagonal matrices are congruent if and only if they have the same num-
ber of positive, negative, and zero entries. Congruence preserves signature
(Sylvester’s Theorem).

With this information, we can show that the determinant and signature
of a link are well defined.

Theorem 2.6. Let F be a surface spanning a link L, and M a Seifert matrix

constructed from F . Then det(L) and �(L) are link invariants which depend

only on L.

Proof. We want to show that determinant and signature are preserved by
congruence transformations and enlargement operations. For congruence
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transformations, signature is preserved by Sylvester’s Theorem. For deter-
minant, recall that det(P ) = ±1.

det(P TMP + (P TMP )T ) = det(P T (M +MT )P )

= det(P T )det(M +MT )det(P )

= det(M +MT )

For enlargement operations described in Lemma (2.1), we consider an en-
larged matrix, which has the basic block structure

0

BBBBB@

⇤ 0

M + MT ...
...

⇤ 0
⇤ · · · ⇤ 0 1
0 · · · 0 1 0

1

CCCCCA

This changes the determinant to �det(M + MT ), so enlargement will not
change det(L). In regards to signature, the ⇤ values can be changed to zeroes
by means of congruence transformations. We then see that the signature of
the matrix is the sum of the signatures of the two diagonal blocks. Exer-
cise 6.9.11 ) that the 2 ⇥ 2 enlargement block has signature zero. Thus
determinant and signature of a link are link invariants. ⇤

Figure 6.6 in Cromwell shows that, unfortunately, some knots have the
same signature and determinant.

3. Properties of signature and determinant of a link

Theorem 3.1. If K is a knot then det(K) is odd and �(K) is even.

Proof. Let F be an orientable surface spanning K with Seifert matrix M .
Lemma (3.2) will show that det(M �MT ) = 1 for a knot. Working modulo
2 we have that M + MT = M � MT , so det(K) ⌘ 1 mod 2. Since the
determinant is non-zero, there are no zeroes in the diagonalized form of
M + MT . Since K is a knot, there are 2g(F ) rows and columns in M .
Hence the signature is the di↵erence of two even numbers or of two odd
numbers. ⇤
Lemma 3.2. Let M be a Seifert matrix for a surface F . Then det(M �
MT ) =

• 1 if |�F | = 1

• 0 if |�F | > 1.

Proof. Given in the book along with completion of exercise 6.9.9. ⇤
Theorem 3.3. For any link L
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• det(�L) = det(L) = det(L⇤)

• �(�L) = �(L)

• �(L⇤) = ��(L)

Proof. Let D be a diagram of link L, F be the projection surface constructed
from D, and let M be the Seifert matrix of F . If the orientation of L is
reversed, then the positive and negative sides of F are changed. The Seifert
matrix for �L is the transpose MT . Hence M +MT is not changed. L⇤ is
obtained by switching all the crossings in D. This changes all the signs of
the linking numbers used in calculating M . Hence the Seifert matrix for L⇤

is �M . Therefore we see that the determinant of the link stays the same,
and the signature changes sign. ⇤
Corollary 3.4. An amphicheiral link has signature zero.

Remark 3.5. This is a one-sided implication, as knot 61 is a cheiral knot
and has signature zero.

Theorem 3.6. If L1 t L2 is a split link then

• det(L1 t L2) = 0

• �(L1 t L2) = �(L1) + �(L2)

Proof. Let Fi be an orientable surface spanning Li, and Mi the Seifert ma-
trix. A connected surface F that spans L can be formed by piping F1

and F2 together. To create a basis for H1(F ) we take the union of the
two bases for F1 and F2 with a meridian m of the piping tube. Now
lk(aj ,m

+) = lk(m, a+j ) = 0 for any loop aj 2 H1(Fi). Thus a Seifert
matrix for F has the form 0

@
M1 0 0
0 M2 0
0 0 0

1

A

Clearly the determinant and signature are as said in the theorem. ⇤
Theorem 3.7. If a link can be factorized as L1#L2, then

• det(L1#L2) = det(L1)det(L2)

• �(L1#L2) = �(L1) + �(L2)

Proof. Let Fi be an orientable surface spanning Li with Seifert matrix Mi.
A connected surface F spanning L can be created by inserting a rectangular
disc R such that R\Fi = �R\ �Fi = ↵i where ↵i is a single arc and ↵1 and
↵)2 are on opposite sides of the rectangle. We take the union of the bases
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for F1 and F2 as the basis for F , which gives us a Seifert matrix for F that
looks like ✓

M1 0
0 M2

◆

⇤
Remark 3.8. Notice that some non-trivial links have have determinant 1.
Therefore the previous theorem does not help detect prime links.

Theorem 3.9. If S is a satellite knot constructed from pattern P with

companion C, framing zero, and winding number n then det(S) =

• det(P ) if n is even

• det(P )det(C) if n is odd

Proof. The proof is two pages long, and is in Cromwell. ⇤
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