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Definition: Breadth

The breadth of a polynomial is the di↵erence between its highest and lowest degrees.

Theorem: The genus of a non-split link, L, is bounded below by the breadth of the Alexan-
der polynomial:

2g(L) + µ(L)� 1 � 1

2
breadth �L(x).

Proof: Let F be a connected, minimal-genus, spanning surface for L and let r = 2g + µ � 1. A
basis for H1(F ) has r generators, so the Seifert matrix for F is an r ⇥ r square matrix. Thus,
the largest possible degree for x is r and the smallest degree is �r. Hence, breadth �L(x)  2r.
Therefore:

2g(F ) = 2� �(F )� µ(F )

= 2r � µ(L) + 1

� 1

2
breadth �L(x)� µ(L) + 1.

Q.E.D.

This theorem is powerful enough to establish the genus for all knots up to 10 crossings.
However, there are 11-crossing knots for which this fails. For example, if K is the Kinoshita-
Terasaka knot (seen on page 98 of Cromwell), then c(K) = 11 and �(K) = 1. This knot is
non-trivial, so its genus is at least 1 (in fact, g(K) = 2).

However, for a knot such as 10165 (seen on page 140 of Cromwell), we check that:

�(10165) = 3x4 � 11x2 + 17� 11x�2 + 3x�4
.

So, while the projection surface of any diagram of 10165 has genus 3, the Alexander poly-
nomial gives us a bound of 2. In fact, 10165 does have genus 2 (since loop b in Cromwell
bounds a compressing disc for the projection surface) so the Alexander polynomial may be
used to conclusively determine the genus of a link with  10 crossings.

Returning to some topics from Je↵’s lecture on 07.13, we now define relations between
diagrams which are locally di↵erent in the following manner:
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D+ D� D0

A localized change from D+ to D� or vice versa is called switching a crossing.
A localized change from D+ or D� to D0 is called smoothing a crossing.

We note that these local substitution operations can (and often do) change the link type.
As well, smoothing a crossing always increases or decreases the number of components by 1.

Theorem: If three oriented links, L+, L� and L0, have diagrams, D+, D� and D0, which
di↵er only in a small neighborhood as shown in the above figure, then:

�(L+)��(L�) = (x�1 � x)�(L0)

Proof: Let F+, F� and F0 be the projection surfaces constructed from D+, D� and D0, respec-
tively. Let M0 be the Seifert matrix of F0.

If D+ is a disconnected diagram, then D� and D0 must also be disconnected. This implies that
L+, L� and L0 are all split links. So, from a theorem in Fresh B’s lecture on 07.14, the relation
holds (since all �s would be 0). The same argument applies when D� is a disconnected diagram.

Suppose that D0 is a disconnected diagram but that D+ and D� are connected. Then L0 is a
split link and the links, L+ and L�, are isotopic (the right side of the following diagram may be
turned over). Thus, the relation holds again.

??__

In the remaining case, all the diagrams, D+, D� and D0, are connected. Let (a1, . . . , an) be
a basis for H1(F0). Each loop, ai, is also a subset of F+ and F�. A basis for H1(F+) can be
completed by adding a loop, b, which passes once through the twisted band in the tangle and
back through the rest of the surface. The Seifert matrix, M+, for F+ has the form:

a

+
1 . . . a

+
n b

+

a1 v1
... M0

...
an vn

b �1 . . . �n �
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Using the same loop, b, in F� gives a Seifert matrix M� for F� that is identical to M+ except in
the bottom-right corner: in F�, the linking number is: lk(b, b+) = � + 1.

Expanding the determinants, det(xM+�x�1M>
+ ) and det(xM��x�1M>

� ) about the last column
and subtracting terms, we see that almost everything cancels and we are left with:

�(L+)��(L�) = �(x� x�1)det(xM0 � x�1M>
0 )� (� + 1)(x� x�1)det(xM0 � x�1M>

0 )

= �(x� x�1)det(xM0 � x�1M>
0 )

= (x�1 � x)�(L0)

Q.E.D.

Note: This relationship between three links with local di↵erences is an example of a skein

relation. These relationships only depend on link types, not on the particular diagrams.
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