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Definition: Breadth

The breadth of a polynomial is the difference between its highest and lowest degrees.

Theorem: The genus of a non-split link, L, is bounded below by the breadth of the Alexan-
der polynomial:

1
29(L) +p(L)—1> 5 breadth Ay (x).

Proof: Let F' be a connected, minimal-genus, spanning surface for L and let r =29+ pu— 1. A
basis for H;(F') has r generators, so the Seifert matrix for F' is an r x r square matrix. Thus,
the largest possible degree for x is r and the smallest degree is —r. Hence, breadth Ay (z) < 2r.
Therefore:

29(F) =2 = x(F) — n(F)
=2r—pu(L)+1

1
> 3 breadth Ap(x) — p(L) + 1.

Q.E.D.

This theorem is powerful enough to establish the genus for all knots up to 10 crossings.
However, there are 11-crossing knots for which this fails. For example, if K is the Kinoshita-
Terasaka knot (seen on page 98 of Cromwell), then ¢(K) = 11 and A(K) = 1. This knot is
non-trivial, so its genus is at least 1 (in fact, g(K) = 2).

However, for a knot such as 10465 (seen on page 140 of Cromwell), we check that:

A(10465) = 32" — 1122 + 17 — 11072 + 3274

So, while the projection surface of any diagram of 10,45 has genus 3, the Alexander poly-
nomial gives us a bound of 2. In fact, 10445 does have genus 2 (since loop b in Cromwell
bounds a compressing disc for the projection surface) so the Alexander polynomial may be
used to conclusively determine the genus of a link with < 10 crossings.

Returning to some topics from Jeft’s lecture on 07.13, we now define relations between
diagrams which are locally different in the following manner:



D, D_ Dy

A localized change from D, to D_ or vice versa is called switching a crossing.
A localized change from D, or D_ to Dy is called smoothing a crossing.

We note that these local substitution operations can (and often do) change the link type.
As well, smoothing a crossing always increases or decreases the number of components by 1.

Theorem: If three oriented links, Ly, L_ and Ly, have diagrams, D,, D_ and Dy, which
differ only in a small neighborhood as shown in the above figure, then:

A(Ly) = A(L-) = (27" — 2)A(Lo)

Proof: Let F, F_ and Fy be the projection surfaces constructed from D, D_ and Dy, respec-
tively. Let My be the Seifert matrix of Fy.

If D, is a disconnected diagram, then D_ and Dy must also be disconnected. This implies that
Ly, L_ and Lg are all split links. So, from a theorem in Fresh B’s lecture on 07.14, the relation
holds (since all As would be 0). The same argument applies when D_ is a disconnected diagram.

Suppose that Dy is a disconnected diagram but that D, and D_ are connected. Then L is a
split link and the links, L, and L_, are isotopic (the right side of the following diagram may be
turned over). Thus, the relation holds again.

A

In the remaining case, all the diagrams, Dy, D_ and Dy, are connected. Let (a,...,a,) be
a basis for Hi(Fy). Each loop, a;, is also a subset of Fy and F_. A basis for H;(F}) can be
completed by adding a loop, b, which passes once through the twisted band in the tangle and
back through the rest of the surface. The Seifert matrix, M, for Fy has the form:
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Using the same loop, b, in F_ gives a Seifert matrix M_ for F_ that is identical to M, except in
the bottom-right corner: in F_, the linking number is: [k(b,b") = 3 + 1.

Expanding the determinants, det(z M —2 ' M) and det(xM_ —z~' M) about the last column
and subtracting terms, we see that almost everything cancels and we are left with:

Q.E.D.

Note: This relationship between three links with local differences is an example of a skein
relation. These relationships only depend on link types, not on the particular diagrams.



