Alexander Polynomial and Genus \& Skein Relation

$7.2 \& 7.3$
Andrew Jena
07.15.15

Definition: Breadth

The breadth of a polynomial is the difference between its highest and lowest degrees.

Theorem: The genus of a non-split link, L, is bounded below by the breadth of the Alexander polynomial:

$$
2 g(L)+\mu(L)-1 \geq \frac{1}{2} \text { breadth } \Delta_{L}(x)
$$

Proof: Let F be a connected, minimal-genus, spanning surface for L and let $r=2 g+\mu-1$. A basis for $H_{1}(F)$ has r generators, so the Seifert matrix for F is an $r \times r$ square matrix. Thus, the largest possible degree for x is r and the smallest degree is $-r$. Hence, breadth $\Delta_{L}(x) \leq 2 r$. Therefore:

$$
\begin{aligned}
2 g(F) & =2-\chi(F)-\mu(F) \\
& =2 r-\mu(L)+1 \\
& \geq \frac{1}{2} \text { breadth } \Delta_{L}(x)-\mu(L)+1 .
\end{aligned}
$$

Q.E.D.

This theorem is powerful enough to establish the genus for all knots up to 10 crossings. However, there are 11-crossing knots for which this fails. For example, if K is the KinoshitaTerasaka knot (seen on page 98 of Cromwell), then $c(K)=11$ and $\Delta(K)=1$. This knot is non-trivial, so its genus is at least 1 (in fact, $g(K)=2$).

However, for a knot such as 10_{165} (seen on page 140 of Cromwell), we check that:

$$
\Delta\left(10_{165}\right)=3 x^{4}-11 x^{2}+17-11 x^{-2}+3 x^{-4} .
$$

So, while the projection surface of any diagram of 10_{165} has genus 3, the Alexander polynomial gives us a bound of 2 . In fact, 10_{165} does have genus 2 (since loop b in Cromwell bounds a compressing disc for the projection surface) so the Alexander polynomial may be used to conclusively determine the genus of a link with ≤ 10 crossings.

Returning to some topics from Jeff's lecture on 07.13, we now define relations between diagrams which are locally different in the following manner:

A localized change from D_{+}to D_{-}or vice versa is called switching a crossing. A localized change from D_{+}or D_{-}to D_{0} is called smoothing a crossing.

We note that these local substitution operations can (and often do) change the link type. As well, smoothing a crossing always increases or decreases the number of components by 1 .

Theorem: If three oriented links, L_{+}, L_{-}and L_{0}, have diagrams, D_{+}, D_{-}and D_{0}, which differ only in a small neighborhood as shown in the above figure, then:

$$
\Delta\left(L_{+}\right)-\Delta\left(L_{-}\right)=\left(x^{-1}-x\right) \Delta\left(L_{0}\right)
$$

Proof: Let F_{+}, F_{-}and F_{0} be the projection surfaces constructed from D_{+}, D_{-}and D_{0}, respectively. Let M_{0} be the Seifert matrix of F_{0}.
If D_{+}is a disconnected diagram, then D_{-}and D_{0} must also be disconnected. This implies that L_{+}, L_{-}and L_{0} are all split links. So, from a theorem in Fresh B's lecture on 07.14, the relation holds (since all $\Delta \mathrm{s}$ would be 0). The same argument applies when D_{-}is a disconnected diagram.

Suppose that D_{0} is a disconnected diagram but that D_{+}and D_{-}are connected. Then L_{0} is a split link and the links, L_{+}and L_{-}, are isotopic (the right side of the following diagram may be turned over). Thus, the relation holds again.

In the remaining case, all the diagrams, D_{+}, D_{-}and D_{0}, are connected. Let $\left(a_{1}, \ldots, a_{n}\right)$ be a basis for $H_{1}\left(F_{0}\right)$. Each loop, a_{i}, is also a subset of F_{+}and F_{-}. A basis for $H_{1}\left(F_{+}\right)$can be completed by adding a loop, b, which passes once through the twisted band in the tangle and back through the rest of the surface. The Seifert matrix, M_{+}, for F_{+}has the form:

	a_{1}^{+}	\ldots	a_{n}^{+}	b^{+}
a_{1}				v_{1}
\vdots		M_{0}		\vdots
a_{n}				v_{n}
b	λ_{1}	\ldots	λ_{n}	β

Using the same loop, b, in F_{-}gives a Seifert matrix M_{-}for F_{-}that is identical to M_{+}except in the bottom-right corner: in F_{-}, the linking number is: $l k\left(b, b^{+}\right)=\beta+1$.
Expanding the determinants, $\operatorname{det}\left(x M_{+}-x^{-1} M_{+}^{\top}\right)$ and $\operatorname{det}\left(x M_{-}-x^{-1} M_{-}^{\top}\right)$ about the last column and subtracting terms, we see that almost everything cancels and we are left with:

$$
\begin{aligned}
\Delta\left(L_{+}\right)-\Delta\left(L_{-}\right) & =\beta\left(x-x^{-1}\right) \operatorname{det}\left(x M_{0}-x^{-1} M_{0}^{\top}\right)-(\beta+1)\left(x-x^{-1}\right) \operatorname{det}\left(x M_{0}-x^{-1} M_{0}^{\top}\right) \\
& =-\left(x-x^{-1}\right) \operatorname{det}\left(x M_{0}-x^{-1} M_{0}^{\top}\right) \\
& =\left(x^{-1}-x\right) \Delta\left(L_{0}\right)
\end{aligned}
$$

Note: This relationship between three links with local differences is an example of a skein relation. These relationships only depend on link types, not on the particular diagrams.

