
Topic: Khovanov Homology

In 2000 Khovanov [?] realized that the Jones polynomial could be recovered as the Euler characteristic

of a certain (co)chain complex constructed from link diagrams. The goal of this note is to describe this

chain complex and demonstrate how it recovers the Jones polynomial. We follow closely the notation and

approach of [?].

Contents

1 Preliminaries

1.1 Tensor Products

Given two vector spaces V and W , there is a way of forming a new vector space V ⊗W , called the tensor

product of V and W , which satisfies the property that if {vi} is a basis for V and {wj} is a basis for W ,

then {vi ⊗ wj} is a basis for V ⊗W . Hence if both V and W are finite-dimensional, then the dimension is

multiplicative: dim(V ⊗W ) = (dimV )(dimW ). Moreover, the vector space V ⊗W will satisfy the following

universal property: There is a bilinear map φ : V ×W → V ⊗W such that if Z is any other vector space and

f : V ×W → Z is a bi-linear map, then there is a unique linear map g : V ⊗W → Z making the diagram

below commute

V ×W
f //

φ

��

Z

V ⊗W
g

;;

These two properties motivate, at least, the notation ⊗.

Let V and W be vector spaces. Form the vector space F (V ×W ) with basis consisting of all points

(v, w) of V ×W . Note that this vector space F (V ×W ) is very large and generally infinite-dimensional. Let

R(V,W ) denote the subspace of F (V ×W ) generated by all elements of the form

(v, w1 + w2)− (v, w1)− (v, w2)

(v1 + v2, w)− (v1, w)− (v2, w)

(λv,w)− λ(v, w)

(v, λw)− λ(v, w)

for v, vi ∈ V,w,wi ∈W and λ a scalar. Then define the tensor product of V and W , denoted V ⊗W , to

be the quotient space F (V ×W )/R(V,W ).

For v ∈ V and w ∈W , we let v ⊗ w denote the equivalence class of (v, w) in the quotient space V ⊗W ,

in other words, v ⊗ w = [(v, w)]. Note that we have constructed the quotient space so that the following
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relations hold

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

(λv)⊗ w = λ(v ⊗ w)

v ⊗ (λw) = λ(v ⊗ w).

Also note that elements of the quotient space V ⊗W take the form of finite sums of simple tensors

n∑
i=1

vi ⊗ wi.

In particular, note carefully that not all elements of V ⊗W are expressible as simple tensors themselves, but

rather as finite sums of such simple tensors.

It is routine to check that the desired properties of V ⊗W are satisfied, and we leave this as an exercise.

Exercise 1.1.

(i) Check that if {vi} is a basis for V and {wj} is a basis for W , then {vi ⊗ wj} is a basis for V ⊗W .

(ii) Check that V ⊗W satisfies the universal property listed at the beginning of the section.

1.2 Graded vector spaces

A vector space V is said to be Z-graded if V admits a decomposition of the form

V =
⊕
m∈Z

Vm.

Vectors in Vm are said to be of degree m. The graded dimension of V is the formal power series in the

variable q given by

qdim(V ) =
∑
m∈Z

qm dimVm.

If V =
⊕

m Vm is a graded vector space, let V {`} denote the same vector space with a shifted grading so

that V {`}m = Vm−`. This operation has the effect that the graded dimension satisfies

qdim(V {`}) = q`qdim(V ).

If V and W are graded vector spaces and f : V →W is a linear map satisfying f(Vm) ⊂Wm+d for some

integer d, then f is said to be homogeneous of degree d.

A co-chain complex (C•, d) is a sequence of vector spaces {C•} together with linear maps dn : Cn → Cn+1
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such that d2 = 0. For a co-chain complex, the n-th cohomology group is well-defined and given by

Hn(C•) =
ker(dn : Cn → Cn+1)

im(dn−1 : Cn−1 → Cn)
.

If (C•, d) is a chain complex of (possibly graded) vector spaces, then we can also define a shifted chain

complex C•[`] so that C•[`] = C`−n with the differentials shifted as well.

The graded Euler characteristic of a graded chain complex C• is defined to be the alternating sum

of its cohomology groups:

χq(C
•) :=

∑
n∈Z

(−1)nqdimHn(C•).

In the case where all the vector spaces Cn are finite dimensional, only finitely many of them are nonzero,

and the differentials have degree 0, one can show that

χq(C
•) =

∑
n∈Z

(−1)nqdim(Cn).

1.3 Jones polynomial

It will be convenient to describe another approach to the Jones polynomial that will shift the degrees of the

variable a bit. However, recall first our approach from class:

There is a way of associating a bracket polynomial 〈|D|〉(A) in the variable A to an unoriented diagram

|D|. The normalized bracket polynomial is then a polynomial constructed from an oriented diagram D by

declaring

ṼD(A) := (−A3)w(D)〈|D|〉(A),

where w(D) denotes the writhe of D. Note that VD(A) is allowed to have negative powers of the variable A,

and hence is a Laurent polynomial in A. The Jones polynomial is then constructed from normalized bracket

polynomial by a substitution of variables. In particular, the Jones polynomial VD(t) is defined by

VD(t) = ṼD(t−1/4).

This is not a polynomial in strict terms, since it will have non-integer powers of t. Instead it it is a Laurent

polynomial in the variable t1/2.

Now instead let us proceed with different conventions. Let D be an oriented link diagram, let n+ denote

the number of positive crossings and n− the number of negative crossings. Define a new bracket polynomial,

which we will denote by 〈D〉 by the rules

(i) 〈©〉 = 1

(ii) 〈D t©〉 = (q − q−1)〈D〉
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(iii) 〈D+〉 = 〈D0〉 − q〈D∞〉.

Then define the Jones polynomial by

J(D) = (−1)n−qn+−2n−〈D〉

To compute the Jones polynomial, one can proceed in the following fashion. Let χ denote the set of

crossings of D. For a crossing D+, let D0 denote the 0-smoothing of D+ and D∞ the 1-smoothing. In this

way, each α ∈ {0, 1}χ corresponds to a vertex of an n = n+ + n− dimensional cube, which has smoothed

each crossing according to α to produce a complete smoothing diagram Dα. If h(α) denotes the height of

α, then

〈D〉 =
∑

α∈{0,1}χ
(−1)h(α)qh(α)(q + q−1)µ(Dα)

2 Khovanov’s chain complex

Following [?], we construct a chain complex associated to a link diagram D whose graded Euler characteristic

is the Jones polynomial.

Let D be a link diagram with χ, n = n+ + n− as before. Let V be a graded vector space with two

basis elements v± which have degrees ±1 respectively, and hence qdim(V ) = q + q−1. For each complete

smoothing Dα (α ∈ {0, 1}χ), we define a vector space

Vα(D) = V ⊗µ(Dα){h(α)}.

Note that

qdim(Vα(D)) = qh(α)(q + q−1)µ(Dα).

Then define an auxilary chain complex C̃•(D) by declaring C̃r(D) to be the sum of all vector spaces of

height r:

C̃r(D) :=
⊕

h(α)=r

Vα(D).

Omitting the point of the differentials for now, we define the chain complex C•(D) by shifting accordingly:

C•(D) := C̃•(D)[−n−]{n+ − 2n−}

It now follows almost immediately from the definitions that the following theorem holds.

Theorem 2.1. The graded Euler characteristic of C•(D) is the Jones polynomial of D.

To conclude, we indicate the differential ∂ maps of the complex C•(D). The additional structure made

possible by these maps means that C•(D) is in fact a chain complex of vector spaces.
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The chain complex will be formed by defining boundary maps along the “edges” of the n-dimensional

cube {0, 1}χ. In particular, if α = (α1, . . . , αn) is a vertex of the cube and α′ is another vertex obtained

from α by changing the kth entry of α from a 0 to a 1, then we will define a linear map

dα1···αk−1?αk+1···αn : Vα(D)→ Vα′(D).

For notation, set ξ = α1 · · ·αk−1 ? αk+1 · · ·αn ∈ {0, 1, ?}n.

The smoothing Dα′ is obtained from the smoothing Dα by one of two procedures:

(i) Two of the loops of Dα merge to form one loop in Dα′

(ii) One of the loops of Dα splits to become two loops in Dα′ .

In either case, we let dξ act as the identity on the factors of V corresponding to loops that are not changed.

To define what dξ does on the loops that participate, we consider the two cases:

(i) In case (i), we need a map m : V ⊗ V → V . We let m denote the unique linear map satisfying

v+ ⊗ v− 7→ v−

v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0.

Note that m does indeed define a unique linear map because we have specified where m sends a basis

of V ⊗ V . Note that m is a map of degree −1.

(ii) In case (ii), we need a map ∆ : V → V ⊗ V . We let ∆ denote the unique linear map satisfying

v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−.

Note that ∆ is a map of degree −1.

It then follows that the maps dξ for edges ξ of the form above make the edges of the n-dimensional cube

into a commutative diagram. However, in order to form a chain complex (with d2 = 0) we actually need all

square faces to anti-commute. To do this, we modify the maps dξ by multiplying by

(−1)ξ := (−1)
∑
i<k ξi

where k is the location of where ? is in ξ. In this way, the new maps (−1)ξdξ make the edges of all square

faces anti-commute.
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We then define coboundary maps dr : Cr(D)→ Cr(D) by letting

dr =
∑
|ξ|=r

(−1)ξdξ

where |ξ| denotes the height of the tail of ξ.
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