Knot Theory Seminar Problem Set #10 Due Monday, July 20

1. Show that a matrix of the form

 $\begin{bmatrix} 0 & \alpha \\ \alpha & \beta \end{bmatrix}$

for $\alpha, \beta \in \mathbb{R}$ has signature 0.

2. Let A be an *n*-by-*n* symmetric matrix of full rank with sigma series $\{\Delta_n\}$. If Δ_{n-1} is singular, show that the sigma series is equivalent to one of the form where

	$\lceil \lambda_1 \rceil$	0		0	0	
	0	λ_2		0	0	
$\Delta'_n =$:	÷	۰.	÷	:	,
	0	0		0	α	
	0	0	• • •	α	β	

where $\alpha, \beta \in \mathbb{R}$ are not both zero, and where Δ'_{k-1} is formed from Δ'_k by deleting the last row and the last column of Δ'_k .

3. Cromwell 6.9.13.

4. Let P be a matrix with integer coefficients. If P has an inverse with integer coefficients, show that det $P = \pm 1$.

5. Show that if F is a Seifert surface spanning a link L, then the corresponding Seifert matrix M has $2g(F) + \mu(L) - 1$ rows. (Hint: Problem 10 of PS9.)

- 6. Compute the Alexander polynomials of
 - (i) The trefoil
- (ii) The figure-eight knot
- (iii) The Hopf link
- (iv) The connected sum of a trefoil and figure-eight.
- (v) The disjoint union of two copies of the trefoil.
- 7. Prove Theorem 7.1.4(a) of Cromwell.
- 8. Prove Theorem 7.1.4(e) of Cromwell.
- 9. Prove Theorem 7.1.4(f) of Cromwell.
- 10. For a knot C with genus g and Seifert matrix M, show that

 $\det(x(M - M^T)) = x^{2g}.$