Knot Theory Seminar

Problem Set \#10
Due Monday, July 20

1. Show that a matrix of the form

$$
\left[\begin{array}{ll}
0 & \alpha \\
\alpha & \beta
\end{array}\right]
$$

for $\alpha, \beta \in \mathbb{R}$ has signature 0 .
2. Let A be an n-by- n symmetric matrix of full rank with sigma series $\left\{\Delta_{n}\right\}$. If Δ_{n-1} is singular, show that the sigma series is equivalent to one of the form where

$$
\Delta_{n}^{\prime}=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \alpha \\
0 & 0 & \cdots & \alpha & \beta
\end{array}\right]
$$

where $\alpha, \beta \in \mathbb{R}$ are not both zero, and where Δ_{k-1}^{\prime} is formed from Δ_{k}^{\prime} by deleting the last row and the last column of Δ_{k}^{\prime}.
3. Cromwell 6.9.13.
4. Let P be a matrix with integer coefficients. If P has an inverse with integer coefficients, show that $\operatorname{det} P= \pm 1$.
5. Show that if F is a Seifert surface spanning a link L, then the corresponding Seifert matrix M has $2 g(F)+\mu(L)-1$ rows. (Hint: Problem 10 of PS9.)
6. Compute the Alexander polynomials of
(i) The trefoil
(ii) The figure-eight knot
(iii) The Hopf link
(iv) The connected sum of a trefoil and figure-eight.
(v) The disjoint union of two copies of the trefoil.
7. Prove Theorem 7.1.4(a) of Cromwell.
8. Prove Theorem 7.1.4(e) of Cromwell.
9. Prove Theorem 7.1.4(f) of Cromwell.
10. For a knot C with genus g and Seifert matrix M, show that

$$
\operatorname{det}\left(x\left(M-M^{T}\right)\right)=x^{2 g}
$$

