Knot Theory Seminar
Problem Set \#2
Due Monday, June 6

1. Find a polygonal representation of the left-handed trefoil. Can you give a continuous (piecewise) parametrization of this representation? If you are motivated, you can try to apply the reflection $r: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $r(x, y, z)=(-x,-, y,-z)$ to this parametrization, and check whether the resulting knot is indeed the right-handed trefoil.
2. Cromwell Exercise 1.2.
3. Cromwell Exercise 1.3.
4. Cromwell Exercise 1.6.
5. The goal of this exercise is to provide an argument for Cromwell Exercise 1.7.
(i) Show that if a polygon diagram has at least 3 crossings, then there are at least 6 edges.
(ii) Show that if a polygon diagram has at most 2 crossings, then the diagram represents the unknot.
(iii) Conclude that there are no knots with polygon index 4 or 5 .
6. Cromwell Exercise 1.12 .
7. Can you make a diagram for the unknot in any n-by- n grid?
8. How many knot types can you make in a 3 -by- 3 grid? What about a 4 -by- 4 grid?
9. Can you find the grid number of the left-handed trefoil knot? Recall that the grid number of a knot (type) K is the minimum number n such that K admits a grid diagram of size n-by- n.
10. Can you give a torus representation of the (left-handed) trefoil knot?
