Knot Theory Seminar

Problem Set \#3
Due Wednesday, June 10

1. (With motivation from Pedro) Let X, Y be topological spaces with bases \mathcal{B} and \mathcal{B}^{\prime} respectiely. Let $f: X \rightarrow Y$ be a map (not necessarily continuous).
(i) Show that if $f^{-1}(B) \in \mathcal{B}$ for each $B \in \mathcal{B}^{\prime}$, then f is continuous.
(ii) Show that if $f^{-1}(B)$ is open for each $B \in \mathcal{B}^{\prime}$, then f is continuous.
(iii) Show that the map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ does not satisfy the hypothesis of (i), yet satisfies the hypothesis of (ii) and hence is continuous. Here, use the basis of \mathbb{R} consisting of open intervals.
(iv) Is the converse of (i) or (ii) true? Proof or counterexample.
2. Recall that a space X is compact if every open cover admits a finite subcover. A subset C of a space X is called closed if $X \backslash C$ is open.
(i) Show that a closed subset of a compact space is compact.
(ii) Show that the continuous image of a compact space is compact. (That is, show that if $f: X \rightarrow Y$ is continuous and X is compact, then $f(X)$ is compact.)
(iii) Show that a map $f: X \rightarrow Y$ between topological spaces is continuous if and only if $f^{-1}(C)$ is closed for each closed set $C \subset Y$.
3. Recall that a space X is Hausdorff if for each pair of distinct points $x, y \in X$, there are disjoint open sets $U, V \subset X$ such that $x \in U$ and $y \in V$.
(i) Show that \mathbb{R}^{n} is Hausdorff (with respect to the standard topology).
(ii) Define a topology τ^{*} on \mathbb{R} by declaring $U \in \tau^{*}$ if and only if one of the two conditions is satisfied

- $\mathbb{R} \backslash U$ consists of a finite number (possibly zero) of points or
- $U=\varnothing$.

Show that τ^{*} is a topology on \mathbb{R} (called the co-finite topology).
(iii) Show that \mathbb{R} is not Hausdorff with respect to the topology τ^{*}.
(iv) More generally, let X be a set and equip X with the co-finite topology (so that the open sets are the empty set and those sets that have finite complement). Is X Hausdorff? Proof or counterexample.
4. Let U be a subset of a topological space X. Show that if for each point $x \in U$ there is an open set V such that $x \in V \subset U$, then U is open. Is the converse true? Proof or counterexample.
5. Show that a compact subset of a Hausdorff space is closed. (Hint: Let C be compact in a Hausdorff X. Fix a point $x \in X \backslash C$. For each $y \in C$, there are disjoint open $U_{y} \ni x$ and $V_{y} \ni y$. There are a finite number of points $y_{1}, \ldots, y_{n} \in C$ such that $C \subset \cup_{i=1}^{n} V_{y_{i}}$. Then $U=\cap_{i=1}^{n} U_{y_{i}}$ is an open neighborhood of x disjoint from C, so we are done.)
6. On the other hand, show that any subset of \mathbb{R} is compact with respect to the topology τ^{*} of Problem 3 . Why does this not contradict Problem 5?
7. Let $f: X \rightarrow Y$ be a continuous bijection from a compact space X to a Hausdorff space Y. Show that the inverse g of f is continuous. (Hint: Use 2(iii) by using 2(i), 2(ii), and 5 in that order.)
8. If X is a compact space with equivalence relation \sim, show that the quotient space $Y=X / \sim$ is compact.
9. Let $X=[0,1]$ withe equivalence relation \sim that identifies 0 and 1 , and let Y be the resulting quotient space. Let $\phi: Y \rightarrow S^{1}$ denote the well-defined map induced by that map $f:[0,1] \rightarrow S^{1}$ given by $f(t)=e^{2 \pi i t}$. In class, we showed that ϕ is continuous. We also showed that ϕ is bijective, and hence admits an inverse $\psi: S^{1} \rightarrow Y$. Show that ψ is continuous.
10. Let U be an open subset of \mathbb{R}^{n} and let $f: U \rightarrow \mathbb{R}$ be a continuous function. Show that the graph of f

$$
\Gamma(f)=\left\{(x, f(x)) \in \mathbb{R}^{n+1}: x \in U\right\}
$$

is an n-dimensional manifold.
11. Show that \mathbb{R}^{n} with the standard topology is second-countable.
12. Show that S^{n} is an n-dimensional manifold. (Hint: Cover S^{n} by the following $2 n+2$ coordinate charts: For $i=1, \ldots, n+1$, let U_{i}^{+}denote the subsets of S^{n} given by

$$
U_{i}^{+}=\left\{\left(x_{1}, \ldots, x_{n+1} \in S^{n}: x_{i}>0\right\}\right.
$$

and define U_{i}^{-}similarly. Show that the collection of $U_{i}^{ \pm}$'s covers S^{n} and that each $U_{i}^{ \pm}$is the graph of a continuous one-to-one function $f: B_{1}(0) \rightarrow \mathbb{R}$ where $B_{1}(0)$ denotes the open unit ball of radius 1 centered at the origin in \mathbb{R}^{n}.)
13. Use polygonal representations or triangulations to compute the Euler characteristics and genera of the
(i) Unit sphere S^{2}
(ii) Torus T
(iii) Klein bottle K
(iv) Projective space.
14. For orientable surfaces X, Y, find a formula relating $\chi(X \# Y), \chi(X)$, and $\chi(Y)$ and prove your result.
15. If M and N are manifolds of dimension m and n respectively, show that $M \times N$ enjoys the structure of a $(m+n)$-dimensional manifold.

