Knot Theory Seminar Problem Set #3 Due Wednesday, June 10

- **1.** (With motivation from Pedro) Let X, Y be topological spaces with bases \mathcal{B} and \mathcal{B}' respectively. Let $f: X \to Y$ be a map (not necessarily continuous).
 - (i) Show that if $f^{-1}(B) \in \mathcal{B}$ for each $B \in \mathcal{B}'$, then f is continuous.
 - (ii) Show that if $f^{-1}(B)$ is open for each $B \in \mathcal{B}'$, then f is continuous.
- (iii) Show that the map $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ does not satisfy the hypothesis of (i), yet satisfies the hypothesis of (ii) and hence is continuous. Here, use the basis of \mathbb{R} consisting of open intervals.
- (iv) Is the converse of (i) or (ii) true? Proof or counterexample.

2. Recall that a space X is **compact** if every open cover admits a finite subcover. A subset C of a space X is called **closed** if $X \setminus C$ is open.

- (i) Show that a closed subset of a compact space is compact.
- (ii) Show that the continuous image of a compact space is compact. (That is, show that if $f: X \to Y$ is continuous and X is compact, then f(X) is compact.)
- (iii) Show that a map $f: X \to Y$ between topological spaces is continuous if and only if $f^{-1}(C)$ is closed for each closed set $C \subset Y$.

3. Recall that a space X is **Hausdorff** if for each pair of distinct points $x, y \in X$, there are disjoint open sets $U, V \subset X$ such that $x \in U$ and $y \in V$.

- (i) Show that \mathbb{R}^n is Hausdorff (with respect to the standard topology).
- (ii) Define a topology τ^* on \mathbb{R} by declaring $U \in \tau^*$ if and only if one of the two conditions is satisfied
 - $\mathbb{R} \setminus U$ consists of a finite number (possibly zero) of points or
 - $U = \emptyset$.

Show that τ^* is a topology on \mathbb{R} (called the **co-finite topology**).

- (iii) Show that \mathbb{R} is not Hausdorff with respect to the topology τ^* .
- (iv) More generally, let X be a set and equip X with the co-finite topology (so that the open sets are the empty set and those sets that have finite complement). Is X Hausdorff? Proof or counterexample.

4. Let U be a subset of a topological space X. Show that if for each point $x \in U$ there is an open set V such that $x \in V \subset U$, then U is open. Is the converse true? Proof or counterexample.

5. Show that a compact subset of a Hausdorff space is closed. (Hint: Let C be compact in a Hausdorff X. Fix a point $x \in X \setminus C$. For each $y \in C$, there are disjoint open $U_y \ni x$ and $V_y \ni y$. There are a finite number of points $y_1, \ldots, y_n \in C$ such that $C \subset \bigcup_{i=1}^n V_{y_i}$. Then $U = \bigcap_{i=1}^n U_{y_i}$ is an open neighborhood of x disjoint from C, so we are done.)

6. On the other hand, show that any subset of \mathbb{R} is compact with respect to the topology τ^* of Problem 3. Why does this not contradict Problem 5?

7. Let $f: X \to Y$ be a continuous bijection from a compact space X to a Hausdorff space Y. Show that the inverse g of f is continuous. (Hint: Use 2(iii) by using 2(i), 2(ii), and 5 in that order.)

8. If X is a compact space with equivalence relation \sim , show that the quotient space $Y = X/\sim$ is compact.

9. Let X = [0,1] with equivalence relation ~ that identifies 0 and 1, and let Y be the resulting quotient space. Let $\phi: Y \to S^1$ denote the well-defined map induced by that map $f: [0,1] \to S^1$ given by $f(t) = e^{2\pi i t}$. In class, we showed that ϕ is continuous. We also showed that ϕ is bijective, and hence admits an inverse $\psi: S^1 \to Y$. Show that ψ is continuous.

10. Let U be an open subset of \mathbb{R}^n and let $f: U \to \mathbb{R}$ be a continuous function. Show that the graph of f

$$\Gamma(f) = \{ (x, f(x)) \in \mathbb{R}^{n+1} : x \in U \}$$

is an n-dimensional manifold.

11. Show that \mathbb{R}^n with the standard topology is second-countable.

12. Show that S^n is an *n*-dimensional manifold. (Hint: Cover S^n by the following 2n + 2 coordinate charts: For i = 1, ..., n + 1, let U_i^+ denote the subsets of S^n given by

$$U_i^+ = \{ (x_1, \dots, x_{n+1} \in S^n : x_i > 0 \},\$$

and define U_i^- similarly. Show that the collection of U_i^{\pm} 's covers S^n and that each U_i^{\pm} is the graph of a continuous one-to-one function $f: B_1(0) \to \mathbb{R}$ where $B_1(0)$ denotes the open unit ball of radius 1 centered at the origin in \mathbb{R}^n .)

13. Use polygonal representations or triangulations to compute the Euler characteristics and genera of the

- (i) Unit sphere S^2
- (ii) Torus T
- (iii) Klein bottle K
- (iv) Projective space.

14. For orientable surfaces X, Y, find a formula relating $\chi(X\#Y)$, $\chi(X)$, and $\chi(Y)$ and prove your result.

15. If M and N are manifolds of dimension m and n respectively, show that $M \times N$ enjoys the structure of a (m + n)-dimensional manifold.