
Knot Theory Seminar
Problem Set #3

Due Wednesday, June 10

1. (With motivation from Pedro) Let X,Y be topological spaces with bases B and B′ respectiely. Let
f : X → Y be a map (not necessarily continuous).

(i) Show that if f−1(B) ∈ B for each B ∈ B′, then f is continuous.

(ii) Show that if f−1(B) is open for each B ∈ B′, then f is continuous.

(iii) Show that the map f : R → R given by f(x) = x2 does not satisfy the hypothesis of (i), yet satisfies
the hypothesis of (ii) and hence is continuous. Here, use the basis of R consisting of open intervals.

(iv) Is the converse of (i) or (ii) true? Proof or counterexample.

2. Recall that a space X is compact if every open cover admits a finite subcover. A subset C of a space X
is called closed if X \ C is open.

(i) Show that a closed subset of a compact space is compact.

(ii) Show that the continuous image of a compact space is compact. (That is, show that if f : X → Y is
continuous and X is compact, then f(X) is compact.)

(iii) Show that a map f : X → Y between topological spaces is continuous if and only if f−1(C) is closed
for each closed set C ⊂ Y .

3. Recall that a space X is Hausdorff if for each pair of distinct points x, y ∈ X, there are disjoint open
sets U, V ⊂ X such that x ∈ U and y ∈ V .

(i) Show that Rn is Hausdorff (with respect to the standard topology).

(ii) Define a topology τ∗ on R by declaring U ∈ τ∗ if and only if one of the two conditions is satisfied

• R \ U consists of a finite number (possibly zero) of points or

• U = ∅.

Show that τ∗ is a topology on R (called the co-finite topology).

(iii) Show that R is not Hausdorff with respect to the topology τ∗.

(iv) More generally, let X be a set and equip X with the co-finite topology (so that the open sets are the
empty set and those sets that have finite complement). Is X Hausdorff? Proof or counterexample.

4. Let U be a subset of a topological space X. Show that if for each point x ∈ U there is an open set V
such that x ∈ V ⊂ U , then U is open. Is the converse true? Proof or counterexample.

5. Show that a compact subset of a Hausdorff space is closed. (Hint: Let C be compact in a Hausdorff X.
Fix a point x ∈ X \C. For each y ∈ C, there are disjoint open Uy 3 x and Vy 3 y. There are a finite number
of points y1, . . . , yn ∈ C such that C ⊂ ∪ni=1Vyi . Then U = ∩ni=1Uyi is an open neighborhood of x disjoint
from C, so we are done.)

6. On the other hand, show that any subset of R is compact with respect to the topology τ∗ of Problem 3.
Why does this not contradict Problem 5?

7. Let f : X → Y be a continuous bijection from a compact space X to a Hausdorff space Y . Show that
the inverse g of f is continuous. (Hint: Use 2(iii) by using 2(i), 2(ii), and 5 in that order.)

1



8. If X is a compact space with equivalence relation ∼, show that the quotient space Y = X/ ∼ is compact.

9. Let X = [0, 1] withe equivalence relation ∼ that identifies 0 and 1, and let Y be the resulting quotient
space. Let φ : Y → S1 denote the well-defined map induced by that map f : [0, 1]→ S1 given by f(t) = e2πit.
In class, we showed that φ is continuous. We also showed that φ is bijective, and hence admits an inverse
ψ : S1 → Y . Show that ψ is continuous.

10. Let U be an open subset of Rn and let f : U → R be a continuous function. Show that the graph of f

Γ(f) = {(x, f(x)) ∈ Rn+1 : x ∈ U}

is an n-dimensional manifold.

11. Show that Rn with the standard topology is second-countable.

12. Show that Sn is an n-dimensional manifold. (Hint: Cover Sn by the following 2n+ 2 coordinate charts:
For i = 1, . . . , n+ 1, let U+

i denote the subsets of Sn given by

U+
i = {(x1, . . . , xn+1 ∈ Sn : xi > 0},

and define U−i similarly. Show that the collection of U±i ’s covers Sn and that each U±i is the graph of a
continuous one-to-one function f : B1(0) → R where B1(0) denotes the open unit ball of radius 1 centered
at the origin in Rn.)

13. Use polygonal representations or triangulations to compute the Euler characteristics and genera of the

(i) Unit sphere S2

(ii) Torus T

(iii) Klein bottle K

(iv) Projective space.

14. For orientable surfaces X,Y , find a formula relating χ(X#Y ), χ(X), and χ(Y ) and prove your result.

15. If M and N are manifolds of dimension m and n respectively, show that M ×N enjoys the structure of
a (m+ n)-dimensional manifold.
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