Knot Theory Seminar Problem Set #4 Due Wednesday, June 17

- **1.** As a set, let $X = \mathbb{R} \sqcup \{0^*\}$, where 0^* is some element. Define the open sets of X to be those of the form
 - U for U open in \mathbb{R}
 - $U \cup \{0^*\}$ for U open in \mathbb{R} containing 0.
 - $(U \setminus \{0\}) \cup \{0^*\}$ for U open in \mathbb{R} and containing 0.
 - (i) Check that this defines a topology on X.
 - (ii) Check that X is locally Euclidean of dimension 1.
- (iii) Check that X is not Hausdorff.

This space X is called the line with the origin doubled. This exercise shows that, contrary to my belief during lecture, locally Euclidean does not imply Hausdorff.

2. Show that a space X is Hausdorff if and only if the diagonal $\Delta = \{(x, y) \in X \times X : x = y\}$ is closed in $X \times X$.

3. More generally, if X is a space with an equivalence relation \sim and the projection $\pi : X \to X/\sim$ is an open map (meaning that $\pi(U)$ is open for each open $U \subset X$), show that the quotient space X/\sim is Hausdorff if and only if \sim is closed in $X \times X$.

4. Show that the unit circle S^1 is compact. (Hint: Use the previous problem set.)

5. Show that a knot (even a wild one) is compact.

6. The goal of this problem is to provide further justification for why polygonal knots are locally flat at the vertex points.

- (i) For a point $t_1 \in (0,1)$, show that there is a homeomorphism $h: [0,1] \to [0,1]$ such that $h(t_1) = \frac{1}{2}$.
- (ii) Let r_0 denote the radius of the unit disc D_1 in \mathbb{R}^2 along the positive x-axis, and let r_1 denote a radius such that the sector cut out by r_0 and r_1 has angle $2\pi t_1$. Let R denote the arc given by the union of the two radii r_0 and r_1 . Show that there is a homeomorphism of the open unit disc $H: D_1 \to D_1$ such that H(R) is the intersection $\{x\text{-axis}\} \cap D_1$. (Hint: Use polar coordinates and (i).)
- (iii) Show that for a vertex v in a polygonal knot K, there is an $\epsilon > 0$ and a homeomorphism $G : B_{\epsilon}(v) \to B_1(0)$ from $B_{\epsilon}(v)$ to the unit ball in \mathbb{R}^3 such that $G(K \cap B_{\epsilon}(v))$ is a diameter of the ball $B_1(0)$. (Hint: Use spherical coordinates and (ii)).

7. Cromwell 3.10.4.