Knot Theory Seminar Problem Set #5 Due Tuesday, June 23

Note! For sets X, Y, I write $X \subset Y$ to mean that X is a subset of Y. If I want to indicate that X is a *proper* subset of Y, then I write $X \subsetneq Y$.

1. For a subset S of a topological space X, we say that a point $x \in S$ is an **interior point of** S if there is an open subset U of X such that $x \in U \subset S$. We let Int(S) denote the set of interior points of S.

(i) Show that

$$\operatorname{Int}(S) = \bigcup_{\substack{U \text{ open}\\ U \subset S}} U$$

and deduce that Int(S) is open.

- (ii) Proof or counterexample: S is open if and only if S = Int(S).
- (iii) Proof or counterexample: if $S_1 \subset S_2$, then $\operatorname{Int}(S_1) \subset \operatorname{Int}(S_2)$.
- (iv) Proof or counterexample: $Int(S_1 \cap S_2) = Int(S_1) \cap Int(S_2)$.
- (v) Proof or counterexample: $Int(S_1 \cup S_2) = Int(S_1) \cup Int(S_2)$.
- **2.** For a subset S of a topological space X, we let Cl(S) denote the closure of S:

$$\operatorname{Cl}(S) = \bigcap_{\substack{C \text{ closed} \\ C \supset S}} C.$$

- (i) Show that the intersection of closed sets is closed and deduce that $\operatorname{Cl}(S)$ is the "smallest closed set containing S."
- (ii) Proof or counterexample: S is closed if and only if Cl(S) = S.
- (iii) Proof or counterexample: if $S_1 \subset S_2$, then $\operatorname{Cl}(S_1) \subset \operatorname{Cl}(S_2)$.
- (iv) Proof or counterexample: Cl(Cl(S)) = Cl(S).
- (v) Proof or counterexample: $\operatorname{Cl}(S_1 \cap S_2) \subset \operatorname{Cl}(S_1) \cap \operatorname{Cl}(S_2)$.
- (vi) Proof or counterexample: $\operatorname{Cl}(S_1 \cap S_2) = \operatorname{Cl}(S_1) \cap \operatorname{Cl}(S_2)$.
- (vii) Proof or counterexample: $\operatorname{Cl}(S_1 \cup S_2) = \operatorname{Cl}(S_1) \cup \operatorname{Cl}(S_2)$.
- (viii) Proof or counterexample: $Cl(S) = X \setminus (Int(X \setminus S)).$

3. For a subset S of a topological space X, we say that $x \in X$ is a **limit point of** S if each open neighborhood U of x intersects S in at least one point other than x itself.

- (i) Show that S is closed if and only if it contains all its limit points.
- (ii) If L(S) denotes the set of limit points of S, deduce that $Cl(S) = S \cup L(S)$.
- (iii) Find $L(B_1(0))$ where $B_1(0) = \{x \in \mathbb{R}^n : |x| < 1\}.$
- (iv) Find L((a, b)) and L([a, b]).
- **4.** Define the boundary of $S \subset X$ to be $\partial S = \operatorname{Cl}(S) \setminus \operatorname{Int}(S)$.

- (i) Show that $\partial(S_1 \cap S_2) \subset (\partial S_1 \cap \operatorname{Cl}(S_2)) \cup (\operatorname{Cl}(S_1) \cap \partial S_2)$. But show that the reverse inclusion is in general not true.
- (ii) Show that ∂ satisfies the Leibniz rule $\partial(S_1 \cap S_2) = (\partial S_1 \cap S_2) \cup (S_1 \cap \partial S_2)$ if both S_1 and S_2 are closed.
- (iii) Proof or counterexample: ∂S is closed.
- (iv) Find $\partial(B_1(0))$ where $B_1(0) = \{x \in \mathbb{R}^n : |x| < 1\}.$
- (v) Find $\partial(S^n)$ where $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$
- (vi) Find $\partial(D)$ where $D = \{x \in \mathbb{R}^n : |x| \le 1\}$.
- (vii) Find $\partial((2,3))$ and $\partial([2,3])$.
- (viii) Find $\partial(\mathbb{Q})$ where $\mathbb{Q} \subset \mathbb{R}$ denotes the subset of rational numbers.
- (ix) Proof or counterexample: $\partial \partial S = \partial S$.
- (x) Proof or counterexample: $\partial \partial \partial S = \partial \partial S$.
- **5.** Let X be a topological space. Consider the following conditions on X
 - (a) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi : U \to \mathbb{R}^n$ taking U homeomorphically onto the open unit ball $B_1(0) \subset \mathbb{R}^n$
 - (b) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi : U \to \mathbb{R}^n$ taking U homeomorphically onto an open subset $\phi(U) \subset \mathbb{R}^n$
 - (c) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi : U \to \mathbb{R}^n_{\geq 0} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \ge 0\}$ taking U homeomorphically onto an open subset $\phi(U) \subset \mathbb{R}^n_{\geq 0}$.
 - (i) Construct a homeomorphism from $\mathbb{R}_{>0}^n = \{(x_1, \ldots, x_n) : x_1 > 0\}$ onto \mathbb{R}^n .
 - (ii) Show that $(a) \implies (b) \implies (c)$.
- (iii) Show that $(b) \implies (a)$ (and hence $(a) \iff (b)$)
- (iv) Proof or counterexample: $(c) \implies (b)$.

6. For $m \ge n$, and for a map $\sigma : \{1, 2, \dots, m\} \to \{1, 2, \dots, n\}$, let $f_{\sigma} : \mathbb{R}^m \to \mathbb{R}^m$ be defined by

$$f_{\sigma}(x_1,\ldots,x_m) = (x_{\sigma(1)},\ldots,x_{\sigma(m)}).$$

Find necessary and sufficient conditions on m, n, and σ so that f_{σ} is a homeomorphism.

7. Let $\{U_{\alpha}\}$ be an open cover of a topological space X.

- (i) Proof or counterexample: a subset V is open in X if and only if each $V \cap U_{\alpha}$ is open in U_{α} .
- (ii) Proof or counterexample: a subset C is closed in X if and only if each $C \cap U_{\alpha}$ is closed in U_{α} .

8. For a space X satisfying condition (c) above, let δX denote those points $x \in X$ which admit an open neighborhood $U \ni x$ and a continuous map $\phi : U \to \mathbb{R}^n_{\geq 0}$ taking U homeomorphically onto $\phi(U)$ such that $\phi(x) \in \{x_1 = 0\} \subset \mathbb{R}^n$. Proof or counterexample: If $X \subset \mathbb{R}^n$, then $\partial X = \delta X$.

- 9. Cromwell 3.10.6
- 10. Cromwell 3.10.9
- 11. Cromwell 3.10.14 (Note that a chessboard colouring is defined in 3.10.13.)
- **12.** Cromwell 4.11.2