Knot Theory Seminar
Problem Set \#5
Due Tuesday, June 23

Note! For sets X, Y, I write $X \subset Y$ to mean that X is a subset of Y. If I want to indicate that X is a proper subset of Y, then I write $X \subsetneq Y$.

1. For a subset S of a topological space X, we say that a point $x \in S$ is an interior point of S if there is an open subset U of X such that $x \in U \subset S$. We let $\operatorname{Int}(S)$ denote the set of interior points of S.
(i) Show that

$$
\operatorname{Int}(S)=\bigcup_{\substack{U \text { open } \\ U \subset S}} U
$$

and deduce that $\operatorname{Int}(S)$ is open.
(ii) Proof or counterexample: S is open if and only if $S=\operatorname{Int}(S)$.
(iii) Proof or counterexample: if $S_{1} \subset S_{2}$, then $\operatorname{Int}\left(S_{1}\right) \subset \operatorname{Int}\left(S_{2}\right)$.
(iv) Proof or counterexample: $\operatorname{Int}\left(S_{1} \cap S_{2}\right)=\operatorname{Int}\left(S_{1}\right) \cap \operatorname{Int}\left(S_{2}\right)$.
(v) Proof or counterexample: $\operatorname{Int}\left(S_{1} \cup S_{2}\right)=\operatorname{Int}\left(S_{1}\right) \cup \operatorname{Int}\left(S_{2}\right)$.
2. For a subset S of a topological space X, we let $\mathrm{Cl}(S)$ denote the closure of S :

$$
\mathrm{Cl}(S)=\bigcap_{\substack{C \text { closed } \\ C \supset S}} C
$$

(i) Show that the intersection of closed sets is closed and deduce that $\mathrm{Cl}(S)$ is the "smallest closed set containing S."
(ii) Proof or counterexample: S is closed if and only if $\mathrm{Cl}(S)=S$.
(iii) Proof or counterexample: if $S_{1} \subset S_{2}$, then $\mathrm{Cl}\left(S_{1}\right) \subset \mathrm{Cl}\left(S_{2}\right)$.
(iv) Proof or counterexample: $\mathrm{Cl}(\mathrm{Cl}(S))=\mathrm{Cl}(S)$.
(v) Proof or counterexample: $\mathrm{Cl}\left(S_{1} \cap S_{2}\right) \subset \mathrm{Cl}\left(S_{1}\right) \cap \mathrm{Cl}\left(S_{2}\right)$.
(vi) Proof or counterexample: $\mathrm{Cl}\left(S_{1} \cap S_{2}\right)=\mathrm{Cl}\left(S_{1}\right) \cap \mathrm{Cl}\left(S_{2}\right)$.
(vii) Proof or counterexample: $\mathrm{Cl}\left(S_{1} \cup S_{2}\right)=\mathrm{Cl}\left(S_{1}\right) \cup \mathrm{Cl}\left(S_{2}\right)$.
(viii) Proof or counterexample: $\mathrm{Cl}(S)=X \backslash(\operatorname{Int}(X \backslash S)$).
3. For a subset S of a topological space X, we say that $x \in X$ is a limit point of S if each open neighborhood U of x intersects S in at least one point other than x itself.
(i) Show that S is closed if and only if it contains all its limit points.
(ii) If $L(S)$ denotes the set of limit points of S, deduce that $\mathrm{Cl}(S)=S \cup L(S)$.
(iii) Find $L\left(B_{1}(0)\right)$ where $B_{1}(0)=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$.
(iv) Find $L((a, b))$ and $L([a, b])$.
4. Define the boundary of $S \subset X$ to be $\partial S=\mathrm{Cl}(S) \backslash \operatorname{Int}(S)$.
(i) Show that $\partial\left(S_{1} \cap S_{2}\right) \subset\left(\partial S_{1} \cap \mathrm{Cl}\left(S_{2}\right)\right) \cup\left(\mathrm{Cl}\left(S_{1}\right) \cap \partial S_{2}\right)$. But show that the reverse inclusion is in general not true.
(ii) Show that ∂ satisfies the Leibniz rule $\partial\left(S_{1} \cap S_{2}\right)=\left(\partial S_{1} \cap S_{2}\right) \cup\left(S_{1} \cap \partial S_{2}\right)$ if both S_{1} and S_{2} are closed.
(iii) Proof or counterexample: ∂S is closed.
(iv) Find $\partial\left(B_{1}(0)\right)$ where $B_{1}(0)=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$.
(v) Find $\partial\left(S^{n}\right)$ where $S^{n}=\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}$.
(vi) Find $\partial(D)$ where $D=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.
(vii) Find $\partial((2,3))$ and $\partial([2,3])$.
(viii) Find $\partial(\mathbb{Q})$ where $\mathbb{Q} \subset \mathbb{R}$ denotes the subset of rational numbers.
(ix) Proof or counterexample: $\partial \partial S=\partial S$.
(x) Proof or counterexample: $\partial \partial \partial S=\partial \partial S$.
5. Let X be a topological space. Consider the following conditions on X
(a) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi: U \rightarrow \mathbb{R}^{n}$ taking U homeomorphically onto the open unit ball $B_{1}(0) \subset \mathbb{R}^{n}$
(b) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi: U \rightarrow \mathbb{R}^{n}$ taking U homeomorphically onto an open subset $\phi(U) \subset \mathbb{R}^{n}$
(c) each point $x \in X$ admits an open neighborhood $U \ni x$ and a continuous map $\phi: U \rightarrow \mathbb{R}_{\geq 0}^{n}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \geq 0\right\}$ taking U homeomorphically onto an open subset $\phi(U) \subset \mathbb{R}_{\geq 0}^{n}$.
(i) Construct a homeomorphism from $\mathbb{R}_{>0}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}>0\right\}$ onto \mathbb{R}^{n}.
(ii) Show that $(a) \Longrightarrow(b) \Longrightarrow(c)$.
(iii) Show that $(b) \Longrightarrow(a)$ (and hence $(a) \Longleftrightarrow(b)$)
(iv) Proof or counterexample: $(c) \Longrightarrow(b)$.
6. For $m \geq n$, and for a map $\sigma:\{1,2, \ldots, m\} \rightarrow\{1,2, \ldots, n\}$, let $f_{\sigma}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be defined by

$$
f_{\sigma}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right)
$$

Find necessary and sufficient conditions on m, n, and σ so that f_{σ} is a homeomorphism.
7. Let $\left\{U_{\alpha}\right\}$ be an open cover of a topological space X.
(i) Proof or counterexample: a subset V is open in X if and only if each $V \cap U_{\alpha}$ is open in U_{α}.
(ii) Proof or counterexample: a subset C is closed in X if and only if each $C \cap U_{\alpha}$ is closed in U_{α}.
8. For a space X satisfying condition (c) above, let δX denote those points $x \in X$ which admit an open neighborhood $U \ni x$ and a continuous map $\phi: U \rightarrow \mathbb{R}_{\geq 0}^{n}$ taking U homeomorphically onto $\phi(U)$ such that $\phi(x) \in\left\{x_{1}=0\right\} \subset \mathbb{R}^{n}$. Proof or counterexample: If $X \subset \mathbb{R}^{n}$, then $\partial X=\delta X$.
9. Cromwell 3.10.6
10. Cromwell 3.10.9
11. Cromwell 3.10.14 (Note that a chessboard colouring is defined in 3.10.13.)
12. Cromwell 4.11.2

