
Knot Theory Seminar
Problem Set #6 Selected Solutions

I’ve written down some solutions. I would suggest taking a look at

• Problem 1 (iv), (vi), (viii)

• Problem 2 (vi)

• Problem 3 (iii)

• Problem 4

• Problem 6

These seemed to give the most trouble.
I also have some remarks about writing your proofs.

• If you are going to use the symbol =⇒ , which I suggest you don’t, then each appearance of =⇒
must supported with an appeal to a definition, proposition, theorem, etc. Otherwise, the reader has
no idea why the next statement follows. I suggest never to use this symbol, instead writing out the
correct logical sentences that convey exactly what you mean to say, for the increased satisfaction of
your reader (and yourself when you try to review).

• I would suggest to write out the statement of the problem. This is to the benefit of the grader and
yourself, when you wish to review.

• When proving an if-and-only-if statement, I think it is most practical to simply prove both directions
separately. It is an exercise in and of itself when reading a chain of if-and-only-if statements to verify
that all directions are indeed true. Moreover, I despise the symbol =⇒ in written work (see bullet
1), so I especially despise the symbol ⇐⇒ . Although certain situations permit you to “reverse all
the arrows,” these situations are less frequent the further you travel in math, and it is perhaps better
practice to get used to the traditional method of proof.

• I would suggest writing in complete sentences. Your reader will be extremely happy with you when
you do this. Moreover, when you speak about math, you wish to do so in complete sentences, so why
not when writing about it too? Moreover, when you write math at any other level, it is expected that
it will be written in complete sentences.

• When completing a proof by contradiction, it is often good practice to explicitly state your goal in
the proof: “Suppose, toward a contradiction, that X holds...” Then alert your reader when the
contradiction has been reached: “..., which is a contradiction to the assumption that Y holds...” Then
get rid of your false assumption: “Thus our assumption about X was false, and hence X does not
hold.”

• Though the symbols ∃ and ∀ may be fun to write and good for note-taking, they don’t really have a
place in written mathematics, as they are difficult to read (unless used well). Remember: your reader is
a human being—not a computer—and will appreciate reading written work in his/her native language,
not some mix of english words and symbols that are sometimes difficult to parse.

• Finally, organization and clarity can improve your reputation with the reader. Hence, I would suggest
writing neatly and legibly, organizing your work neatly between the margins, using new paragraphs to
signify transitions in proofs, writing your solutions in order, finishing your proofs with a �, and leaving
enough space for comments.

1. I feel like I didn’t explain my response to Andrew’s question properly, so here is an exercise which fills in
the details better. Recall that a map f : X → Y is open if and only if f(U) is open for each open U ⊂ X.
Andrew asked whether there were examples of projection maps π : X → X/ ∼ which are not open. The
answer is yes, and here is one line of reasoning that I tried to outline on the board.

1



(i) For a topological space X, a set Y , and a surjective mapping f : X → Y , show that the set {V ⊂ Y :
f−1(V ) is open in X} is a topology on Y called the quotient topology.

Proof. Because f is a map, we have f−1(∅) = ∅ and f−1(Y ) = X. This shows that ∅ and Y belong
to the quotient topology.

Because the preimage under f commutes with taking unions or taking intersections, we find that unions
of open sets are open and finite intersections of open sets are open.

(ii) When Y is equipped with the quotient topology, show that f is continuous.

Proof. If V ⊂ Y is open, then by definition of the quotient topology, f−1(V ) is open.

(iii) Define an equivalence relation ∼ on X by x1 ∼ x2 if and only if f(x1) = f(x2), and let X/ ∼ denote
the quotient space. Show that f induces a well-defined map g : X/ ∼ → Y described by g([x]) = f(x).

Proof. If x1, x2 ∈ X satisfy x1 ∼ x2, then by definition f(x1) = f(x2), and hence g([x1]) = f(x1) =
f(x2) = g([x2]).

(iv) Show that g is continuous.

Proof. Let V be an open subset of Y .
By definition of the quotient topology, f−1(V ) is open in X.
Because f = g ◦ π, we have f−1(V ) = π−1(g−1(V )).
By definition, a subset W of X/ ∼ is open in X/ ∼ if and only if π−1(W ) is open in X.
Hence g−1(V ) is open in X/ ∼.

(v) Show that g is bijective and hence admits an inverse g−1 : Y → X/ ∼.

Proof. We first show that g is injective. Suppose [x1], [x2] ∈ X/ ∼ satisfy g([x1]) = g([x2]). Then
f(x1) = f(x2) meaning that x1 ∼ x2 or equivalently [x1] = [x2].

We next show that g is surjective. Let y ∈ Y be arbitrary. Because f is surjective, there is an x ∈ X
such that f(x) = y. Then g([x]) = y.

(vi) Show that the inverse of g is continuous, and hence g is a homeomorphism.

Proof. Let V be an open subset of X/ ∼.
Then by definition of the quotient space, π−1(V ) is open in X.
Because π = g−1 ◦ f , we have π−1(V ) = f−1((g−1)−1(V )).
A subset U of Y is open if and only if f−1(U) is open in X.
Hence (g−1)−1(V ) is open in Y .

(vii) Show that f is open if and only if π is.

Proof. A homeomorphism is an open map, so in particular g and g−1 are open.
The composition of open maps is open.
Hence if f is open, then π = g−1 ◦ f is open.
Conversely, if π is open, then f = g ◦ π is open.

(viii) As sets, let X = Y = [0, 1]. Equip X with the standard topology. Let f : X → Y be defined by

f(x) =

{
0 0 ≤ x ≤ 1/2

2x− 1 1/2 ≤ x ≤ 1.

Equip Y with the quotient topology induced by f . Show that f is continuous but not open. Conclude
that the corresponding projection map π : X → X/ ∼ is not open.
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Proof. The map f is continuous by (ii).
Let U be the open subset of X given by U = [0, 1/4).
Then f(U) = {0}.
Note that f−1({0}) = [0, 1/2], which is not open in X.
By definition of the quotient topology, f(U) is not open in Y .
Hence f is not open.
By part (vi), π is not open.

2. Recall that an abelian semigroup is a set S together with a binary operation ∗ : S × S → S such that
s1 ∗ s2 = s2 ∗ s1 for each s1, s2 ∈ S. We say that S has a unit if there is an element e ∈ S such that e ∗ s = s
for each s ∈ S. Theorem 4.6.2 says that K is an abelian semigroup with unit given by the unknot.

(i) If S has a unit, show that it is unique. (That is, if e1, e2 are two units for S, show that e1 = e2.)

Proof. If e1 and e2 are units, then

e1 = e2 ∗ e1 e2 a unit

= e1 ∗ e2 ∗ commutative

= e2 e1 a unit.

(ii) We say that an element s ∈ S divides another element r ∈ S, if there is an element t ∈ S such that
s ∗ t = r. Show that the unknot divides every knot.

Proof. A knot K is locally flat, so there is a factorizing sphere S whose interior U is such that (U,U∩K)
is homeomorphic to the unit ball in R3 with a diameter. Let α be an arc in S connecting the two
points of S ∩K. Then (U ∩K) ∪ α bounds a disc, and hence is a factor of K ambient isotopic to the
unknot.

(iii) We say that an element s is prime in S if whenever s divides a product a ∗ b, either s divides a or s
divides b. Show that if KP is a prime knot, then KP is a prime element of K.

Proof. Say that KP divides KA#KB .
By Theorem 4.5.2, KP either divides KA or KB .

(iv) We say that a non-unit s ∈ S is irreducible if whenever s = s1 ∗ s2 for some s1, s2 ∈ S, either s1 = e
or s2 = e. Show that every prime number is irreducible in (N>0, ·).

Proof. A prime number p satisfies the property that p and 1 are its only factors.
If p is equal to a product ab, then either a = 1 or b = 1.
Since 1 is the unit of (N>0, ·), it follows that p is irreducible.

(v) Show that every prime knot is irreducible in K.

Proof. Let K be a prime knot.
Then by definition, we may not write K = KA#KB unless either KA or KB is trivial.

(vi) We say that an abelian semigroup with unit S has unique factorization if for each element s ∈ S there
are irreducible elements s1, . . . , sn ∈ S such that

s = e ∗ s1 ∗ · · · ∗ sn

3



and this representation is unique in the sense that if

s = e ∗ t1 · · · ∗ tm

for some t1, . . . , tm ∈ S, then m = n and there is a bijection φ : {1, . . . ,m} → {1, . . . , n} such that
tφ(i) = si for each i. Why does K have unique factorization?

Proof. Let K be a knot. By Theorem 4.5.1, there are a finite number of knots K1, . . . ,Kn such that

K = K1# · · ·#Kn.

Moreover, we may assume that each Ki is prime, or else we could reduce further. Hence, by part (v),
we may assume that each Ki is irreducible. Then we have the existence we need:

K = E#K1# · · ·#Kn

Now, suppose that we may also write K as L1# · · ·#Lm for irreducible Li. We prove by induction on
n that m = n and there is a permutation σ of {1, . . . , n} such that Ki = Lσ(i) for all i.

Suppose that n = 1. Then K1 = L1# · · ·#Lm. Because K1 is irreducible, either L1 or L2# · · ·#Lm
is the unknot. But L1 cannot be the unknot, as L1 is not a unit. It follows that L2# · · ·#Lm is the
unknot. This is impossible unless this connected sum is empty. It follows that m = 1, and L1 = K1.

Suppose now that the claim holds for n, and consider the case for n+ 1. In this case, we have

K1# · · ·#Kn+1 = L1# · · ·#Lm.

By Theorem 4.5.2, Kn+1 divides some Lj . Without loss of generality, we may suppose that Lj = Lm.
Since Lm is irreducible, we must have that Kn+1 = Lm. By Theorem 4.5.3, we can cancel Kn+1 and
Lm from the above equation, to find that

K1# · · ·#Kn = L1# · · ·#Lm−1.

By the induction hypothesis, we have n = m − 1 and there is a permutation of {1, . . . , n} such that
Ki = Lσ(i) for each i. It follows that n + 1 = m and there is a permutation σ′ of {1, . . . , n + 1} such
that Ki = Lσ′(i) for each i. This completes the inductive step and the proof.

3. This exercise supplements the proof of Lemma 4.7.1 in Cromwell. Let v = (v1, v2, v3) be a vector in R3

such that v3 6= 0. If H+ = {x3 > 0} ⊂ R3 and H− = {x3 < 0} ⊂ R3, then either v ∈ H+ or v ∈ H−.

(i) If v ∈ H±, show that there is a unique linear transformation L : R3 → R3 satisfying L(e1) = e1, L(e2) =
e2, and L(v) = ±e3.

Proof. In linear algebra, the following statement is usually proved: If v1, . . . , vn is a basis for a vector
space V and w1, . . . , wn are vectors in a vector space W , then there is a unique linear map L : V →W
satisfying L(vi) = wi for each i. Hence, for our purposes, it suffices to show that B = {e1, e2, v} is
a basis for R3. But this is clear: Indeed the 3-by-3 matrix whose columns are the vectors of B has
nonzero determinant, and hence is invertible.

(ii) Conclude that L is the identity on the x1x2-plane, and sends v to a vector perpendicular to this plane.

Proof. If w is in the x1x2-plane, then there are w1, w2 ∈ R such that w = w1e1 + w2e2. Since L is
linear, we have

L(w) = w1L(e1) + w2L(e2) = w1e1 + w2e2 = w.

This shows that L is the identity on the x1x2-plane.

The vectors ±e3 are perpendicular to the x1x2-plane, so the second part of the claim follows.
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(iii) Show that L is orientation preserving.

Proof. By definition, L is orientation preserving if and only if its derivative has positive determinant.
Since L is linear, its derivative is equal to itself. The determinant of L is defined to be the determinant
of the matrix of L in any basis for R3. In terms of the standard basis, the determinant is easily
computed to be 1

|v3| , which is positive.

(iv) Show that there is an isotopy from the identity map to L.

Proof. Let H : R3 × [0, 1]→ R3 denote the map defined by

H(x, t) = Ht(x) = (1− t)x+ tL(x).

Then H(x, t) is a continuous map in t and x and satisfies H0(x) = x and H1(x) = L(x). Moreover, for
a fixed t ∈ [0, 1], the determinant of the linear map Ht is detHt = (1 − t) + t/|v3|, which is positive,
and hence Ht is an isomorphism, and thus a homeomorphism.

4. Cromwell 4.11.2. Show that companionship is reflexive and transitive.

Proof. We first show that companionship is reflexive. Let C be a knot, with tubular neighborhood V . Let
P be the unknot with tubular neighborhood W . Let h be a homeomorphism from W onto V . Then C is a
companion of h(P ). But h(P ) is ambient isotopic to the core C of V . Hence C is a companion of itself.

We next show that companionship is transitive. Say that C1 is a companion of C2 and C2 is a companion
of C3. This means that we can find a pattern P1 in the standard solid torus W , a tubular neighborhood
V1 of C1, and a homeomorphism h1 : W → V1 such that h1(P1) = C2. We can also find a pattern P2 in
the standard solid torus W , a tubular neighborhood V2 of C2, and a homeomorphism h2 : W → V2 such
that h2(P2) = C3. We may assume that C2 is in the interior of V1 and C3 in the interior of V2. Hence, by
shrinking the tubular neighborhood V2 if necessary, we may assume that V2 ⊂ V1.

Let P be the pattern in W defined by P = h−11 (h2(P2)). Then h1 is a homeomorphism from W to V1
such that h1(P ) = h2(P2) = C3. Hence by definition C1 is a companion of C3.

5. Cromwell 4.11.7.

Proof. Suppose that K has unknotting number 1. Say we may write K = K1#K2. Because we are assuming
the unknotting conjecture to be true, we have 1 = µ(K) = µ(K1) + µ(K2). Since µ(Ki) ≥ 0 for each i,
without loss of generality we have µ(K1) = 0 and µ(K2) = 1. Any knot with unknotting number 0 is the
trivial link, so K1 is trivial. It follows that K is prime by definition.

6. Cromwell 4.11.8. Let S be a factorizing sphere for a knot K, and let λ ⊂ S be a single loop that is
disjoint from K. Show that the linking number lk(λ,K) is 0 or ±1.

Proof. The intersection S ∩ K consists of two points. The loop λ separates S into two discs ∆1 and ∆2.
Hence, each point lies in one of the discs, not both. Without loss of generality are two cases to consider (i)
∆1 has two points and (ii) ∆1 has one point.

(i) If ∆1 has two points, then we may perform surgery by cutting along λ and gluing discs to the resulting
pieces so that one is a sphere S′ containing K in its interior. Hence now S′ is a splitting sphere for the
link K ∪ λ, which implies that K ∪ λ has linking number 0.

(ii) If ∆1 has one point, then I claim there is a diagram for K ∪λ which has exactly two crossings: Indeed,
we may shrink λ so that it is a very small loop around one point of K ∩ S—and hence around one
strand of K—from which it is clear that the number of crossings in a suitable diagram will be two.
One crossing must be an over-crossing and the other an under-crossing (or else ∆1 would not have any
points of K ∩ S in it). The crossings will have the same orientation, and hence lk(K,λ) = ±1.
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This completes the proof.

7. Cromwell 4.11.9.
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