Knot Theory Seminar
Problem Set \#6
Due Monday, June 29

1. I feel like I didn't explain my response to Andrew's question properly, so here is an exercise which fills in the details better. Recall that a map $f: X \rightarrow Y$ is open if and only if $f(U)$ is open for each open $U \subset X$. Andrew asked whether there were examples of projection maps $\pi: X \rightarrow X / \sim$ which are not open. The answer is yes, and here is one line of reasoning that I tried to outline on the board.
(i) For a topological space X, a set Y, and a surjective mapping $f: X \rightarrow Y$, show that the set $\{V \subset Y$: $f^{-1}(V)$ is open in $\left.X\right\}$ is a topology on Y called the quotient topology.
(ii) When Y is equipped with the quotient topology, show that f is continuous.
(iii) Define an equivalence relation \sim on X by $x_{1} \sim x_{2}$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)$, and let X / \sim denote the quotient space. Show that f induces a well-defined map $g: X / \sim \rightarrow Y$ described by $g([x])=f(x)$.
(iv) Show that g is continuous.
(v) Show that g is bijective and hence admits an inverse $g^{-1}: Y \rightarrow X / \sim$.
(vi) Show that the inverse of g is continuous, and hence g is a homeomorphism.
(vii) Show that f is open if and only if π is.
(viii) As sets, let $X=Y=[0,1]$. Equip X with the standard topology. Let $f: X \rightarrow Y$ be defined by

$$
f(x)= \begin{cases}0 & 0 \leq x \leq 1 / 2 \\ 2 x-1 & 1 / 2 \leq x \leq 1\end{cases}
$$

Equip Y with the quotient topology induced by f. Show that f is continuous but not open. Conclude that the corresponding projection map $\pi: X \rightarrow X / \sim$ is not open.
2. Recall that an abelian semigroup is a set S together with a binary operation $*: S \times S \rightarrow S$ such that $s_{1} * s_{2}=s_{2} * s_{1}$ for each $s_{1}, s_{2} \in S$. We say that S has a unit if there is an element $e \in S$ such that $e * s=s$ for each $s \in S$. Theorem 4.6.2 says that \mathbb{K} is an abelian semigroup with unit given by the unknot.
(i) If S has a unit, show that it is unique. (That is, if e_{1}, e_{2} are two units for S, show that $e_{1}=e_{2}$.)
(ii) We say that an element $s \in S$ divides another element $r \in S$, if there is an element $t \in S$ such that $s * t=r$. Show that the unknot divides every knot.
(iii) We say that an element s is prime in S if whenever s divides a product $a * b$, either s divides a or s divides b. Show that if K_{P} is a prime knot, then K_{P} is a prime element of \mathbb{K}.
(iv) We say that a non-unit $s \in S$ is irreducible if whenever $s=s_{1} * s_{2}$ for some $s_{1}, s_{2} \in S$, either $s_{1}=e$ or $s_{2}=e$. Show that every prime number is irreducible in $\left(\mathbb{N}_{>0}, \cdot\right)$.
(v) Show that every prime knot is irreducible in \mathbb{K}.
(vi) We say that an abelian semigroup with unit S has unique factorization if for each element $s \in S$ there are irreducible elements $s_{1}, \ldots, s_{n} \in S$ such that

$$
s=e * s_{1} * \cdots * s_{n}
$$

and this representation is unique in the sense that if

$$
s=e * t_{1} \cdots * t_{m}
$$

for some $t_{1}, \ldots, t_{m} \in S$, then $m=n$ and there is a bijection $\phi:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that $t_{\phi(i)}=s_{i}$ for each i. Why does \mathbb{K} have unique factorization?
3. This exercise supplements the proof of Lemma 4.7.1 in Cromwell. Let $v=\left(v_{1}, v_{2}, v_{3}\right)$ be a vector in \mathbb{R}^{3} such that $v_{3} \neq 0$. If $H_{+}=\left\{x_{3}>0\right\} \subset \mathbb{R}^{3}$ and $H_{-}=\left\{x_{3}<0\right\} \subset \mathbb{R}^{3}$, then either $v \in H_{+}$or $v \in H_{-}$.
(i) If $v \in H_{ \pm}$, show that there is a unique linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfying $L\left(e_{1}\right)=e_{1}, L\left(e_{2}\right)=$ e_{2}, and $L(v)= \pm e_{3}$.
(ii) Conclude that L is the identity on the $x_{1} x_{2}$-plane, and sends v to a vector perpendicular to this plane.
(iii) Show that L is orientation preserving.
(iv) Show that there is an isotopy from the identity map to L.
4. Cromwell 4.11.2
5. Cromwell 4.11.7
6. Cromwell 4.11.8
7. Cromwell 4.11.9

