Knot Theory Seminar Problem Set #6 Due Monday, June 29

1. I feel like I didn't explain my response to Andrew's question properly, so here is an exercise which fills in the details better. Recall that a map $f: X \to Y$ is open if and only if f(U) is open for each open $U \subset X$. Andrew asked whether there were examples of projection maps $\pi: X \to X/\sim$ which are not open. The answer is yes, and here is one line of reasoning that I tried to outline on the board.

- (i) For a topological space X, a set Y, and a surjective mapping $f: X \to Y$, show that the set $\{V \subset Y : f^{-1}(V) \text{ is open in } X\}$ is a topology on Y called the **quotient topology**.
- (ii) When Y is equipped with the quotient topology, show that f is continuous.
- (iii) Define an equivalence relation \sim on X by $x_1 \sim x_2$ if and only if $f(x_1) = f(x_2)$, and let X / \sim denote the quotient space. Show that f induces a well-defined map $g: X / \sim \rightarrow Y$ described by g([x]) = f(x).
- (iv) Show that g is continuous.
- (v) Show that g is bijective and hence admits an inverse $g^{-1}: Y \to X/\sim$.
- (vi) Show that the inverse of g is continuous, and hence g is a homeomorphism.
- (vii) Show that f is open if and only if π is.
- (viii) As sets, let X = Y = [0, 1]. Equip X with the standard topology. Let $f: X \to Y$ be defined by

$$f(x) = \begin{cases} 0 & 0 \le x \le 1/2\\ 2x - 1 & 1/2 \le x \le 1. \end{cases}$$

Equip Y with the quotient topology induced by f. Show that f is continuous but not open. Conclude that the corresponding projection map $\pi : X \to X/\sim$ is not open.

2. Recall that an **abelian semigroup** is a set S together with a binary operation $*: S \times S \to S$ such that $s_1 * s_2 = s_2 * s_1$ for each $s_1, s_2 \in S$. We say that S has a **unit** if there is an element $e \in S$ such that e * s = s for each $s \in S$. Theorem 4.6.2 says that K is an abelian semigroup with unit given by the unknot.

- (i) If S has a unit, show that it is unique. (That is, if e_1, e_2 are two units for S, show that $e_1 = e_2$.)
- (ii) We say that an element $s \in S$ divides another element $r \in S$, if there is an element $t \in S$ such that s * t = r. Show that the unknot divides every knot.
- (iii) We say that an element s is **prime in** S if whenever s divides a product a * b, either s divides a or s divides b. Show that if K_P is a prime knot, then K_P is a prime element of K.
- (iv) We say that a non-unit $s \in S$ is **irreducible** if whenever $s = s_1 * s_2$ for some $s_1, s_2 \in S$, either $s_1 = e$ or $s_2 = e$. Show that every prime number is irreducible in $(\mathbb{N}_{>0}, \cdot)$.
- (v) Show that every prime knot is irreducible in \mathbb{K} .
- (vi) We say that an abelian semigroup with unit S has unique factorization if for each element $s \in S$ there are irreducible elements $s_1, \ldots, s_n \in S$ such that

$$s = e * s_1 * \dots * s_n$$

and this representation is unique in the sense that if

$$s = e * t_1 \cdots * t_m$$

for some $t_1, \ldots, t_m \in S$, then m = n and there is a bijection $\phi : \{1, \ldots, m\} \to \{1, \ldots, n\}$ such that $t_{\phi(i)} = s_i$ for each *i*. Why does K have unique factorization?

3. This exercise supplements the proof of Lemma 4.7.1 in Cromwell. Let $v = (v_1, v_2, v_3)$ be a vector in \mathbb{R}^3 such that $v_3 \neq 0$. If $H_+ = \{x_3 > 0\} \subset \mathbb{R}^3$ and $H_- = \{x_3 < 0\} \subset \mathbb{R}^3$, then either $v \in H_+$ or $v \in H_-$.

- (i) If $v \in H_{\pm}$, show that there is a unique linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying $L(e_1) = e_1, L(e_2) = e_2$, and $L(v) = \pm e_3$.
- (ii) Conclude that L is the identity on the x_1x_2 -plane, and sends v to a vector perpendicular to this plane.
- (iii) Show that L is orientation preserving.
- (iv) Show that there is an isotopy from the identity map to L.
- 4. Cromwell 4.11.2
- 5. Cromwell 4.11.7
- **6.** Cromwell 4.11.8
- **7.** Cromwell 4.11.9