Knot Theory Seminar
Problem Set #8
Due Wednesday, July 8

1. Recall that an embedding of a topological space .S into another space X is a continuous map ¢: 5 — X

which induces a homeomorphism of S onto i(S) when i(S) is equipped with the subspace topology.
(i) If S is locally Euclidean of dimension n, show that (.S) is as well.
(ii) If S is Hausdorff, show that i(S) is as well.
(iii) If S is a manifold with boundary, show that i(.5) is as well.
)

(iv) If S is a manifold with boundary, is it true that 6(¢(S)) = #(6.5)?

2. Show that the product of compact spaces is compact.

3. Define an equivalence relation on X = [0, 1] x [0, 1] by the rule (x1,y1) ~ (22,y2) if and only if one of the
following conditions is satisfied

e x1 =x2,y1 = 0,520 =1
e 11 =x2,y1=1,492=0
oy =y, 21 =0,220=1
® y1 =y2,21 = 1,20 =0.

Show that X/ ~ is homeomorphic to the two-dimensional torus 7" with big radius R and little radius r
satisfying 0 < r < R.

4. A group is a set G together with a binary operation * : G X G — G such that
(a) there is an element e € G called an identity element such that ex g = gxe = g for each g € G
(b) for each element g € G, there is an element h € G called an inverse of g such that gxh=hxg=ce.
(c) the operation x is associative in the sense that (g1 * g2) * g3 = g1 * (g2 * g3) for each g1, g2, 93 € G.
Check whether the following are groups or not.
(i) (z,+)
)

For a set X, the set of bijections Perm(X) of X onto itself together with function composition.

(x

(xi) The set M,(R) of n-by-n matrices with coefficients in R together with matrix multiplication.

(Z,

i) (2,
(iii) (N, +)
(iv) (Q+)
(v) (@)
(vi) (@\0,)
(vii) (R>o,")
(viii) (R\O,)
(ix) The set of bijections of {1,...,n} onto itself together with function composition o.

)

)



(xii) The set GL(n,R) of invertible matrices of size n-by-n with coefficients in R together with matrix
multiplication.

(xiii) The set SL(n,R) of real matrices of size n-by-n with determinant 1 together with matrix multiplication.
5. Let G be a group.

(i) Show that the identity of G is unique.

(ii) Show that the inverse of an element g is unique.

6. A group (G, *) is called abelian if the operation * is commutative in the sense that g1 x go = go * g1 for
each g1, go € G. Which of the groups above are abelian?

7. A homomorphism of groups ¢ from (G,x*) into (H,-) is a map of sets ¢ : G — H which satisfies
?(g1 % g2) = d(g1) - #(g2)-

(i) Show that the determinant map det : GL(n,R) — R\ 0 is a group homomorphism.
(ii) Show that ¢ : Z — Z defined by ¢(z) = 2z is a group homomorphism.
(iii) Show that ¢ : R — Ry defined by ¢(z) = e® is a group homomorphism.
(iv) Show that any linear map L : R"™ — R™ is a group homomorphism.

8. If (G1,*1) and (Ga,*2) are groups, equip the Cartesian product G; x G5 with the structure of a group.
As an added challenge, show that the group structure on G = G; x Go satisfies the following universal
property: There are homomorphisms 7; : G — G; such that if f{ : H - G; and fo : H — G2 are
group homomorphisms, then there is a unique homomorphism f : H — G such that the following diagram

commutes
H

A

Glﬂ%G?GQ

9. A group homomorphism is called an isomorphism if it admits an inverse which is also a homomorphism
of groups. A group is called free abelian group if it is isomorphic to Z¥ = Z x --- x Z for some k. The
number k is called the rank of G. Free abelian groups are like vector spaces, except the scalars come from
the integers Z instead of a field.

(i) Let vy,..., v, be k linearly independent vectors in R™. Show that the set of Z-linear combinations of
v1,. ..,V forms a free abelian group of rank k.

(ii) Let X be a set of cardinality k. Show that the set of functions X — Z enjoys the structure of a free
abelian group of rank k.

(iii) Let X be a set of cardinality k. Show that the set of finite formal Z-linear combinations of elements
of X enjoys the structure of a free abelian group of rank k.

(iv) Let G be a free abelian group of rank k. Endow the set G* of homomorphisms G — Z with the
structure of a free abelian group, called the group dual to G.

10. The kernel of a group homomorphism ¢ : G — H is ker¢ = {g € G : ¢(g9) = eny} where ey is the
identity element from H.

(i) Show that the kernel ker ¢ enjoys the structure of a group when the operation from G is restricted
to ker ¢. We say that ker ¢ is a subgroup of G. (Note that you must in particular check that the
product of two elements of the kernel is another element of the kernel.)



(ii) Exhibit SL(n,R) as the kernel of some homomorphism ¢.
11. Let G be a group. A subset H of G is called a subgroup of G if H is a group itself when the operation
from G is restricted to H. Show that the following are equivalent for a nonempty subset H of G
e H is a subgroup of G.
e If 2,y belong to H, then zy belongs to H and z~! belongs to H.
e If z,y belong to H, then 2y~! belongs to H.
12. Let G be an abelian group and H a subgroup of G. Then we may form what is called the quotient
group G/H in the following manner.

(i) For g € G, let gH denote the subset of G given by gH = {gh : h € H}. Such a subset is called a
left coset of G. For g € G, show that the map ¢, : H — gH defined by ¢4(h) = gh is a bijection,
and conclude that all left cosets have the same cardinality. Our goal is now to endow the collection of
left-cosets with the structure of a group.

Show that g1 H = g H if and only if g;lgl € H.
Define a relation on G by g1 ~ g if and only if g1 H = goH. Show that ~ is an equivalence relation.
Show that [¢g] = gH.

Let G/H denote the set of equivalence classes under this equivalence relation. Show that the binary
operation defined on G/H by [g1] * [g2] = [g192] is well-defined.

(vi) Show that G/H acquires the structure of an abelian group when endowed with this operation.

We remark that in general, we may only form the quotient group by a so-called normal subgroup, but when
G is abelian, it turns out that all subgroups are normal, so we can always form the quotient group in this
case.



