Knot Theory Seminar
Problem Set \#8
Due Wednesday, July 8

1. Recall that an embedding of a topological space S into another space X is a continuous map $i: S \rightarrow X$ which induces a homeomorphism of S onto $i(S)$ when $i(S)$ is equipped with the subspace topology.
(i) If S is locally Euclidean of dimension n, show that $i(S)$ is as well.
(ii) If S is Hausdorff, show that $i(S)$ is as well.
(iii) If S is a manifold with boundary, show that $i(S)$ is as well.
(iv) If S is a manifold with boundary, is it true that $\delta(i(S))=i(\delta S)$?
2. Show that the product of compact spaces is compact.
3. Define an equivalence relation on $X=[0,1] \times[0,1]$ by the rule $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if one of the following conditions is satisfied

- $x_{1}=x_{2}, y_{1}=0, y_{2}=1$
- $x_{1}=x_{2}, y_{1}=1, y_{2}=0$
- $y_{1}=y_{2}, x_{1}=0, x_{2}=1$
- $y_{1}=y_{2}, x_{1}=1, x_{2}=0$.

Show that X / \sim is homeomorphic to the two-dimensional torus T with big radius R and little radius r satisfying $0<r<R$.
4. A group is a set G together with a binary operation $*: G \times G \rightarrow G$ such that
(a) there is an element $e \in G$ called an identity element such that $e * g=g * e=g$ for each $g \in G$
(b) for each element $g \in G$, there is an element $h \in G$ called an inverse of g such that $g * h=h * g=e$.
(c) the operation $*$ is associative in the sense that $\left(g_{1} * g_{2}\right) * g_{3}=g_{1} *\left(g_{2} * g_{3}\right)$ for each $g_{1}, g_{2}, g_{3} \in G$.

Check whether the following are groups or not.
(i) $(\mathbb{Z},+)$
(ii) (\mathbb{Z}, \cdot)
(iii) $(\mathbb{N},+)$
(iv) $(\mathbb{Q},+)$
(v) (\mathbb{Q}, \cdot)
(vi) $(\mathbb{Q} \backslash 0, \cdot)$
(vii) $\left(\mathbb{R}_{>0}, \cdot\right)$
(viii) $(\mathbb{R} \backslash 0, \cdot)$
(ix) The set of bijections of $\{1, \ldots, n\}$ onto itself together with function composition \circ.
(x) For a set X, the set of bijections $\operatorname{Perm}(X)$ of X onto itself together with function composition.
(xi) The set $M_{n}(\mathbb{R})$ of n-by- n matrices with coefficients in \mathbb{R} together with matrix multiplication.
(xii) The set $G L(n, \mathbb{R})$ of invertible matrices of size n-by- n with coefficients in \mathbb{R} together with matrix multiplication.
(xiii) The set $S L(n, \mathbb{R})$ of real matrices of size n-by- n with determinant 1 together with matrix multiplication.
5. Let G be a group.
(i) Show that the identity of G is unique.
(ii) Show that the inverse of an element g is unique.
6. A group $(G, *)$ is called abelian if the operation $*$ is commutative in the sense that $g_{1} * g_{2}=g_{2} * g_{1}$ for each $g_{1}, g_{2} \in G$. Which of the groups above are abelian?
7. A homomorphism of groups ϕ from $(G, *)$ into (H, \cdot) is a map of sets $\phi: G \rightarrow H$ which satisfies $\phi\left(g_{1} * g_{2}\right)=\phi\left(g_{1}\right) \cdot \phi\left(g_{2}\right)$.
(i) Show that the determinant map det : $G L(n, \mathbb{R}) \rightarrow \mathbb{R} \backslash 0$ is a group homomorphism.
(ii) Show that $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi(x)=2 x$ is a group homomorphism.
(iii) Show that $\phi: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ defined by $\phi(x)=e^{x}$ is a group homomorphism.
(iv) Show that any linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a group homomorphism.
8. If $\left(G_{1}, *_{1}\right)$ and $\left(G_{2}, *_{2}\right)$ are groups, equip the Cartesian product $G_{1} \times G_{2}$ with the structure of a group. As an added challenge, show that the group structure on $G=G_{1} \times G_{2}$ satisfies the following universal property: There are homomorphisms $\pi_{i}: G \rightarrow G_{i}$ such that if $f_{1}: H \rightarrow G_{1}$ and $f_{2}: H \rightarrow G_{2}$ are group homomorphisms, then there is a unique homomorphism $f: H \rightarrow G$ such that the following diagram commutes

9. A group homomorphism is called an isomorphism if it admits an inverse which is also a homomorphism of groups. A group is called free abelian group if it is isomorphic to $\mathbb{Z}^{k}=\mathbb{Z} \times \cdots \times \mathbb{Z}$ for some k. The number k is called the rank of G. Free abelian groups are like vector spaces, except the scalars come from the integers \mathbb{Z} instead of a field.
(i) Let v_{1}, \ldots, v_{k} be k linearly independent vectors in \mathbb{R}^{n}. Show that the set of \mathbb{Z}-linear combinations of v_{1}, \ldots, v_{k} forms a free abelian group of rank k.
(ii) Let X be a set of cardinality k. Show that the set of functions $X \rightarrow \mathbb{Z}$ enjoys the structure of a free abelian group of rank k.
(iii) Let X be a set of cardinality k. Show that the set of finite formal \mathbb{Z}-linear combinations of elements of X enjoys the structure of a free abelian group of rank k.
(iv) Let G be a free abelian group of rank k. Endow the set G^{*} of homomorphisms $G \rightarrow \mathbb{Z}$ with the structure of a free abelian group, called the group dual to G.
10. The kernel of a group homomorphism $\phi: G \rightarrow H$ is $\operatorname{ker} \phi=\left\{g \in G: \phi(g)=e_{H}\right\}$ where e_{H} is the identity element from H.
(i) Show that the kernel $\operatorname{ker} \phi$ enjoys the structure of a group when the operation from G is restricted to $\operatorname{ker} \phi$. We say that $\operatorname{ker} \phi$ is a subgroup of G. (Note that you must in particular check that the product of two elements of the kernel is another element of the kernel.)
(ii) Exhibit $S L(n, \mathbb{R})$ as the kernel of some homomorphism ϕ.
11. Let G be a group. A subset H of G is called a subgroup of G if H is a group itself when the operation from G is restricted to H. Show that the following are equivalent for a nonempty subset H of G

- H is a subgroup of G.
- If x, y belong to H, then $x y$ belongs to H and x^{-1} belongs to H.
- If x, y belong to H, then $x y^{-1}$ belongs to H.

12. Let G be an abelian group and H a subgroup of G. Then we may form what is called the quotient group G / H in the following manner.
(i) For $g \in G$, let $g H$ denote the subset of G given by $g H=\{g h: h \in H\}$. Such a subset is called a left coset of G. For $g \in G$, show that the map $\phi_{g}: H \rightarrow g H$ defined by $\phi_{g}(h)=g h$ is a bijection, and conclude that all left cosets have the same cardinality. Our goal is now to endow the collection of left-cosets with the structure of a group.
(ii) Show that $g_{1} H=g_{2} H$ if and only if $g_{2}^{-1} g_{1} \in H$.
(iii) Define a relation on G by $g_{1} \sim g_{2}$ if and only if $g_{1} H=g_{2} H$. Show that \sim is an equivalence relation.
(iv) Show that $[g]=g H$.
(v) Let G / H denote the set of equivalence classes under this equivalence relation. Show that the binary operation defined on G / H by $\left[g_{1}\right] *\left[g_{2}\right]=\left[g_{1} g_{2}\right]$ is well-defined.
(vi) Show that G / H acquires the structure of an abelian group when endowed with this operation.

We remark that in general, we may only form the quotient group by a so-called normal subgroup, but when G is abelian, it turns out that all subgroups are normal, so we can always form the quotient group in this case.

