## Knot Theory Seminar Problem Set #8 Due Wednesday, July 8

**1.** Recall that an embedding of a topological space S into another space X is a continuous map  $i: S \to X$  which induces a homeomorphism of S onto i(S) when i(S) is equipped with the subspace topology.

- (i) If S is locally Euclidean of dimension n, show that i(S) is as well.
- (ii) If S is Hausdorff, show that i(S) is as well.
- (iii) If S is a manifold with boundary, show that i(S) is as well.
- (iv) If S is a manifold with boundary, is it true that  $\delta(i(S)) = i(\delta S)$ ?
- 2. Show that the product of compact spaces is compact.

**3.** Define an equivalence relation on  $X = [0, 1] \times [0, 1]$  by the rule  $(x_1, y_1) \sim (x_2, y_2)$  if and only if one of the following conditions is satisfied

- $x_1 = x_2, y_1 = 0, y_2 = 1$
- $x_1 = x_2, y_1 = 1, y_2 = 0$
- $y_1 = y_2, x_1 = 0, x_2 = 1$
- $y_1 = y_2, x_1 = 1, x_2 = 0.$

Show that  $X/\sim$  is homeomorphic to the two-dimensional torus T with big radius R and little radius r satisfying 0 < r < R.

**4.** A group is a set G together with a binary operation  $*: G \times G \to G$  such that

- (a) there is an element  $e \in G$  called an **identity element** such that e \* g = g \* e = g for each  $g \in G$
- (b) for each element  $g \in G$ , there is an element  $h \in G$  called an **inverse of** g such that g \* h = h \* g = e.
- (c) the operation \* is associative in the sense that  $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$  for each  $g_1, g_2, g_3 \in G$ .

Check whether the following are groups or not.

- (i)  $(\mathbb{Z}, +)$
- (ii)  $(\mathbb{Z}, \cdot)$
- (iii)  $(\mathbb{N}, +)$
- (iv)  $(\mathbb{Q}, +)$
- (v)  $(\mathbb{Q}, \cdot)$
- (vi)  $(\mathbb{Q} \setminus 0, \cdot)$
- (vii)  $(\mathbb{R}_{>0}, \cdot)$
- (viii)  $(\mathbb{R} \setminus 0, \cdot)$
- (ix) The set of bijections of  $\{1, \ldots, n\}$  onto itself together with function composition  $\circ$ .
- (x) For a set X, the set of bijections Perm(X) of X onto itself together with function composition.
- (xi) The set  $M_n(\mathbb{R})$  of n-by-n matrices with coefficients in  $\mathbb{R}$  together with matrix multiplication.

- (xii) The set  $GL(n, \mathbb{R})$  of invertible matrices of size *n*-by-*n* with coefficients in  $\mathbb{R}$  together with matrix multiplication.
- (xiii) The set  $SL(n,\mathbb{R})$  of real matrices of size n-by-n with determinant 1 together with matrix multiplication.
- **5.** Let G be a group.
  - (i) Show that the identity of G is unique.
  - (ii) Show that the inverse of an element g is unique.

**6.** A group (G, \*) is called **abelian** if the operation \* is commutative in the sense that  $g_1 * g_2 = g_2 * g_1$  for each  $g_1, g_2 \in G$ . Which of the groups above are abelian?

7. A homomorphism of groups  $\phi$  from (G, \*) into  $(H, \cdot)$  is a map of sets  $\phi : G \to H$  which satisfies  $\phi(g_1 * g_2) = \phi(g_1) \cdot \phi(g_2)$ .

- (i) Show that the determinant map det :  $GL(n, \mathbb{R}) \to \mathbb{R} \setminus 0$  is a group homomorphism.
- (ii) Show that  $\phi : \mathbb{Z} \to \mathbb{Z}$  defined by  $\phi(x) = 2x$  is a group homomorphism.
- (iii) Show that  $\phi : \mathbb{R} \to \mathbb{R}_{>0}$  defined by  $\phi(x) = e^x$  is a group homomorphism.
- (iv) Show that any linear map  $L: \mathbb{R}^n \to \mathbb{R}^n$  is a group homomorphism.

8. If  $(G_1, *_1)$  and  $(G_2, *_2)$  are groups, equip the Cartesian product  $G_1 \times G_2$  with the structure of a group. As an added challenge, show that the group structure on  $G = G_1 \times G_2$  satisfies the following universal property: There are homomorphisms  $\pi_i : G \to G_i$  such that if  $f_1 : H \to G_1$  and  $f_2 : H \to G_2$  are group homomorphisms, then there is a unique homomorphism  $f : H \to G$  such that the following diagram commutes



**9.** A group homomorphism is called an **isomorphism** if it admits an inverse which is also a homomorphism of groups. A group is called **free abelian group** if it is isomorphic to  $\mathbb{Z}^k = \mathbb{Z} \times \cdots \times \mathbb{Z}$  for some k. The number k is called the **rank** of G. Free abelian groups are like vector spaces, except the scalars come from the integers  $\mathbb{Z}$  instead of a field.

- (i) Let  $v_1, \ldots, v_k$  be k linearly independent vectors in  $\mathbb{R}^n$ . Show that the set of  $\mathbb{Z}$ -linear combinations of  $v_1, \ldots, v_k$  forms a free abelian group of rank k.
- (ii) Let X be a set of cardinality k. Show that the set of functions  $X \to \mathbb{Z}$  enjoys the structure of a free abelian group of rank k.
- (iii) Let X be a set of cardinality k. Show that the set of finite formal  $\mathbb{Z}$ -linear combinations of elements of X enjoys the structure of a free abelian group of rank k.
- (iv) Let G be a free abelian group of rank k. Endow the set  $G^*$  of homomorphisms  $G \to \mathbb{Z}$  with the structure of a free abelian group, called the group dual to G.

**10.** The kernel of a group homomorphism  $\phi : G \to H$  is ker  $\phi = \{g \in G : \phi(g) = e_H\}$  where  $e_H$  is the identity element from H.

(i) Show that the kernel ker  $\phi$  enjoys the structure of a group when the operation from G is restricted to ker  $\phi$ . We say that ker  $\phi$  is a **subgroup of** G. (Note that you must in particular check that the product of two elements of the kernel is another element of the kernel.)

(ii) Exhibit  $SL(n,\mathbb{R})$  as the kernel of some homomorphism  $\phi$ .

**11.** Let G be a group. A subset H of G is called a **subgroup of** G if H is a group itself when the operation from G is restricted to H. Show that the following are equivalent for a nonempty subset H of G

- H is a subgroup of G.
- If x, y belong to H, then xy belongs to H and  $x^{-1}$  belongs to H.
- If x, y belong to H, then  $xy^{-1}$  belongs to H.

12. Let G be an *abelian* group and H a subgroup of G. Then we may form what is called the **quotient** group G/H in the following manner.

- (i) For  $g \in G$ , let gH denote the subset of G given by  $gH = \{gh : h \in H\}$ . Such a subset is called a **left coset of** G. For  $g \in G$ , show that the map  $\phi_g : H \to gH$  defined by  $\phi_g(h) = gh$  is a bijection, and conclude that all left cosets have the same cardinality. Our goal is now to endow the collection of left-cosets with the structure of a group.
- (ii) Show that  $g_1H = g_2H$  if and only if  $g_2^{-1}g_1 \in H$ .
- (iii) Define a relation on G by  $g_1 \sim g_2$  if and only if  $g_1 H = g_2 H$ . Show that  $\sim$  is an equivalence relation.
- (iv) Show that [g] = gH.
- (v) Let G/H denote the set of equivalence classes under this equivalence relation. Show that the binary operation defined on G/H by  $[g_1] * [g_2] = [g_1g_2]$  is well-defined.
- (vi) Show that G/H acquires the structure of an abelian group when endowed with this operation.

We remark that in general, we may only form the quotient group by a so-called *normal subgroup*, but when G is abelian, it turns out that all subgroups are normal, so we can always form the quotient group in this case.