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Solutions to selected problems

1. Let X be a simplicial complex. Let C`(X,Z/2Z) denote the free abelian group of formal linear combi-
nations of `-simplices of X with coefficients in Z/2Z. We call C`(X,Z/2Z) the group of `-chains. Define
the boundary operator ∂` : C`(X,Z/2Z) → C`−1(X,Z/2Z) as in class. In particular, if [vi, vj ] denotes the
oriented 1-simplex with vertices vi and vj , then

∂1([vi, vj ]) = vj − vi ≡ vj + vi mod 2.

Let Z1 denote the kernel of ∂1, and call the elements of Z1 cycles. On the other hand, a circuit in X is a
sum of the form

∑n−1
i=0 [vi, vi+1] such that

(a) v0 = vn,

(b) No other two vi and vj are equal.

Let S denote the subset of C1(X,Z/2Z) consisting of all linear combinations of circuits. Prove that S = Z1.
(Hint: First prove that every circuit is a cycle. To prove the reverse inclusion, use strong induction on the
number of nonzero terms in an 1-chain that is a cycle.)

Proof. We first prove the inclusion S ⊂ Z1. If
∑n−1

i=0 [vi, vi+1] is a circuit, then

∂

(
n−1∑
i=0

[vi, vi+1]

)
=

n−1∑
i=0

(vi+1 − vi) = vn − v0 = 0

where the last equality comes from the fact that vn = v0 for a circuit. Since ∂ is linear, it follows that any
linear combination of circuits is also a cycle. Hence S ⊂ Z1. It remains to show the reverse inclusion.

We prove the inclusion Z1 ⊂ S by strong induction on the number of nonzero terms in a cycle C =
∑n

i=1 ei.
For an edge ei, let v1i and v2i denote the first and last vertices of the edge respectively. There are no cycles
with one or two nonzero terms, since the vertices of an edge must be distinct.

Suppose that n = 3. Then we find that

0 = ∂(C) = v21 − v11 + v22 − v12 + v23 − v13 ≡ v21 + v11 + v22 + v12 + v23 + v13 .

One vertex besides v11 itself must be equal to v11 in order for the sum to be zero. This vertex cannot be v21 ,
since e1 is an edge with distinct vertices. So without loss of generality, we may assume that v23 = v11 . In this
case, the sum reduces to

v21 + v22 + v12 + v13 .

One of the vertices besides v21 itself must be equal to v21 in order for the sum to be zero. It cannot be v13 ,
or else the edge e3 would not be distinct from the edge e1 (which would cause C to have only one nonzero
term). So without loss of generality, we may assume that v22 = v21 . In this case, or sum reduces again and
we find that v12 = v13 . It follows that C satisfies conditions (a) and (b) of the definition of a circuit. This
completes the base case when n = 3.

Suppose now that n > 3 and that the inductive hypothesis holds for all cycles with less than n nonzero
terms. Let C =

∑n
i=1 ei be a cycle. If there is a proper nonzero subsum C ′ =

∑k
j=1 eij which is a cycle,

then by the inductive hypothesis, C ′ is a linear combination of circuits and so is C −C ′, and hence so is C.
So we may assume that there are no nonzero proper subsums that are cycles. Because C is a cycle, we have
the equality

0 =

n∑
i=1

(v2i + v1i ).

Similar to the above reasoning, we may assume that v12 = v21 . In this case, we have written

C = [v11 , v
2
1 ] + [v21 , v

2
2 ] + C ′
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where C ′ is a subsum of C. Because edges need to be distinct in C and have distinct vertices, we find that
v11 6= v21 , v21 6= v22 , v

1
1 6= v22 . Because C has no nonzero proper subsums that are cycles, we find that either

C ′ = 0 or we must have v11 6= v22 . If C ′ = 0, then we find that the first vertex of the first edge of C is equal
to the second vertex of the last edge of C, and hence C is a circuit. If C ′ is nonzero, then because C is a
cycle, we have

0 = v11 + v22 + ∂(C ′)

Hence, without loss of generality, we may assume that v13 = v22 and hence we have written C as

C = [v11 , v
2
1 ] + [v21 , v

2
2 ] + [v22 , v

2
3 ] + C ′′.

Again either C ′′ = 0 or v23 6= v11 . If C ′′ is zero, then C is a circuit. Otherwise, we may continue in this way
to write C as

C = [v11 , v
2
1 ] + [v21 , v

2
2 ] + · · ·+ [v2n−1, v

2
n].

Because C is a cycle, we find that
0 = v11 + v2n.

Hence v11 = v2n, and we find that C is a circuit. This completes the inductive step and the proof.
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