Knot Theory Seminar
Problem Set \#9
Due Tuesday, July 14

1. Let X be a simplicial complex. Let $C_{\ell}(X, \mathbb{Z} / 2 \mathbb{Z})$ denote the free abelian group of formal linear combinations of ℓ-simplices of X with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$. We call $C_{\ell}(X, \mathbb{Z} / 2 \mathbb{Z})$ the group of ℓ-chains. Define the boundary operator $\partial_{\ell}: C_{\ell}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow C_{\ell-1}(X, \mathbb{Z} / 2 \mathbb{Z})$ as in class. In particular, if $\left[v_{i}, v_{j}\right]$ denotes the oriented 1 -simplex with vertices v_{i} and v_{j}, then

$$
\partial_{1}\left(\left[v_{i}, v_{j}\right]\right)=v_{j}-v_{i} \equiv v_{j}+v_{i} \quad \bmod 2
$$

Let Z_{1} denote the kernel of ∂_{1}, and call the elements of Z_{1} cycles. On the other hand, a circuit in X is a sum of the form $\sum_{i=0}^{n-1}\left[v_{i}, v_{i+1}\right]$ such that
(a) $v_{0}=v_{n}$,
(b) No other two v_{i} and v_{j} are equal.

Let S denote the subset of $C_{1}(X, \mathbb{Z} / 2 \mathbb{Z})$ consisting of all linear combinations of circuits. Prove that $S=Z_{1}$. (Hint: First prove that every circuit is a cycle. To prove the reverse inclusion, use strong induction on the number of nonzero terms in an 1-chain that is a cycle.)
2. Denote by $\Delta^{n}=\left[e_{0}, \ldots, e_{n}\right]$ the standard n-simplex, with vertices at e_{0}, \ldots, e_{n}. Recall that the boundary operator is linear and satisfies

$$
\partial\left(\left[e_{0}, \ldots, e_{n}\right]\right)=\sum_{i=0}^{n}(-1)^{i}\left[e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right]
$$

(i) Show that $\partial \partial\left(\left[e_{0}, \ldots, e_{n}\right]\right)=0$.
(ii) In general, an n-simplex in a simplicial complex takes the form $\left[v_{0}, \ldots, v_{n}\right]$ where v_{0}, \ldots, v_{n} are the vertices of the simplex, listed in the order compatible with the orientation. Argue that your argument for (i) shows that $\partial \partial\left(\left[v_{0}, \ldots, v_{n}\right]\right)=0$, and hence that $\partial^{2} \equiv 0$.
(iii) Conclude that $B_{\ell}(X, \mathbb{Z}) \subset Z_{\ell}(X, \mathbb{Z})$, and hence the quotient group $H_{\ell}(X, \mathbb{Z})$ is well-defined.
3. The goal of this exercise is to show that $H_{1}\left(S^{2}, \mathbb{Z} / 2 \mathbb{Z}\right)=0$.
(i) Let $X=\partial \Delta^{3}$ denote the boundary of the standard 3 -simplex. Note that X is homeomorphic to the unit sphere S^{2}. Compute the dimensions of the vector spaces $C_{\ell}(X, \mathbb{Z} / 2 \mathbb{Z})$ for $\ell=0,1,2$.
(ii) Show that $\operatorname{dim} Z_{1}(X, \mathbb{Z} / 2 \mathbb{Z})=3$. (Hint: Use Theorem 6.1.2)
(iii) Show that $\operatorname{dim} B_{1}(X, \mathbb{Z} / 2 \mathbb{Z})=3$ (Hint: Show that $\left.Z_{1}=B_{1}\right)$
(iv) Show that $H_{1}(X, \mathbb{Z} / 2 \mathbb{Z})=0$.
(v) Conclude that $H_{1}\left(S^{2}, \mathbb{Z} / 2 \mathbb{Z}\right)=0$.
4. Compute $H_{1}(T, \mathbb{Z} / 2 \mathbb{Z})$ where T is the torus. (Hint: The answer is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Use a suitable simplicial complex as is done in Problem 3. Try to modify the the standard representation of the torus as a square with edges identified to give a simplicial complex homeomorphic to T. Remember that the edges and vertices of a 2 -simplex must be distinct.)
5. Compute a Seifert matrix for the trefoil, and use this to compute the determinant and the signature of the trefoil.
6. Compute a Seifert matrix for the figure- 8 knot, and use this to compute the determinant and the signature of the trefoil.
7. Compute a Seifert matrix for the Hopf link, and use this to compute the determinant and the signature of the Hopf link.
8. A chain complex of vector spaces C_{\bullet} is a sequence of vector spaces $\left\{C_{n}\right\}$ together with linear maps $\partial_{n}: C_{n} \rightarrow C_{n-1}$ such that $\partial_{n-1} \partial_{n}=0$ for each n. For a chain complex, the n-th homology group $H_{n}\left(C_{\bullet}\right)$ is well-defined and given by

$$
H_{n}\left(C_{\bullet}\right):=\frac{\operatorname{ker} \partial_{n}}{\operatorname{im} \partial_{n+1}}
$$

Show that if

$$
0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0
$$

is a chain complex of vector spaces, then

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} C_{i}=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H_{i}\left(C_{\bullet}\right) .
$$

The above quantity is called the Euler characteristic of the chain complex, and is denoted

$$
\chi\left(C_{\bullet}\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} C_{i} .
$$

9. Let F be an orientable surface. Show that the Euler characteristic $\chi(F)$ is equal to the Euler characteristic of $C \bullet(X, \mathbb{Z} / 2 \mathbb{Z})$ for a suitable triangulation X of F.
10. Our goal is to show that for a knot K, there are $2 g(F)$ rows and columns in a Seifert matrix, where F is a Seifert surface. Remember that a Seifert surface for K is an orientable surface with boundary whose boundary is equal to K.
(i) If X is a triangulation of a surface with at least one boundary component, argue that $H_{2}(X, \mathbb{Z} / 2 \mathbb{Z})=0$.
(ii) Say that a simplicial complex X is path connected if for each pair of vertices, there is a sequence of edges connecting the two vertices. Show that if X is path-connected, then $\operatorname{dim} H_{0}(X, \mathbb{Z} / 2 \mathbb{Z})=1$.
(iii) Conclude that if F is path-connected, then $\operatorname{dim} H_{0}(F, \mathbb{Z} / 2 \mathbb{Z})=1$.
(iv) Show that $\operatorname{dim} H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})=2 g(F)$. (Hint: Use Problems 8 and 9.)
