
An Introduction to Real Analysis
Lectures Notes for Real Analysis I at Columbia University

© Mitchell Faulk 2019

1



Preface
These notes were written during the summer of 2019 as I taught a course on Real
Analysis at Columbia University.

They were originally intended to be a supplement to the textbook by Ruding, and,
indeed, they follow closely the content and organization of that book. Nevertheless,
throughout the writing process, my ambitions grew, and now, I believe, the notes
constitute a self-contained introduction to the topic of Real Analysis, only assuming
minor pre-requisites, such as elementary Calculus.

Any comments or suggestions for improvement should be directed to mitchellm-
faulk@gmail.com.
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1 The real numbers

1.1 Sets

We include this section only for the sake of notation. There are many interesting and
subtle considerations for sets, but we won’t concern ourselves with any of those here.

We will use the term set to mean a collection of elements. We will use the
symbol ∅ to denote the empty set with no elements. We often use capital letters
(X, Y,A,B, etc.) to refer to sets and lowercase letters (x, y, a, b, etc.) to refer to
elements. We will write x ∈ X to mean that x is an element of a set X.

By a finite set we mean a set with a finite number of elements. For example, if
x1, . . . , xn are the (distinct) elements of set X, then we will write

X = {x1, . . . , xn},

and we will refer to X as a finite set. An infinite set is one that is not finite.
We will use the notation A ⊂ B to mean that A is a subset of B, that is, to mean

that the following implication is true: if x ∈ A, then x ∈ B. (Some authors use the
notation A ⊆ B to mean the same thing.) In particular, for any set A it is true that
∅ ⊂ A and A ⊂ A.

Two sets A and B are equal if and only if both A ⊂ B and B ⊂ A are true. In
such a case, we write A = B. Otherwise, we write A 6= B.

If we wish to emphasize that A ⊂ B is true but that A 6= B, then we will write
A ( B. In such a situation A is called a proper subset of B, although we don’t often
have much need to concern ourselves with such situations.

1.2 The rational numbers

Let us begin with some notation.

• By N we mean the set natural numbers or nonnegative integers N = {0, 1, 2, . . .}.

• By Z we mean the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

• By Q we mean the set of rational numbers Q = {p/q : p, q ∈ Z, q 6= 0}.

If we wish to refer to the set of positive integers, we will write Z>0 or N∗ or even
N \ {0}.

The set of rational numbers are, in some sense, as close together as possible:
between any two distinct rational numbers x and y, there is a third, namely (x+y)/2.

Nevertheless, perhaps surprisingly, the set of rational numbers contains gaps. In
particular, rational numbers do not always admit roots, as the following proposition
demonstrates.

Proposition 1. There is no rational number x such that x2 = 2.
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Proof. Let x be a rational number, and write x = p/q for some integers p, q ∈ Z. We
may assume that p, q are relatively prime, or else we could divide them both by their
greatest common divisor to obtain another representation of x.

Suppose the relation x2 = 2 is true. Then our representation of x as p/q shows
that p2 = 2q2. We infer that p2 is even and hence p is even as well (if p were odd,
then p2 would be odd). It follows that 4 divides p2 and thus 4 also divides 2q2. We
find that q2 is even and thus q is even as well. But we have now found that both p
and q are even, which contradicts our assumption that they are relatively prime. We
conclude that the relation x2 = 2 cannot be true.

A positive number squaring to 2 would be written
√

2, and the above proposition
would say that

√
2 /∈ Q, that is,

√
2 would be irrational. However, the number

√
2—if

such a thing exists!—would be able to be approximated by rational numbers in the
sense that there is no rational number closest to

√
2, as the following proposition

asserts.

Proposition 2. Let A be the set of rational numbers x satisfying x2 < 2. Then A
contains no largest element.

Proof. Let x be an arbitrary element of A satisfying x > 0. The proof will be complete
if we construct a rational number y belonging to A which satisfies x < y.

We claim that

y = x− x2 − 2

x+ 2
=

2x+ 2

x+ 2

works. Indeed, we note that y is rational from the right-most expression of y. We also
note that since x belongs to A, the numerator x2 − 2 is negative, and hence y > x.
It is also simple algebra to compute that

y2 − 2 =
2(x2 − 2)

(x+ 2)2
,

from which we conclude that y2−2 is negative, and hence y belongs to A as well.

Proposition 3. Let B be the set of positive rational numbers x satisfying 2 < x2.
Then B contains no smallest element.

Proof. The proof is similar to the previous result, so we omit it.

Remark 4. The set R of real numbers is a way of “filling the gaps” present in the
rational numbers, as we will discuss now.

1.3 Ordered sets

Definition 5. Let X be a set. A relation on X is a subset R of the Cartesian
product X × X. If the point (x, y) belongs to R, then we say x is related to y and
we write xRy.
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Example 6. Equality determines a relation on X given by the diagonal subset R =
{(x, x) : x ∈ X} ⊂ X ×X, that is, we have xRy if and only if x = y. Note that this
relation is symmetric (if xRy, then yRx) and transitive (if xRy and yRz, then xRz).

Example 7. Order determines a relation on Q by declaring x < y if and only if y−x
is positive. Note that this relation is not symmetric (we have 1 < 2, but 2 6< 1) but
it is transitive (if x < y and y < z, then x < z).

Definition 8. Let S be a set. An order on S is a relation, denoted by <, satisfying
the following two properties.

(i) Trichotomy: If x and y belong to S, then one and only one of the following
statements is true

x < y, x = y, y < x.

(ii) Transitivity: If x, y, z ∈ S satisfy x < y and y < z, then x < z.

By an ordered set we just mean a pair (S,<) consisting of a set and an order. We
often use the notation x 6 y to mean that either x < y or x = y is true.

Example 9. For example, the set Q enjoys an order < defined by writing x < y if
the number y − x is positive. (The sets N and Z enjoy the same order.)

Definition 10. Let (S,<) be an ordered set, and let E be a subset of S. An upper
bound for E is an element β of S satisfying the following: If x belongs to E, then
x 6 β. The notion of lower bound is defined similarly.

Example 11. An upper bound may or may not belong to E itself. For example, let
E ⊂ N be the subset E = {0} consisting only of the number zero itself. Then β = 0
is an upper bound for E and also belongs to E. However, any number β′ ∈ N is also
an upper bound for E.

Definition 12. Let (S,<) be an ordered set, and let E be a subset of S that is
bounded from above. Suppose there is a number α ∈ S satisfying the following two
properties.

(i) α is an upper bound for E

(ii) α is the smallest upper bound for E in the sense that if β is any upper bound
for E, then α 6 β.

Then α is called a least upper bound or supremum of E.

Proposition 13. The supremum of E, if it exists, is unique. That is, if α and α′

are two suprema, then α = α′.
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Proof. This follows immediately from the definitions, but we feel the proof is instruc-
tive. Suppose α and α′ are two suprema. Then in particular, α′ is an upper bound for
E, and so property (ii) applied to α asserts that α 6 α′. On the other hand, property
(ii) applied to α′ asserts that α′ 6 α. We conclude that we must have α = α′ by
trichotomy.

Notation 14. Because the supremum is unique—if it exists!—we denote it by supE.
We let the reader define the anologous notion of infimum (or greatest lower bound),
which is also unique (when it exists) and which we denote by inf E.

Example 15. Returning to our example E = {0} from earlier, we find that supE =
0. In particular, note that in this case supE belongs to E itself.

Example 16. There are also examples where supE does not belong to E.
For example, consider the subset E of Q defined by E = {x ∈ Q : x < 0}. Then

we claim that supE = 0.
To verify this, we must check two things: that 0 is an upper bound of E and

that 0 is the smallest such upper bound. Note that 0 is upper bound for E simply
by virtue of the definition of E. Suppose that β is another upper bound for E. If
β were negative, then β/2 would be a number larger than β belonging to E, which
would contradict the assumption that β is an upper bound. We conclude that β is
non-positive, which means that β > 0. This is as desired.

On the other hand, if E ′ denotes the set E ′ = {x ∈ Q : x 6 0}, then the supremum
supE ′ is also equal to zero and in this case belongs to E ′.

Example 17. There are even examples where the supremum of E does not exist. For
example, suppose that A is the subset of Q considered earlier A = {x ∈ Q : x2 < 2}.
We claim that supA does not exist in Q. Indeed, let α be any upper bound for A.
Then α belongs to the set B defined earlier by B = {x ∈ Q : x2 > 2, x > 0}, and
conversely any element belonging to B is an upper bound for A. Since B contains no
smallest element, it is impossible for α to be the least upper bound for A.

This last example motivates the following definition.

Definition 18. An ordered set (S,<) is said to have the least upper bound prop-
erty if the following is true: Whenever E is a nonempty subset of S that is bounded
from above, then supE exists in S.

The preceding example shows that S = Q fails to have the least upper bound
property. The real numbers R constitute an attempt to repair this failure, as we will
see.
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1.4 The real field

The rational numbers enjoy the operations of addition and multiplication in such a
way that addition distributes over multiplication and several other nice properties are
satisfied. For example, there is an additive (resp. multiplicative) identity, and each
number (resp. nonzero number) has an additive inverse (resp. multiplicative inverse).
Rudin lists all of these properties together in a collection called the field axioms.
Any set together with two operations satisfying all of these axioms is called a field.

There are many elementary properties concerning algebraic manipulations involv-
ing addition and multiplication which follow from the field axioms, but we will not
prove these here and instead refer the interested reader to Rudin for a more complete
list.

Example 19. For a non-example, we note that although the set of integers Z enjoys
two binary operators of addition and multiplication, it fails to be a field because the
number 2 for example does not admit a multiplicative inverse.

Definition 20. By an ordered field we mean a field (F,+, ·) equipped with an order
< in such a way that the following two properties are satisfied.

(i) If x, y ∈ F satisfy x < y, then for each z ∈ F , we have x+ z < y + z.

(ii) If x, y ∈ F satisfy x > 0 and y > 0, then xy > 0.

There are also many properties concerning the relationship between the ordering
and addition/multiplication which follow from these two properties, but we will not
discuss these further and instead refer the reader to the textbook.

Example 21. For example, the set Q of rational numbers is an ordered field when
equipped with its usual ordering.

The fundamental result that we will assume from this point forward is the existence
of the field of real numbers.

Theorem 22. There is an ordered field R which has the least upper bound property
and which contains Q as a subfield.

We will later discuss how to construct R from Q. There are several ways of
performing this construction, and the interested reader can find one such method in
the appendix to the first chapter of Rudin. (We will discuss a different method.)

The following fundamental property of the real numbers is called the Archimedean
property and the general philosophy behind this property can be phrased by saying
that it is possible to travel a mile (or any distance, really) with just a ruler.

Theorem 23 (Archimedean property). Let x be a positive real number. If y is any
real number, then there is a positive integer n such that nx > y.
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Proof. Let E denote the subset of R described by E = {nx : n ∈ Z>0}. Suppose
that the conclusion of the theorem is false. Then y is an upper bound for E. By the
least uppper bound property, E has a least upper bound α. Since x is positive, the
difference α − x is not an upper bound for E. This means that there is a positive
integer m such that mx > α−x. It follows that (m+1)x > α, which is a contradiction
to the assumption that α is an upper bound for E. We conclude that the theorem is
true.

In addition, we saw earlier that the rational numbers are in some sense as close
together as possible. In particular, they are what is called dense in R, as made
precise in the following proposition.

Proposition 24. Between any two distinct real numbers there is a rational number.

Proof. Let x and y be distinct real numbers. Up to relabeling, we may assume x < y.
The difference y − x is positive, so by the Archimedean property, there is a positive
integer n0 such that n0(y − x) > 1, that is, n0x+ 1 < n0y

Let E denote the set of integers given by E = {m ∈ Z : m 6 n0x}. By definition,
E is bounded above, and hence by Problem 5 of Assignment 1, we deduce that E has
a largest element m0 which satisfies m0 6 n0x, that is, m0 + 1 6 n0x+ 1. Moreover,
because m0 is the greatest element of E, we have that m0 + 1 satisfies n0x < m0 + 1.
We combine with the previous inequalities to find that

n0x < m0 + 1 6 n0x+ 1 < n0y.

Upon dividing through by n0, which is positive, we find that

x <
m0 + 1

n0

< y.

Thus (m0 + 1)/n0 is the rational number we seek.

Let us conclude our discussion of the real numbers by returning a construction
that motivated our discussion in the first place, namely, finding a square root of 2.

Proposition 25. There is a unique positive real number x satisfying x2 = 2.

Proof. We first show the existence of such an x. Indeed, let E denote the subset

E = {t ∈ R : t2 < 2}.

Then E is bounded from above, and hence has a supremum, which is positive. We
set x = supE, and we hope to show that x has the desired property by showing that
x2 < 2 and x2 > 2 lead to contradictions.

We require the observation that if a, b are real numbers satisfying a < b, then we
have

b2 − a2 = (b+ a)(b− a) < 2b(b− a).
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Now assume that x2 < 2. It follows that there is a positive rational number h
such that

0 < h <
2− x2

2(x+ 1)
.

We may additionally suppose that h is small enough that h < 1. Upon setting a = x
and b = x+ h, we use the previous observation to note that

(x+ h)2 − x2 < 2(x+ h)h previous paragraph

< 2(x+ 1)h h < 1

< 2− x2 choice of h.

We conclude that x+ h satisfies (x+ h)2 < 2 so that x+ h belongs to E. But this is
a contradiction to the assumption that x is an upper bound for E.

It is similarly found that the assumption x2 > 2 leads to a contradiction, so we
may conclude that x2 = 2.

We now deal with uniqueness. Suppose that y is another positive real number
satisfying y2 = 2. If it were the case that x < y, then we would have x2 = x · x <
x · y < y · y = y2, which is incorrect. It similarly cannot be that y < x. We conclude
that y = x by trichotomy.

One can obtain the following more general result on the existence of roots.

Theorem 26. Let x be a positive real number and let n be a positive integer. There
is a unique positive real number y such that yn = x.

1.5 Euclidean spaces

For a positive integer n, use the notation Rn for the n-fold Cartesian product

Rn =

n copies︷ ︸︸ ︷
R× · · · × R

It is known from linear algebra that Rn is a vector space, and in particular, enjoys
the operations of addition and scalar multiplication. For a vector x ∈ Rn, we will
write x = (x1, . . . , xn) for its components (with respect to the standard basis).

For two vectors x, y ∈ Rn, we write 〈x, y〉 to denote the inner product of x and y
defined by

〈x, y〉 =
n∑
k=1

xkyk,

and we define the norm ‖x‖ of x to be

‖x‖ =
√
〈x, x〉 =

(
n∑
k=1

x2k

)1/2

.

When x is just a real number we often write |x| = ‖x‖.
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Proposition 27. Let x, y, z be points of Rn and let α be a real number. Then

(a) ‖x‖ > 0

(b) ‖x‖ = 0 if and only if x = 0

(c) ‖αx‖ = |α| ‖x‖

(d) |〈x, y〉 6 ‖x‖ ‖y‖

(e) ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Proof. The properties (a), (b), and (c) are immediate, and (d) follows from the Scharz
inequality. We now prove (e). We use (d) to find that

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

as desired.

2 Topology

2.1 Countability

Definition 28. Let X, Y be two sets. By a function (or map) f : X → Y from X
into Y we mean the data of a subset R ⊂ X × Y of the Cartesian product satisfying
the following property: For each x ∈ X, there is one and only one y ∈ Y such that
(x, y) belongs to R. For a point (x, y) ∈ R, we will often write y = f(x). The set X
is called the domain of f and the set Y is called the codomain. By the image of
f we mean the subset of Y determined by

im(f) = {f(x) : x ∈ X} ⊂ Y.

Remark 29. As a remark on the terminology, some authors (including me) prefer
to use the term function for a map whose codomain is R. We will often employ this
terminology.

Definition 30. Let f : X → Y be a map from X into Y .

(i) We say that f is injective if whenever x1, x2 ∈ X satisfy f(x1) = f(x2), then
x1 = x2.

(ii) We say that f is surjective if im(f) = Y .
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(iii) We say that f is bijective if f is both injective and surjective.

Example 31. Let f : R → R be the function defined by f(x) = x2. Then f is not
injective because f(−1) = 1 = f(1). Additionally, f is not surjective either because
im(f) = R>0.

However, the restriction of f to X = R>0 is injective, meaning that the map
f : R>0 → R defined in the same way as above is injective.

On the other hand, by restricting the codomain to Y = R>0 then we can make f
surjective.

If we restrict both the domain and codomain to X = Y = R>0, then we realize
that f : R>0 → R>0 is now bijective.

Definition 32. A set X is called countable if either X is finite or there is a bijective
map f : N→ X. Otherwise, we say that X is uncountable.

Example 33. The set of natural numbers N itself is countable because the identity
map idN : N→ N is bijective.

Example 34. We claim that the set Z of integers is countable. To see this, we will
construct a bijective map f : N → Z. We construct f piecewise in the following
manner

f(x) =

{
x/2 x even

−(x+ 1)/2 x odd
.

The first few values of f are given by

f(0) = 0

f(1) = −1

f(2) = 1

f(3) = −2

f(4) = 2

f(5) = −3

f(6) = 3

...

From here, we are convinced that f will be a bijection, and it is not too difficult to
verify this rigorously.

Example 35. Let A be the collection of infinite sequences consisting of 0s or 1s,
that is, an element of A consists of a sequence s = (s0, s1, s2, . . .) where each sj is
either 0 or 1. Then we claim that A is uncountable. Indeed, suppose that have
counted the elements of A as s(0), s(1), s(2), . . ., where each s(j) is a sequence s(j) =
(s

(j)
0 , s

(j)
1 , s

(j)
2 , . . .). Define a new sequence x = (x0, x1, x2, . . .) as follows. For each
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j = 0, 1, . . ., let xj be 1 if s
(j)
j is 0 and let xj be 0 if s

(j)
j is 1. Then we see that x

differs from each s(j) in the jth slot and hence x is an element of A that we have not
counted! We conclude that A is uncountable.

Example 36. The reasoning of the previous example can be used to show that the
set R of real numbers is uncountable. Indeed, every real number admits a decimal
representation, which is itself an infinite sequence of numbers. However, one must be
somewhat careful with this argument because in general a decimal representation is
not unqiue (for example, 1.0000 . . . = 0.9999 . . .).

Lemma 37. Let {Xn}n∈N be a sequence of finite sets, and set X to be the union

X =
⋃
n∈N

Xn.

Then X is countable.

Proof. Just count the elements in X0 first, and then X1 second, and then so on. This
process can continue because each Xj is finite so the jth step will terminate in finite
time.

Proposition 38. Let X and Y be countable sets. Then the Cartesian product X×Y
is countable.

Proof. Count X as X = {x0, x1, x2, . . .} and Y as Y = {y0, y1, y2, . . .}. Let Z be the
Cartesian product Z = X × Y . For each nonnegative integer n ∈ N, let Zn denote
the subset of Z given by

Zn = {(xj, yk) : j + k = n}.

Then each Zn is a finite set. Because Z is equal to the countable union

Z =
⋃
n∈N

Zn,

the previous lemma asserts that Z is countable.

Example 39. It follows that the set Q of rational numbers is countable because we
may regard Q as a subset of the Cartesian product Z× Z, which is itself countable.

2.2 Metric spaces

Definition 40. Let X be a set. A metric on X is a map d : X ×X → R satisfying
the following properties.

(i) Non-degeneracy: For each point of points p, q ∈ X, we have d(p, q) > 0 with
equality if and only if p = q
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(ii) Symmetry: For each pair of points p, q ∈ X, we have d(p, q) = d(q, p).

(iii) Triangle inequality: For each triple of points p, q, r ∈ X, we have d(p, q) 6
d(p, r) + d(r, q).

By a metric space we mean a set X together with a metric d on X.

Example 41. For example, there is a standard metric on Rn determined by the
norm:

d(x, y) = ‖x− y‖ .

Example 42. As another example, let X be any set, and consider the function d
defined by

d(p, q) =

{
0 p = q

1 p 6= q
.

Then d defines a metric on X called the discrete metric.

Example 43. If (X1, d2) and (X2, d2) are two metric spaces, then the Cartesian
product X = X1×X2 enjoys the structure of a metric space upon defining the metric

d((x1, x2), (y1, y2)) = ‖(d1(x1, y1), d2(x2, y2))‖ ,

where ‖·‖ denotes the Euclidean norm on R2. The metric d is called the product
metric. One can check that if X1 = X2 = R with the standard metric, then the
resulting product metric on R2 agrees with the one described in a previous example.

Definition 44. Let x be a point of a metric space X and let r be a positive number.
Then the open ball of radius r centered around x, denoted Br(x), is the subset
of X determined by

Br(x) = {y ∈ X : d(x, y) < r}.

We sometimes also use the term neighborhood of x to refer to a subset N of X of
the form N = Br(x) for some positive real number r > 0.

Example 45. For example, if X = R with the standard metric, then Br(x) =
(x − r, x + r), where (a, b) = {x ∈ R : a < x < b} denotes the open interval of real
numbers between a and b.

Definition 46. Let E be a subset of a metric space X. We say that E is bounded
if there is a point x of X and a real number r > 0 such that E ⊂ Br(x).

Example 47. For example, any open ball Br(x) is itself bounded by definition.

Example 48. As a non-example, the subset N of R is not bounded.
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Definition 49. Let (X, d) be a metric space and let E be a subset of X. A point
x ∈ E is called an interior point of E if there is a real number δ > 0 such that
Bδ(x) ⊂ E. That is, an interior point is one which admits an open ball around it
that is entirely contained within E. We say that E is open if each point of E is an
interior point of E.

Example 50. Any open ball Br(x) is itself open in X as a consequence of the triangle
inequality. Indeed let y be a point of Br(x). If d0 denotes the distance d0 = d(x, y),
then set δ = r − d0. The proof will be done if we can show that Bδ(y) ⊂ Br(x).
To this end, let z be a point of Bδ(y). This means that d(z, y) < δ. The triangle
inequality then implies that

d(z, x) 6 d(z, y) + d(y, x) < δ + d0 = r.

This completes the proof of the claim.

Proposition 51. Let A be an index set, and let {Eα}α∈A be a collection of open
subsets of a metric space X.

(a) The union ∪αEα is open in X.

(b) If the index set A is finite, then the intersection ∩αEα is open in X.

Proof. For (a), let x be a point of the union ∪αEα. There is an α0 ∈ A such that
x ∈ Eα0 . Because Eα0 is open, the point x is an interior point of Eα0 , so there is a
δ0 > 0 such that Bδ0(x) ⊂ Eα0 . By definition of the union, we have Bδ0(x) ⊂ (∪αEα).
We conclude that x is an interior point of the union ∪αEα.

For (b), let x be a point in the intersection ∩αEα. Because each Eα is open, for
each α ∈ A, there is a δα > 0 such that Bδα ⊂ Eα. Let δ denote the minimum
δ = inf{δα : α ∈ A}, which is positive since the index set A is finite. The proof will
be complete if we can show that Bδ(x) ⊂ (∩αEα). To this end, let y be a point of
Bδ(x). This means that d(y, x) < δ. By definition of δ, we have that d(y, x) < δα for
each α ∈ A. It follows that y belongs to each Bδα(x), and hence y belongs to each
Eα. This completes the proof.

Definition 52. Let E be a subset of a metric space X. A point x ∈ X is called a
limit point of E if for each δ > 0, the intersection Bδ(x) ∩ E is contains a point
other than x. That is, a point is a limit point if every ball around it contains a point
of E. We say that E is closed if every limit point of E belongs to E.

Example 53. For a point x ∈ X and a real number r > 0, let E denote the subset

E = {y ∈ X : d(y, x) 6 r}.

Then we claim that E is closed in X. Indeed, let y be a limit point of E. Let δ > 0
be arbitrary. The intersection Bδ(y) ∩ E contains a point z other than y. Since z
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belongs to E, we have d(z, x) 6 r, and since z belongs to Bδ(y), we have d(z, y) < δ.
The triangle inequality implies that

d(y, x) 6 d(y, z) + d(z, x) < δ + r.

Since δ > 0 is arbitrary, we conclude that d(y, x) 6 r. This shows that y belongs to
E.

The following characterization of closed sests is useful.

Lemma 54. A subset E of a metric space X is closed if and only if the complement
Ec = X \ E is open.

Proof. Suppose E is closed. Let x be a point of the complement Ec. Since E is closed,
x is not a limit point of E. Thus there is a δ > 0 such that the ball Bδ(x) does not
contain any points of E, that is, there is a δ > 0 such that Bδ(x) ⊂ Ec. This shows
that x is an interior point of Ec.

Suppose Ec is open. Let x be a limit point of E. If x belongs to Ec, then since
Ec is open, there is a δ > 0 such that Bδ(x) ⊂ Ec, which implies that Bδ(x)∩E = ∅,
a contradiction to the assumption that x is a limit point of E. We conclude that x
must belong to E.

The De Morgan’s laws (Problem 1 of Assignment 1) together with Proposition 51
imply the following.

Proposition 55. Let A be an index set, and let {Eα}α∈A be a collection of closed
subsets of a metric space X.

(a) The intersection ∩αEα is closed in X.

(b) If the index set A is finite, then the union ∪αEα is closed in X.

Proof. Exercise.

It is important to note that the notions of open and closed are not exclusive. In
particular, some sets are both open and closed, and some sets are neither.

Example 56. The empty set ∅ set is by definition both open and closed. In addition,
the whole space X is both open and closed.

Example 57. Let E = [a, b) denote the half-open interval [a, b) = {x ∈ R : a 6 x <
b}. Then E is neither open nor closed. Indeed, the point b is a limit point of E which
does not belong to E, so E is not closed. On the other hand, the point a is not an
interior point of E, so E is not open.

Definition 58. Let E be a subset of a metric space X. Suppose Ē is a subset of X
satisfying the following properties.
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(i) Ē contains E

(ii) Ē is closed

(iii) If C is any closed set containing E, then Ē ⊂ C.

Then Ē is called the closure of E. By construction, we see that Ē is the smallest
closed subset containing E.

Proposition 59. Let E be a subset of a metric space X. Then the closure Ē exists
and is given by

Ē = E ∪ E ′

where E ′ denotes the set of all limit points of E in X. In addition, the set E is closed
if and only if Ē = E.

Proof. Let us write F for the union F = E ∪ E ′. Note that by definition F contains
E.

We show that F is closed by showing that its complement F c = Ec ∩ (E ′)c is
open. Let x be a point of the intersection Ec ∩ (E ′)c. Then since x is not in E ′,
there is a neighborhood Bδ(x) of x which does not intersect E. This means that
Bδ(x) ⊂ Ec. We will have shown that x is an interior point of F if we can show
that also Bδ(x) ⊂ (E ′)c. Suppose, toward a contradiction, that y is a point of Bδ(x)
belonging to E ′. This means that y is a limit point of E. Hence for each ε > 0, the
intersection Bε(y) ∩ E is nonempty, and contains a point z. In particular, choose ε
smaller than δ − d(x, y). Then we see that

d(z, x) 6 d(z, y) + d(y, x) < ε+ d(x, y) < δ.

This means that the ball Bδ(x) contains a point z of E, which is a contradiction.
Lastly, we show that F satisfies property (iii). Let C be any closed subset of X

containing E. The inclusion E ⊂ C implies that E ′ ⊂ C ′. (Indeed if x is a limit
point of E, then each neighborhood around x intersects E in some point other than
x and hence also intersects C in some point other than x.) Also C is closed so we
know the inclusion C ′ ⊂ C is true. It follows that the inclusion E ′ ⊂ C ′ ⊂ C is true.
By assumption C contains E and so C contains F .

For the final statement in the proposition, if Ē = E, then we have already shown
that Ē is closed and so E is as well. On the other hand, if E is closed, then by
definition we have E ′ ⊂ E, and hence Ē = E.

Example 60. As an example, if E = [a, b) ⊂ R, then Ē = [a, b].

Example 61. As another example, if E = Q ⊂ R, then Ē = R.

Definition 62. Let E be a subset of a metric space X. Say that E is dense in X if
Ē = X.
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Example 63. For example, the set Q of rational numbers is dense in R.

Remark 64. Let Y be a subset of a metric space X. Then Y is itself a metric space
upon restricting the metric to Y . If E is a subset of Y , then it makes sense to ask
whether E is open relative to Y . However, it also makes sense to ask whether E is
open relative to the ambient space X. Therefore, in this situation, subsets of Y can
be open in two ways. It is therefore important to specify in which way such a set is
open. If E ⊂ Y is open when regarded as a subset of Y , we will say that E is open
relative to Y (and similarly for X).

Example 65. Let Y = {p} be a single point of a metric space X, and let E = Y =
{p}. Then E is open relative to Y , but closed relative to X according to Warm-up
#3.

Proposition 66. Let Y be a subset of a metric space X, and let E be a subset of Y .
Then E is open relative to Y if and only if there is an open subset G of X such that
E = Y ∩G.

Proof. Exercise. (Or see Rudin.)

2.3 Compact sets

Definition 67. Let E be a subset of a metric space X. By an open cover of E we
mean a collection {Gα}α∈A of open subsets of X whose union contains E.

Example 68. For example, the sets (−∞, 1) and (−1,∞) form an open cover of R.
As an example involving an infinite number of subsets, for each n ∈ N, let Gn

be the open subset of R defined by (−∞, n). Then the collection {Gn}n∈N forms an
open cover of R.

Definition 69. Let E be a subset of a metric space X. We say that E is compact
if every open cover of E admits a finite subcover. More precisely, the requirement is
that if {Gα}α∈A is an open cover of E, then there are finitely many indices α1, . . . , αn
such that

E ⊂ Gα1 ∪ · · · ∪Gαn .

Example 70. For example, the space X = R is not compact, for the following reason.
Let Gn be the open cover defined earlier by Gn = (−∞, n). If {Gn1 , . . . , Gnr} is any
finite subcover, then the union

r⋃
k=1

Gnk

is equal to (−∞, N), where N is the maximum of n1, . . . , nr. It follows that no finite
subcover of {Gn}n∈N contains R.

Example 71. Any finite subset of a metric space is compact by Warm-Up #4.
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It turns out that the notion of compactness is crucial in Analysis, and we will
soon prove the existence of a large class of infinite compact subsets of Rn.

Lemma 72. Let E be a subset of a metric space X. If E is compact, then E is closed.

Proof. Suppose E is compact. Fix a point y in the complement of E. For each point
x of E, let δ(x) = d(x, y)/2. Then the collection {Bδ(x)(x)}x∈E forms an open cover of
E. Since E is compact, there are a finite number of points x1, . . . , xn ∈ E such that
{Bδ(xi)(xi)}ni=1 forms an open cover of E. If δ = inf{δi : i = 1, . . . , n}, then the ball
Bδ(y) does not intersect E. It follows that y is an interior point of Ec. We conclude
that Ec is open.

Lemma 73. Let E be a subset of a metric space X. If X is compact and E is closed,
then E is compact.

Proof. Let {Gα}α∈A be an open cover of E. Since E is closed, the complement Ec is
open. It follows that {Gα}α∈A ∪ {Ec} is an open cover of X. Since X is compact,
there are a finite number of indices α1, . . . , αk such that

X ⊂ (Ec ∪Gα1 ∪ · · · ∪Gαk).

It follows that
E ⊂ (Gα1 ∪ · · · ∪Gαk).

We are done.

Proposition 74. Let {En}n>1 be a sequence of nonempty subsets of a metric space
X, and let E be the intersection E = ∩nEn. Suppose each En is compact and the
collection is nested in the sense that En ⊃ En+1. Then the intersection E is nonempty.

Proof. Let Gn = Ec
n. Then each Gn is open by the previous proposition, and they

are nested in the reverse way that Gn ⊂ Gn+1.
Assume that no point x ∈ E1 belongs to each En. Then the collection {Gn}n>2

forms an open cover of E1. Indeed, if it didn’t, then there would be a point x ∈ E1

in the complement (⋃
n>2

Gn

)c

=
⋂
n>2

En

which is contradictory to our assumption.
Since E1 is compact, it follows that there are a finite number of indices i1 < · · · < ik

such that
E1 ⊂ Gi1 ∪ · · · ∪Gik .

This says that
E1 ⊂ (Ei1 ∩ · · · ∩ Eik)c,

that is, that the intersection

E1 ∩ Ei1 ∩ · · · ∩ Eik = Eik

is empty. This is a contradiction to the assumption that Eik is nonempty.
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Our next goal is to show that any closed interval [a, b] of R is compact. From the
previous proposition, we see that the following lemma is necessary (but not sufficient).

Lemma 75. Let {In}n>1 be a sequence of closed intervals of R, and let I be the
intersection I = ∩nIn. If the intervals are nested in the sense that In ⊃ In+1, then I
is nonempty.

Proof. Write In = [an, bn], and let E be the set of all an. Then E is nonempty and
bounded from above by b1. It follows that supE exists, and let us write x for supE.
If m and n are nonnegative integers, then the nesting property guarantees that

an 6 an+m 6 bn+m 6 bm.

This means that bm bounds E from above, and so x 6 bm for each m. On the other
hand, x is an upper bound for E and hence satisfies am 6 x for each m. We conclude
that x satisfies

am 6 x 6 bm for each m

and hence x belongs to Im for each m. This concludes the proof.

Definition 76. Let k be a positive integer. By a k-cell we mean a subset of Rk of
the form

I1 × · · · × Ik
where each Ij is a closed interval of R.

Corollary 77. Let k be a positive integer. Let {In} be a sequence of k-cells, and let
I be the intersection I = ∩nIn. If the k-cells are nested in the sense that In ⊃ In+1,
then I is nonempty.

Proof. Write the k-cell In as

In = In,1 × · · · × In,k.

Apply the previous lemma to the sequence {In,j}n∈N to obtain a real number xj in
the intersection ∩nIn,j. Conclude that x = (x1, . . . , xk) belongs to I.

Theorem 78. Each k-cell is compact.

Proof. Let I be a k-cell and write

I = [a1, b1]× · · · × [ak, bk].

Let δ be the length of the diagonal of I given by

δ =

(
k∑
j=1

(bj − aj)2
)1/2

.
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Then if x, y ∈ I, we have ‖x− y‖ 6 δ.
Suppose, toward a contradiction, that there is an open cover {Gα}α∈A of I which

contains no finite subcover. If cj denotes the midpoint of [aj, bj] given by cj =
(aj +bj)/2, then the intervals [aj, cj] and [cj, bj] determine 2k k-cells whose union is I.
At least one of these k-cells, call it I1, cannot be covered by any finite subcollection
of {Gα}. We then divide I1 in a similar way, and repeat the process. As a result, we
obtain a sequence {In}n∈N of k-cells with the following properties.

(i) I := I0 ⊃ I1 ⊃ I2 ⊃ · · ·

(ii) In is not covered by any finite subcollection of {Gα}

(iii) if x, y ∈ In, then we have ‖x− y‖ 6 2−nδ.

By (i) and the previous result, there is a point x which lies in each In. Because
{Gα} is a cover, there is an α such that x ∈ Gα. Since Gα is open, there is a r > 0 such
that Br(x) ⊂ Gα. By the Archimedean property, we can choose a positive integer n
so large that 2−nδ < r. Then with this choice of n, (iii) implies that In ⊂ Gα. But
this contradicts (ii).

Theorem 79 (Heine-Borel Theorem). Let E be a subset of the metric space Rk. Then
the following are equivalent.

(i) E is closed and bounded.

(ii) E is compact.

Proof. Suppose E is closed and bounded. Since E is bounded, there is a k-cell I such
that E ⊂ I. Then E is compact by Lemma 73.

Suppose that E is compact. Then Lemma 72 shows that E is closed, so it remains
to show that E is bounded. The collection {B1(x)}x∈E of open balls of radius 1
centered at points of E forms an open cover of E. Since E is compact, there are a
finite number of points x1, . . . , xn ∈ E such that

E ⊂ (B1(x1) ∪ · · · ∪B1(xn)).

Let M be the maximum of d(xi, xj) for i, j ∈ {1, . . . , n}. If x, y are points of E, then
each is contained in one of the balls, say x ∈ B1(xi) and y ∈ B1(xj), and then the
triangle inequality says that

d(x, y) 6 d(x, xi) + d(xi, xj) + d(xj, y) 6 1 +M + 1 = M + 2.

We conclude that E is bounded.
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3 Sequences and series

3.1 Convergent sequences

Definition 80. A sequence in a metric space is a map f : N \ {0} → X. We often
write xn = f(n) and say that {xn} is a sequence.

Definition 81. A sequence {xn} is said to converge if there is a point x ∈ X
satisfying the following: for each ε > 0 there is an integer N > 0 such that if n > N ,
then d(xn, x) < ε. In this case, we say that {xn} converges to x or that x is the limit
of the sequence {xn} and we write xn → x or

lim
n→∞

xn = x.

If {xn} does not converge, then it is said to diverge.

Example 82. Let {xn} be the sequence of R given by xn = 1/n. Then {xn} is
bounded, and we claim that {xn} converges to 0. Indeed, let ε > 0 be given. The
Archimedian property says that there is a positive integer N such that N > 1/ε. For
this choice of N , if n > N , then we find that

d(xn, 0) =
1

n
<

1

N
< ε.

Example 83. Let {xn} be the sequence of R given by xn = n. Then {xn} is not
bounded and it is routine to show that xn does not converge, which we leave as an
exercise.

Example 84. Let {xn} be the sequence of R given by xn = (−1)n. Then {xn} is
bounded, but still diverges. Indeed, let x be any point of R. There are two cases for
x.

• Suppose x > 0. Given any N > 0, let n be an odd number larger than N , and
note that xn = −1 so that d(xn, x) > 1 > ε.

• Suppose x 6 0. Given any N > 0, let n be an even number larger than N , and
note that xn = 1 so that d(xn, x) > 1 > ε.

Proposition 85. Let {xn} be a sequence of a metric space X.

(i) If xn converges to x and converges to x′, then x = x′.

(ii) If xn converges, then {xn} is bounded.
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Proof. For (i), let ε > 0 be arbitrary. There is an N > 0 such that if n > N , then
d(xn, x) < ε/2. There is an N ′ > 0 such that if n > N ′, then d(xn, x

′) < ε/2. The
triangle inequality implies that if n is bigger than both N and N ′, then

d(x, x′) 6 d(x, xn) + d(xn, x
′) <

ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that d(x, x′) = 0, and hence x = x′.
For (ii), suppose that {xn} converges to x. There is an N > 0 such that if n > N ,

then d(xn, x) < 1. Set

r = max{1, d(x0, x), d(x1, x), . . . , d(xN , x)}.

Then we have that
d(xn, x) 6 r for each n > N.

This shows that {xn} is bounded.

Theorem 86. Let xn and yn be sequences in R, and suppose that xn converges to x
and yn converges to y.

(i) limn→∞(xn + yn) = x+ y

(ii) If c is any real number, then limn→∞ cxn = cx.

(iii) limn→∞ xnyn = xy

(iv) If x 6= 0, then the sequence xn is nonzero for n sufficiently large, and also
limn→∞

1
xn

= 1
x
.

Proof. For (i), let ε > 0 be arbitrary. Let Nx be such that if n > Nx then d(xn, x) <
ε/2. Let Ny be such that if n > Ny then d(yn, y) < ε/2. Set N = max{Nx, Ny}. Then
if n > N , we have

d(xn + yn, x+ y) = |(xn − x) + (yn − y)| 6 |xn − x|+ |yn − y| < ε/2 + ε/2 = ε.

For (ii), let ε > 0 be arbitrary. If c = 0, then cxn → cx trivially. Otherwise, let N
be large enough such that if n > N , then |xn − x| < ε/|c|. Then if n > N , we have

|cxn − cx| = |c||xn − x| < ε.

For (iii), let ε > 0 be given. There are integers Nx and Ny such that

n > Nx implies |xn − x| <
√
ε

n > Ny implies |yn − y| <
√
ε.

If we set N = max{N1, N2}, then whenever n > N , we have

|(xn − x)(yn − y)| < ε,
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which implies that
lim
n→∞

(xn − x)(yn − y) = 0.

Now use the identity

xnyn − xy = (xn − x)(yn − y) + x(yn − y) + y(xn − x).

and parts (i) and (ii) to conclude that each term on the right tends to 0 and hence

lim
n→∞

(xnyn − xy) = 0.

For (iv), since x 6= 0, there is anN0 ∈ N such that if n > N0, we have |xn−x| < 1
2
|x|

so that in particular

|xn| >
1

2
|x| for n > N0 (1)

and hence xn 6= 0 for n > N0. Given ε > 0, there is an N > N0 such that if n > N ,
then

|xn − x| <
1

2
|x|2ε.

We then find that for n > N , we have∣∣∣∣ 1

xn
− 1

x

∣∣∣∣ =
|x− xn|
|xxn|

<
2|x− xn|
|x|2

by (1)

< ε.

This completes the proof.

3.2 Subsequences

Definition 87. Let xn be a sequence in a metric space X. By a subsequence of xn
we mean we are given the data of a sequence of positive integers n1 < n2 < · · · and
the subsequence so determined is the sequence xnk now indexed by k.

Lemma 88. Let E be a subset of a metric space X. If x is a limit point of E and
δ > 0, then the intersection Bδ(x) ∩ E is infinite.

Proof. Suppose the intersection is not infinite but equal to {x, x1, . . . , xn}. Let r be
the number

r = min
16i6n

d(x, xi),

which is positive because the indexing set is finite. Then the ball Br(x) contains no
points of E other than x itself, which is a contradiction to the assumption that x is
a limit point of E.
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Proposition 89. Let pn be a sequence in a metric space X. If X is compact, then
pn has a convergent subsequence.

Proof. Let E = {pn : n > 1} be the subset of X determined by the sequence. Either
E is finite or infinite.

Suppose E is finite. Then there is a point p ∈ E and an infinite number of
positive integers n1 < n2 < · · · such that xnk = p. It follows that the subsequence so
determined converges.

Suppose E is infinite. We claim that E has a limit point in X. Indeed suppose
not. Then for each x ∈ X, there is a δx > 0 such that Bδx(x) contains no points of E
other than possibly x. Since E is infinite, the cover {Bδx(x)}x∈E of E admits no finite
subcover. Since E is a subset of X, the cover {Bδx(x)}x∈X of X similarly admits no
finite subcover. This is a contradiction to the assumption that X is compact.

Let x be a limit point of E. There is a point x1 in B1(x) ∩ E which is not equal
to X. Because x1 belongs to E, we can write x1 = pn1 for a positive integer n1. By
the previous lemma, the intersection B1/2(x) ∩ E is infinite, so there is an n2 > n1

such that d(pn2 , x) < 1/2. Inductively we obtain a sequence n1 < n2 < · · · such that
d(pnk , x) < 1/k. It follows that the subsequence we determined converges to x.

Corollary 90. If pn is a bounded sequence in Rk, then pn has a convergent subse-
quence.

Proof. The subset E = {pn} is bounded in Rk and hence is a subset of some k-cell,
which is compact. The result then follows from the previous result.

3.3 Cauchy sequences

Definition 91. Let xn be a sequence in a metric space X. Say that xn is a Cauchy
sequence if the following is true. For each ε > 0, there is a positive integer N such
that if m > N and n > N , then d(xn, xm) < ε.

Heuristically, a Cauchy sequence is one in which the terms in the sequence become
close to one another. This differs slightly from the notion of a convergent sequence
where the terms become close to a specific point in the metric space.

Theorem 92. Let X be a metric space.

(i) Every convergent sequence is a Cauchy sequence.

(ii) If X is compact and if pn is a Cauchy sequence of X, then pn converges to a
point of X.

Proof. For (i), suppose pn converges to p. Let ε > 0 be given. There is an N > 0
such that if n > N , then d(pn, p) < ε/2. Then for m > N and n > N , the triangle
inequality implies that

d(pn, pm) 6 d(pn, p) + d(p, pm) < ε/2 + ε/2 = ε.
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For (ii), let pn be a Cauchy sequence in the compact space X. For each positive
integer N , let EN be the subset of X consisting of the points pN , pN+1, pN+2, . . ..
The closure ĒN is a closed subset of a comapact space, and hence ĒN is compact
itself. Also we have the nesting property that EN ⊃ EN+1, which implies also that
ĒN ⊃ ĒN+1. Proposition 74 implies that the intersection ∩nĒn is nonempty. Let p
be a point in this intersection.

Let ε > 0 be given. Because pn is Cauchy, there is an N > 0 such that if
m,n > N , then d(pn, pm) < ε/2. Because p belongs to ĒN , there is an n0 > N such
that d(p, pn0) < ε/2. Then if m > N , we have

d(p, pm) 6 d(p, pn0) + d(pn0 , pm) < ε/2 + ε/2 = ε.

We conclude that pm converges to p.

Corollary 93. Every Cauchy sequence in Rk converges.

Proof. Let xn be a Cauchy sequence of Rk. Let EN ⊂ Rk be the set of points
xN , xN+1, xN+2, . . .. Because xn is Cauchy, there is an N0 > 0 such that if p, q ∈ EN0 ,
then d(p, q) < 1, which implies EN0 is bounded. The subset E of Rk determined by xn
is then also bounded because it consists of EN0 together with the finite set of points
{x1, . . . , xN0−1}. The closure Ē is then closed and bounded, and hence compact by
Heine-Borel. Then the result follows from the previous result part (ii).

Definition 94. A metric space (X, d) in which each Cauchy sequence converges is
called complete.

Example 95. The previous corollary shows that Rn is complete. The preceding
result also shows than any compact metric space is complete.

Example 96. The set of rational numbers Q together with the usual metric is not
complete, because there exist Cauchy sequences in Q which do not converge to any
point of Q. (For example, consider a sequence of rational numbers converging to an
irrational number.)

3.4 Sequences of real numbers

Definition 97. A sequence sn of real numbers is said to be

(a) monotonically increasing if sn 6 sn+1 for each n = 1, 2, . . ..

(b) monotonically decreasing if sn > sn+1 for each n = 1, 2, . . ..

Proposition 98. Suppose sn is monotonic (either decreasing or increasing). Then
sn converges if and only if it is bounded.
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Proof. Without loss of generality, we may assume that sn is increasing so that sn 6
sn+1. Let E be the subset of R determined by the sequence sn.

Suppose E is bounded. Let s = supE. Since s is an upper bound, we have sn 6 s
for each n = 1, 2, . . .. Given ε > 0, Problem 4 of Assignment 1 says there is an integer
N such that

s− ε < sN 6 s

and hence for each n > N , the increasing nature of the sequence implies that

s− ε < sn 6 s.

Since ε > 0 is arbtirary, we find that sn converges to s.
Conversely, suppose that sn converges. Then E is bounded by Proposition 85

(ii).

Definition 99. Let sn be a sequence of real numbers that is bounded. For a positive
integer N , let EN be the set EN = {sN , sN+1, sN+2, . . .}. Then for each N > 0, the
set EN is bounded from above and hence admits a supremum. In addition, because
EN ⊃ EN+1, the sequence of these suprema is monotonically decreasing and bounded
from below, so we may define

lim sup
n→∞

sn = lim
N→∞

supEN .

The previous proposition in fact shows that

lim sup
n→∞

sn = inf
N>0

sup
n>N

sn.

In a similar way, we can define

lim inf
n→∞

sn = lim
N→∞

inf EN = sup
N>0

inf
n>N

sn.

More generally, if sn is any sequence of real numbers, not necessarily bounded,
then define

lim sup
n→∞

sn = lim
N→∞

supEN

as above, provided the limit exists and is finite. The existence of the limit is equivalent
to the statement that the sequence sn is bounded from above. In the case that the
limit does not exist, that is, when the sequence is unbounded from above, we set

lim sup
n→∞

sn =∞.

We may similarly define
lim inf
n→∞

sn = lim
N→∞

inf EN

provided this limit exists, and otherwise set

lim inf
n→∞

sn = −∞

in which case the sequence is unbounded from below.
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Corollary 100. It is apparent from the definitions that if sn is any sequence of real
numbers then

lim inf
n→∞

sn 6 lim sup
n→∞

sn

(provided we understand ±∞ as satisfying the inequalities in the obvious ways).

Example 101. Let sn be the sequence sn = (−1)n. Then for each N > 0, we have
supEN = 1, and so

lim sup
n→∞

sn = lim
N→∞

supEN = 1.

We also find that
lim inf
n→∞

sn = −1.

Example 102. Let sn be the sequence

sn =
(−1)n

1 + 1
n

.

Then we have that

s2n =
1

1 + 1
2n

=
2n

2n+ 1

s2n+1 =
−1

1 + 1
2n+1

=
−(2n+ 1)

2n+ 2
.

The sequence tn := s2n is monotonically decreasing with limit 1, and the sequence
rn := s2n+1 is monotonically increasing with limit −1. One can check that

lim sup
n→∞

sn = 1

and
lim inf
n→∞

sn = −1.

Proposition 103. Let sn be a sequence of real numbers. Then sn converges to s if
and only if

lim sup
n→∞

sn = lim inf
n→∞

sn = s.

Proof. Exercise.

Proposition 104. Let sn and tn be two sequences of real numbers. If there is a
positive integer N such that sn 6 tn for each n > N , then

lim sup
n→∞

sn 6 lim sup
n→∞

tn

and
lim inf
n→∞

sn 6 lim inf
n→∞

tn.

Proof. Exercise.
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3.5 Examples of sequences

Example 105. For p > 0, let sn = 1/np. Then we claim that sn → 0. Indeed, let
ε > 0 be given. By the Archimedean property, there is a positive integer N such that
N > (1/ε)1/p. Then if n > N > (1/ε)1/p, we have that np > 1/ε, and so

sn =
1

np
< ε.

Example 106. For p > 0, let sn = n
√
p. Then we claim that sn → 1. There are three

cases for p.

• If p = 1, then sn = 1, so the result is trivial.

• Suppose p > 1. We will prove that xn = n
√
p − 1 converges to 0. Note that

xn > 0. The binomial theorem says that

p = (1 + xn)n =
n∑
j=0

(
n

j

)
xjn >

j=0︷︸︸︷
1 +

j=1︷︸︸︷
nxn ,

because xn > 0. We conclude that

xn <
p− 1

n
,

and hence xn → 0.

• Suppose p < 1. Then upon setting

yn =
1

sn
− 1,

we see that yn > 0. The binomial theorem says in this case that

1

p
= (1 + yn)n > 1 + nyn

so that

yn <

1
p
− 1

n

and we conclude yn → 0.

Example 107. Let sn = n
√
n. Then we claim that sn → 1. Indeed let xn = sn − 1.

Note that each xn satisfies xn > 0 and the binomial theorem says that

n = (1 + xn)n =
n∑
j=0

(
n

j

)
xjn >

j=2︷ ︸︸ ︷
n(n− 1)

2
x2n .
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Algebraic manipulations show that

0 6 xn 6

√
2

n− 1
.

We conclude that xn → 0.

Example 108. For p > 0 and α ∈ R, let

sn =
nα

(1 + p)n
.

Then we claim that sn → 0. Indeed let k be a positive integer such that k > α. Then
for n satisfying n > 2k, we have

(1 + p)n >

(
n

k

)
pk binomial theorem

=
n(n− 1) · · · (n− k + 1)

k!
pk definition of

(
n

k

)
>
(n

2

)k pk
k!

n− j > n

2
for j < k.

We then find that

0 6
nα

(1 + p)n

6 nα
2kk!

nkpk
previous inequality

=
2kk!

pk
nα−k.

Because α−k < 0, we conclude that the right-hand side converges to 0 by a previous
example.

Example 109. As a special case of the previous example, suppose x is a real number
satisfying 0 < x < 1, and set sn = xn. Then we find that sn → 0 because we may
take α = 0 in the previous example (and p > 0 satisfying 1 + p = x−1 so that in
addition (1 + p)−n = xn).

3.6 Series

In this section, we will consider only sequences and series that are real-valued, unless
otherwise explicitly stated. Rudin considers complex-valued series, and indeed all of
our proofs will carry over to that case, so we content ourselves only with the real case.
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Definition 110. For a sequence ak of real numbers, the nth partial sum is the
number

sn =
n∑
k=1

ak = a1 + · · ·+ an.

The partial sums form a sequence sn in their own right. If the sequence sn converges
to a number s, then we write

∞∑
k=1

ak = s,

and we call the symbol on the left-hand side a series.

As a consequence of the Cauchy criterion for convergence of sequences of real
numbers, we have the following result.

Corollary 111. The series
∑

k ak converges if and only if for each ε > 0 there is an
integer N such that ∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ < ε whenever m > n > N.

In particular, taking m = n in the previous result, we find that

|an| < ε whenever n > N.

Corollary 112. If the series
∑

k ak converges, then the sequence ak converges to 0.

The following result asserts that in certain situations if the terms of two series are
“comparable,” then the convergence (resp. divergence) of one implies the convergence
(resp. divergence) of the other.

Theorem 113 (Comparison test). Let ak, bk be sequences.

(i) If there is a positive integer N such that |ak| 6 bk for each k > N and if
∑

k bk
converges, then

∑
k ak converges.

(ii) If there is a positive integer N such that ak > bk > 0 for each k > N and if∑
k bk diverges, then

∑
k ak diverges.

Proof. For (i), let ε > 0 be given. By the Cauchy criterion, there is an M > 0 such
that whenever m > n > M , we have

m∑
k=n

bk < ε

and then the triangle inequality implies that∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ 6
m∑
k=n

|ak| 6
m∑
k=n

bk < ε.

The result follows by the Cauchy criterion.
Note that (ii) follows from (i) because if

∑
k ak converges, then so must

∑
k bk.
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3.7 Examples of series

Example 114 (Geometric series). Let x be a real number. If 0 6 x < 1, then we
have

∞∑
n=0

xn =
1

1− x
.

(It is important to note here that the series includes the n = 0 term.) If x > 1, then
the series diverges.

Indeed, let us prove the claims of the previous paragraph. Suppose x 6= 1. Then
it is straightforward to see that in the multiplication

(1− x)(1 + x+ x2 + · · ·+ xn)

all of the cross terms cancel, so we are left with

(1− x)
n∑
k=0

xk = 1− xn+1,

that is,
n∑
k=0

xk =
1− xn+1

1− x
=

1

1− x
− xn+1

1− x
.

Taking n→∞, we deduce the claims of the previous paragraph, except for the case
x = 1. In this case, the series is

1 + 1 + · · ·

which evidently diverges.

The following result is useful and it says that a series of nonnegative decreasing
terms converges if and only if a corresponding series constructed from a rather “thin”
subsequence of the terms converges. We first require a small lemma.

Lemma 115. Let ak be a sequence of nonnegative terms. Then
∑

k ak converges if
and only if the sequence of partial sums is bounded.

Proof. The sequence of partial sums is monotonically increasing, so the result follows
from Proposition 98.

Theorem 116. Suppose ak is a sequence satisfying a1 > a2 > a3 > · · · > 0. Then
the series

∑
k ak converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.
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Proof. By the lemma, it suffices to consider the boundedness of the partial sums,
which we will denote by

sn = a1 + a2 + · · ·+ an

tm = a1 + 2a2 + · · ·+ 2ma2m .

If n < 2m, then we find that

sn = a1 + · · ·+ an

6 a1 + · · ·+ a2m n < 2m, 0 6 ak

6 a1 + (a2 + a3) + · · ·+ (a2m + · · ·+ a2m+1−1) 0 6 ak

6 a1 + 2a2 + · · · 2ma2m ak+1 6 ak

= tm

so that
sn 6 tm for n 6 2m.

On the other hand, if n > 2m, we have

sn = a1 + · · ·+ an

> a1 + · · ·+ a2m n > 2m, ak > 0

= a1 +

j=1︷︸︸︷
a2 +

j=2︷ ︸︸ ︷
(a3 + a4) + · · ·+

j=m︷ ︸︸ ︷
(a2m−1+1 + · · ·+ a2m)

>
1

2
a1 + a2 + 2a4 + · · ·+ 2m−1a2m ak > ak+1

=
1

2
tm

so that
2sn > tm for n > 2m.

Suppose the sequence sn is bounded. This means that there is a real number
A > 0 such that 0 6 sn 6 A for each n = 1, 2, . . .. If m is any positive integer, then
choose n large enough so that n > 2m, and then the previous paragraph implies that

tm 6 2sn 6 2A.

Whence the sequence tm is bounded.
On the other hand, suppose that the sequence tm is bounded. This means there is

a real number B > 0 such that 0 6 tm 6 B for each m = 1, 2, . . .. If n is any positive
intger, then let m be a positive integer such that 2m > n, and then the previous
paragraph implies that

sn 6 tm 6 B.

Whence the sequence sn is bounded.
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Example 117 (p-series). The series

∞∑
n=1

1

np

converges if p > 1 and diverges if p 6 1. One case for p is that p 6 0, in which case
the terms (1/n)p do not converge to zero, and the series therefore diverges. For the
case p > 0, we can use the previous result. Indeed, consider the corresponding series

∞∑
k=0

2k
1

2kp
=
∞∑
k=0

2(1−p)k.

This is a geometric series which converges if and only if 21−p satisfies

0 6 21−p < 1,

and this condition is equivalent to

1− p < 0.

The comparison test then implies the desired result.

Example 118. The series
∞∑
k=0

1

k!

converges. Indeed, note that the sequence of partial sums satisfy

sn = 1 + 1 +
1

1 · 2
+

1

1 · 2 · 3
+ · · ·+ 1

1 · 2 · · ·n
< 1 + 1 +

1

2
+

1

22
+ · · ·+ 1

2n−1
< 3,

and are hence bounded (and monotonic).

Definition 119. We let e denote the real number given by the limit of the previous
series

e =
∞∑
k=0

1

k!
.

Nore that if x is any real number, then the number ex is positive. If y is any positive
real number, let log(y) denote that unique real number such that elog(y) = y. In
particular, the number log(y) can be defined by

log(y) = sup{z ∈ R : ez < y}.

(See Exercise 7 of Chapter 1 of Rudin or Problem 1 of Assignment 3.)
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Corollary 120. The function x 7→ log(x) is increasing in the sense that if x, y are
positive numbers satisfying x < y, then log(x) < log(y).

Theorem 121. We have

lim
n→∞

(
1 +

1

n

)n
= e.

Proof. Let sn denote the nth partial sum

sn =
n∑
k=0

1

k!

and let tn denote the nth term in the sequence

tn =

(
1 +

1

n

)n
.

The proof will be complete if we can show that

lim sup
n→∞

tn 6 e and lim inf
n→∞

tn > e.

The binomial theorem implies that

tn =
n∑
k=0

(
n

k

)
1

nk

=
n∑
k=0

n(n− 1) · · · (n− k + 1)

k!

1

nk

=
n∑
k=0

n

n
· n− 1

n
· · · n− k + 1

n

1

k!

6
n∑
k=0

1

k!

= sn.

It then follows that
lim sup
n→∞

tn 6 lim sup
n→∞

sn = e.

Now let m and n be positive integers such that n > m. Then again use the
binomial theorem to find that

tn =
n∑
k=0

n

n
· n− 1

n
· n− 2

n
· · · n− k + 1

n

1

k!

=
n∑
k=0

1 ·
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
1

k!

>
m∑
k=0

1 ·
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
1

k!
,
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so that

tn > 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

m!

(
1− 2

n

)
· · ·
(

1− m− 1

n

)
.

Fixing m, and taking n→∞ shows that

lim inf
n→∞

tn > 1 + 1 +
1

2!
+ · · ·+ 1

m!
,

that is,
lim inf
n→∞

tn > sm.

Now taking the limit as m→∞, we find that

lim inf
n→∞

> e,

as desired.

Theorem 122. The number e is irrational.

Proof. If sn denotes the nth partial sum, then note that

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

<
1

(n+ 1)!

(
1 +

1

(n+ 1)
+

1

(n+ 1)2
+ · · ·

)
=

1

(n+ 1)!

1

1− 1
n+1

=
1

(n+ 1)!

n+ 1

n

=
1

n!n
.

Suppose that e = m/n, with m and n positive integers. Then n!e is a positive integer,
and also

n!sn = n!

(
1 + 1 +

1

2!
+ · · ·+ 1

n!

)
is a positive integer. However,

0 < n!(e− sn) <
1

n
,

by the above.
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Example 123. If p > 1, then the series

∞∑
n=2

1

n(log n)p

converges. If p 6 1, then the series diverges. Indeed the sequence

ak =
1

k(log k)p

is nonnegative and monotonically decreasing, so we may apply Theorem 116. We
therefore consider the series

∞∑
n=2

2n
1

2n(log 2n)p
=
∞∑
n=2

1

(n log 2)p
=

1

(log 2)p

∞∑
n=2

1

np
,

which converges if and only if p > 1.

3.8 Tests for series

Theorem 124 (Root test). Let an be a sequence of real numbers, and set α =
lim supn→∞

n
√
|an|.

(a) If α < 1, then the series
∑

n an converges.

(b) If α > 1, then the series
∑

n an diverges.

(c) If α = 1, then no conclusion can be made.

Proof. For (a), suppose α < 1. Let ε satisfy 0 < ε < 1− α. Then since

α = inf

{
sup
n>N

n
√
|an| : N > 0

}
,

there is an N > 0 such that
sup
n>N

n
√
|an| < α + ε

by the infimum analogue of Problem 4 of Assignment 1. In other words, if n > N ,
then

|an| < (α + ε)n.

Since α + ε < 1, the series ∑
n>N

(α + ε)n

converges. The convergence of
∑

n an now follows by comparison.
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For (b), suppose α > 1. Then by definition of α, there is a subsequence ank such
that

lim
k→∞

nk

√
|ank | = α > 1.

It follows that |an| > 1 for infinitely many values of k, and so the sequence an cannot
converge to zero. Thus the series

∑
n an cannot converge.

For (c), we exhibit two series with α = 1 where one converges and the other
diverges. Indeed the series

∞∑
n=1

1

n

diverges (as a p-series), but the series

∞∑
n=1

1

n2

converges.

Theorem 125 (Ratio test). Let an be a sequence of nonzero terms and let bn be the
ratio

bn =
|an+1|
|an|

of subsequent terms.

(a) If lim supn→∞ bn < 1, then the series
∑

n an converges.

(b) If there is a positive integer N such that bn > 1 for n > N , then the series
diverges.

Proof. For (a), because lim supn→∞ bn < 1, there is a β < 1 and an N > 0 such that
bn < β for each n > N . This means that in particular we have

|aN+1| < β|aN |
|aN+2| < β|aN+1| < β2|aN |

...

|aN+p| < βp|aN |.

In other words, we have

|an| < βn−N |aN | = β−N |aN |βn

for each n > N . It then follows that
∑

n an converges by comparison with the series∑
n β

n, which converges because β < 1.
For (b), suppose that bn > 1 for each n > N . This means that |an+1| > |an| for

each n > N . It follows that the sequence an does not tend to zero, and hence the
series

∑
n an cannot converge.
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Example 126. Consider the series

∞∑
n=0

an

given by

1 + 1 +
1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+ · · · .

Then for a nonnegative integer n, we have that

|a2n+1|
|a2n|

=

(
2

3

)n
|a2n+2|
|a2n+1|

=

(
1

2

)n+1

· 3n =
1

2

(
3

2

)n
.

It follows from this that

lim sup
n→∞

|an+1|
|an|

= lim
n→∞

1

2

(
3

2

)n
= +∞

is not finite, and so the ratio test fails.
For the root test, we note that

|a2n|1/2n =

(
1

2n

)1/2n

=
1√
2

|a2n+1|1/2n+1 =

(
1

3n

)1/(2n+1)

=
1

3n/(2n+1)

and so

lim sup
n→∞

n
√
|an| = lim

n→∞

1√
2

=
1√
2

lim inf
n→∞

n
√
|an| = lim

n→∞

1

3n/(2n+1)
=

1√
3
.

Since
√

2 > 1, the root test indicates convergence.

In general, the root test is more useful than the ratio test, as the following theorem
illustrates.

Theorem 127. Let cn be a be a sequence of positive numbers. Then

lim sup
n→∞

n
√
cn 6 lim sup

n→∞

cn+1

cn
.

Hence if the ratio test indicates convergence, then so does the root test. (And if the
root test is inconclusive, then so is the ratio test.)
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Proof. Set

α = lim sup
n→∞

cn+1

cn
.

If α =∞, then we are done. Otherwise, let β be any number satisfying β > α. There
is a positive integer N such that

cn+1

cn
6 β for each n > N.

In particular, for any p > 0, we have

cN+p 6 βpcN ,

that is,
cn 6 βn−NcN = β−NcN · βn for each n > N.

Taking the nth root of both sides gives that

n
√
cn 6 n

√
cNβ−N · β for each n > N.

The number cNβ
−N is positive, so we have

lim
n→∞

n
√
cNβ−N = 1.

It follows that
lim sup
n→∞

n
√
cn 6 β.

Since β was any number satisfying β > α, we conlude that

lim sup
n→∞

n
√
cn 6 α,

as desired.

We would next like to prove a convergence result for series whose subsequent
terms have different signs, that is, for alternating series. We first require a useful
“summation by parts” formula.

Theorem 128 (Summation by parts). Let an, bn be two sequences. For n > 0, set

An =
n∑
k=0

ak

and set A−1 = 0. Then if 0 6 p 6 q, we have

q∑
n=p

anbn =

q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp.
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Proof. Note that

q∑
n=p

anbn =

q∑
n=p

(An − An−1)bn

=

q∑
n=p

Anbn −
q∑

n=p

An−1bn

=

q∑
n=p

Anbn −
q−1∑

m=p−1

Ambm+1

=

q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp,

as desired.

Theorem 129. In the notation of the previous theorem, suppose

(a) the partial sums An form a bounded sequence

(b) b0 > b1 > b2 > · · ·

(c) limn→∞ bn = 0.

Then
∑

n anbn converges.

Proof. Let ε > 0 be arbitrary. Because An is bounded, there is an M such that
|An| 6M for all n. Because bn → 0, there is an integer N such that

bn 6
ε

2M
for each n > N.

Then for N 6 p 6 q, we have∣∣∣∣∣
q∑

n=p

anbn

∣∣∣∣∣ =

∣∣∣∣∣
q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp

∣∣∣∣∣
6M

∣∣∣∣∣
q−1∑
n=p

(bn − bn+1) + bq + bp

∣∣∣∣∣ −M 6 An 6M and bn − bn+1 > 0

= M |(bp − bq) + bq + bp| telescoping sum

= 2Mbp

6 ε.

The convergence of the series now follows from the Cauchy criterion.
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Corollary 130 (Alternating series test). Let cn be a sequence of nonnegative terms
and suppose cn satisfies

(a) c0 > c1 > c2 > · · · and

(b) limn→∞ cn = 0.

Then the series
∞∑
n=0

(−1)ncn

converges.

Proof. Apply the previous result with an = (−1)n and bn = cn.

Lemma 131. Let an be a sequence. If
∑

n |an| converges, then so does
∑

n an.

Proof. We note that ∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ 6
m∑
k=n

|ak|

so the Cauchy criterion implies the result.

Definition 132. A series
∑

n an is said to converge absolutely if the series
∑

n |an|
converges.

Example 133. As a p-series, the harmonic series

∞∑
n=1

1

n

diverges. However the alternating series test implies that the series

∞∑
n=1

(−1)n

n

converges. This convergence is therefore non-absolute.

3.9 Addition and multiplication of series

Theorem 134. If
∑

n an = A and
∑

n bn = B, then
∑

n(an + bn) = A + B and∑
n can = cA for any fixed real number c.

Proof. If An denotes the sequence of partial sums

An =
n∑
k=1

ak
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and similarly for Bn, then we find that

n∑
k=1

(ak + bk) = An +Bn.

The converges now follows from

lim
n→∞

(An +Bn) = A+B.

For the second claim, we have

n∑
k=1

(cak) = cAn,

and the convergence follows from

lim
n→∞

cAn = cA.

Definition 135. Given two series
∑

n an and
∑

n bn, let cn denote the sequence

cn =
n∑
k=0

akbn−k.

Then the series
∑

n cn is called the product of the given series.

Remark 136. This can be motivated as follows. If p(x), q(x) are two polynomials

p(x) =
r∑

k=0

akx
k

q(x) =
s∑

k=0

akx
k,

then the coefficient of xn in the product p(x)q(x) is given by∑
k+j=n

ajbk.

Remark 137. If
∑

n an = A and
∑

n bn = B, it is not clear that
∑

n cn = AB, and
in fact, this is in general not true.
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Example 138. The series
∞∑
n=0

(−1)n√
n+ 1

converges by the alternating series test. Consider the product of this series with itself.
The terms of that series are given by

cn =
n∑
k=0

(−1)k√
k + 1

(−1)n−k√
n− k + 1

= (−1)n
n∑
k=0

1√
(n− k + 1)(k + 1)

.

Note that

(n− k + 1)(k + 1) =
[(n

2
+ 1
)

+
(n

2
− k
)] [(n

2
+ 1
)
−
(n

2
− k
)]

=
(n

2
+ 1
)2
−
(n

2
− k
)2

6
(n

2
+ 1
)2
.

It follows that each cn satisfies

|cn| >
n∑
k=0

1
n
2

+ 1
=

n∑
k=0

2

n+ 2
=

2(n+ 1)

n+ 2
.

It follows that the sequence cn does not converge to 0, and so the series
∑

n cn cannot
converge.

Theorem 139. Suppose
∑

n an = A and
∑

n bn = B. If
∑

n an converges absolutely,
then the product

∑
n cn converges to AB.

Proof. See Rudin.

Remark 140. Note that the condition of absolute convergence is needed. The ex-
ample before the theorem is a case of the product of two non-absolutely convergent
series, which we noted is divergent.

3.10 A word on rearrangements of series

Definition 141. Let f : N \ 0 → N \ 0 be a bijective function. If we are given a
sequence an, and we set

bn = af(n),

then the series
∑

n bn is called a rearrangement of the series
∑

n an.
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Remark 142. If sn denotes the partial sums of
∑

n an and tn denotes the partial
sums of the rearrangement

∑
n bn, then in general, the sets {sn} and {tn} consist of

entirely different numbers. Thus, if the series
∑

n an converges to A, then the series∑
n bn may converge to a different number, and in fact, may not even converge at all.

Example 143. If

an =
(−1)n

n+ 1
n = 0, 1, 2, . . .,

then the alternating series test shows that
∑

n an converges. In fact, if A denotes the
sum of the series, then note that A satisfies

A = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·

= 1− 1

2
+

1

3
−
(

1

4
− 1

5

)
−
(

1

6
− 1

7

)
−
(

1

8
− 1

9

)
− · · ·

< 1− 1

2
+

1

3
=

5

6
.

Consider the rearrangement
∑

n bn given by

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · ·

in which two positive terms are always followed by one negative term. Consider

k=1︷ ︸︸ ︷(
1 +

1

3
− 1

2

)
+

k=2︷ ︸︸ ︷(
1

5
+

1

7
− 1

4

)
+

k=3︷ ︸︸ ︷(
1

9
+

1

11
− 1

6

)
+ · · ·

=
∞∑
k=1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
.

In other words, if tn denotes the sequence of partial sums, then the subsequence t3n
is given by

t3n =
n∑
k=1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
.

Because

1

4k − 3
+

1

4k − 1
− 1

2k
=

2k(4k − 1) + 2k(4k − 3)− (4k − 3)(4k − 1)

2k(4k − 3)(4k − 1)

=
8k2 − 2k + 8k2 − 6k − (16k2 − 16k + 3)

2k(4k − 3)(4k − 1)

=
8k − 3

2k(4k − 3)(4k − 1)
,

> 0
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we see that the subsequence t3n satisfies t3 < t6 < t9 < · · · . Hence we have that

lim sup
n→∞

tn > t3 =
5

6
,

so that the sequence tn does not converge to A. In other words, rearranging has
changed the sum. That this new sum B =

∑
n bn is still finite can be checked by

noting that

B = 1 +
1

3
−
(

1

2
− 1

5
− 1

7

)
−
(

1

4
− 1

9
− 1

11

)
− · · ·

= 1 +
1

3
−
∞∑
j=1

(
1

2j
− 1

4j + 1
− 1

4j + 3

)
,

and then checking that

1

2j
− 1

4j + 1
− 1

4j + 3
=

(4j + 1)(4j + 3)− 2j(4j + 3)− 2j(4j + 1)

2j(4j + 1)(4j + 3)

=
16j2 + 16j + 3− 8j2 − 6j − 8j2 − 2j

2j(4j + 1)(4j + 3)

=
8j + 3

2j(4j + 1)(4j + 3)

> 0,

so that B < 4/3.

The previous example shows that by rearranging a series we can change its sum.
In fact, the following more general result is true, which is due to Riemann.

Theorem 144. Let
∑

n an be a series of real numbers that converges non-absolutely.
Let α and β be real numbers satisfying α 6 β. Then there is a rearrangement

∑
n bn

with partial sums tn which satisfy

lim inf
n→∞

tn = α and lim sup
n→∞

tn = β.

Proof. For the proof, see Rudin.

On the other hand, if the series converges absolutely, then every rearrangement
has the same sum.

Theorem 145. If
∑

n an converges absolutely, then every rearrangement converges
too, and each converges to the same sum.
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Proof. Let
∑

n bn be a rearrangement with partial sums tn. Say that bn is determined
by f : N \ 0→ N \ 0 in the sense that bn = af(n) Let ε > 0 be arbitrary. There is an
N > 0 such that if m > n > N , then

m∑
k=n

|ak| <
ε

2
.

Choose p large enough that

{1, 2, . . . , N} ⊂ {f(1), . . . , f(p)}.

Then we note that if m > p, the numbers a1, . . . , aN cancel in the difference

sm − tm =
m∑
k=1

(ak − af(k)).

It follows that the difference only consists of numbers from the set {aN+1, . . . , am},
and so we find that

|sm − tm| 6 2
m∑

k=N+1

|ak| < ε.

It follows that the rearrangement has the same sum as
∑

n an.

4 Continuity

4.1 Limits of funtions

Let X and Y be metric spaces, and let E be a subset of X. Let f : E → Y be a
function defined on the subspace E. Let p be a limit point of E, and let q be a point
in Y .

Definition 146. We write
lim
x→p

f(x) = q

to mean the following: for each ε > 0, there is a δ > 0 such that whenever x ∈ E
satisfies 0 < dX(x, p) < δ, then dY (f(x), q) < ε. In such a situation, we say that f
approaches q as x approaches p. We also say that q is the limit of f as x approaches
p.

Note that f need not be defined at the particular point p ∈ X in order for the
limit of f near p to be defined; we only need f to be defined near p in the sense that
p needs to be a limit point of the domain E of f .
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Theorem 147. We have
lim
x→p

f(x) = q

if and only if
lim
n→∞

f(pn) = q

for each sequence pn in E such that

pn 6= p and pn → p.

Proof. Suppose that f(x)→ q as x→ p. Let pn be a sequence in E satisfying pn 6= p
and pn → p. Let ε > 0 be arbitrary. Then by assumption, there is a δ > 0 such that
if x ∈ E satisfies dX(x, p) < δ, then dY (f(x), q) < ε. Since pn → p, there is an N > 0
such that if n > N , then dX(pn, p) < δ. It follows that if n > N , then d(f(xn), q) < ε.
We conclude that f(pn)→ q.

Conversely, suppose that
lim
x→p

f(x) = q

is false. This means that there is an ε > 0 such that for each δ > 0, there is an x ∈ E
satisfying 0 < dX(x, p) < δ and dY (f(x), q) > ε. In particular, letting δ = 1/n, we
obtain a sequence pn ∈ E satisfying

0 < dX(pn, p) <
1

n
.

From this, it follows that pn 6= p and also that pn → p. However, we have that

dY (f(pn), q) > ε,

so that f(pn) does not converge to q.

Corollary 148. If f has a limit at p, then this limit is unique.

Proof. This follows from the previous result together with the fact that the limit
f(pn) is unique.

Theorem 149. Suppose f and g are real-valued and

lim
x→p

f(x) = A and lim
x→p

g(x) = B.

Then

(a) limx→p(f + g)(x) = A+B

(b) limx→p c · f(x) = c · A for each real number c ∈ R

(c) limx→p(fg)(x) = AB

(d) limx→p

(
f
g

)
(x) = A

B
, if B 6= 0.

Proof. All of these properties follow from the corresponding properties for sequences
of real numbers.
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4.2 Continuous functions

Let X and Y be metric spaces, and let E be a subset of X. Let f : E → Y be a
function defined on the subset E. Let p be a point of E.

Definition 150. We say that f is continuous at p if for each ε > 0 there is a δ > 0
such that whenever x ∈ E satisfies dX(x, p) < δ, then dY (f(x), f(p)) < ε. We say
that f is continuous if f is continuous at each point of its domain.

Note that in order for f to be continuous at p, we need f to be defined at p in the
first place.

It is possible to reformulate the condition of continuity as follows. The function f
is continuous at p if and only if for each ε > 0 there is a δ > 0 such that f(Bδ(p)) ⊂
Bε(f(p)), where

f(Bδ(p)) = {f(x) : x ∈ Bδ(p)}.

Example 151. Let fi : Rk → R be the component function f(x) = xi. Then we
claim that fi is continuous. Indeed, let p be a point of Rk, and let ε > 0 be arbitrary.
Choose δ = ε. Then if x ∈ Rk satisfies

‖x− p‖ < δ = ε,

then this means that (
k∑
i=1

|xi − pi|2
)1/2

< ε,

and so we see in particular that

|xi − pi| < ε,

that is
|fi(x)− fi(p)| < ε.

Example 152. Let f : R → R be the function f(x) = x2 + 1. Then we claim that
f is continuous. Let us check at the point p = 2 in particular, and then the reader
can verify for other points p. Let ε > 0 be arbitrary. Then choose δ = min{1, ε/5}.
Suppose that x satisfies |x − 2| < δ. Then on the one hand, |x − 2| < 1, and so the
triangle inequality implies that

|x+ 2| = |x− (−2)| 6 |x− 2|+ |2− (−2)| < 1 + 4 = 5.

On the other hand, |x− 2| satisfies

|x− 2| < ε/5.
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Then using these inequalities, we find that

|f(x)− f(2)| = |(x2 + 1)− (22 + 1)|
= |x2 − 22|
= |x+ 2||x− 2|

< 5 · ε
5

= ε.

From the presentation, it might not be clear how δ was chosen. Note that the
choice of δ is allowed to depend on ε and p. We would like the inequality

|f(x)− f(2)| < ε

to hold. Note that this inequality is equivalent to

|x2 + 1− (22 + 1)| < ε,

that is,
|x2 − 22| < ε.

We can rewrite this as
|x− 2||x+ 2| < ε.

By choosing δ, we are allowed to control the size of the term |x − 2| and make it as
small as we want. Thus to ensure that the left-hand side is small, we only need to
ensure additionally that the other term |x + 2| is not too large. In particular, if it
were bounded by a constant, this would suffice. Note that we can in fact ensure that
this term |x + 2| is bounded near x = 2 because the triangle inequality guarantees
that

|x+ 2| = |x− (−2)| 6 |x− 2|+ |2− (−2)| 6 |x− 2|+ 4,

so that our countrol of |x − 2| gives us control of |x + 2|. In particular, if we are
assuming that |x−2| < δ, then we see that |x+2| < δ+4. Thus if we make δ smaller
than some fixed constant, say smaller than 1, then we ensure that |x+ 2| is bounded
by a fixed constant, say 5. Thus whenever |x− 2| < δ 6 1, we have ensured that

|x− 2||x+ 2| 6 δ · 5.

The choice of δ = min{ε/5, 1} is now justified.

Theorem 153. Suppose f is continuous at p and g is continuous at f(p). Then the
composition g ◦ f is continuous at p.

Proof. Let ε > 0 be arbitrary. Because g is continuous at f(p), there is an η > 0
such that whenever y satisfies d(y, f(p)) < η, then d(g(y), g(f(p))) < ε. Because f
is continuous at p, there is a δ > 0 such that whenever x satisfies d(x, p) < δ, then
d(f(x), f(p)) < η. Thus, if x satisfies d(x, p) < δ, then d(f(x), f(p)) < η, which
implies d(g(f(x)), g(f(p))) < ε.
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Theorem 154. Let f : X → Y be a function. Then f is continuous if and only if
for each open subset V ⊂ Y , the preimage f−1(V ) is open in X.

Proof. Suppose that f is continuous. Let V be an open subset of Y . Let x be a
point of f−1(V ). This means that f(x) ∈ V . Because V is open, there is an ε > 0
such that Bε(f(x)) ⊂ V . Because f is continuous at x, there is a δ > 0 such that
f(Bδ(x)) ⊂ Bε(f(x)). We can rewrite this latter condition as Bδ(x) ⊂ f−1(Bε(f(x))).
But because Bε(f(x)) ⊂ V , we infer that f−1(Bε(f(x))) ⊂ f−1(V ) and therefore

Bδ(x) ⊂ f−1(Bε(f(x))) ⊂ f−1(V ).

This shows that x is an interior point of f−1(V ).
Suppose that the latter condition in the statement of the theorem is satisfied. Let x

be a point ofX. Let ε > 0 be arbitrary. The setBε(f(x)) is open in Y . By assumption,
therefore, the subset f−1(Bε(f(x))) is open in X. The point x belongs to the set
f−1(Bε(f(x))). It follows that there is a δ > 0 such that Bδ(x) ⊂ f−1(Bε(f(x))).
This implies that f(Bδ(x)) ⊂ Bε(f(x)). We infer that f is continuous at x.

Theorem 155. Let f, g be continuous real-valued functions on X. Then f + g, fg,
and f/g are continuous wherever they are defined.

Corollary 156. Any polynomial in the k variables x1, . . . , xk is a continuous real-
valued function on Rk.

Theorem 157. Let f1, . . . , fk be real-valued functions on X, and let f : X → Rk

denote the function whose components are given by

f(x) = (f1(x), . . . , fk(x)).

Then f is continuous if and only if each fj is.

Proof. Note that

‖f(x)− f(p)‖ =

(
k∑
j=1

|fj(x)− fj(p)|2
)1/2

.

Hence if we can make each |fj(x)−fj(p)| smaller than ε, then we can make ‖f(x)− f(p)‖
smaller than ε as well. On the other hand, if we can make ‖f(x)− f(p)‖ smaller than
ε, then we can certainly make each |fj(x)− fj(p)| smaller than ε.

4.3 Continuity and compactness

Theorem 158. Let f : X → Y be a continuous mapping. If X is compact, then so
is f(X).
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Proof. Let {Vα} be an open cover of f(X). Since f is continuous, each f−1(Vα) is
open, and so the collection {f−1(Vα)} forms an open cover of X. Since X is compact,
there are finitely many indices α1, . . . , αn such that

X ⊂ (f−1(Vα1) ∪ · · · ∪ f−1(Vαn)).

Applying f to both sides and using Warm-Up 11 (which says that f(f−1(Vα)) ⊂ Vα),
we find that

f(X) ⊂ (Vα1 ∪ · · · ∪ Vαn).

This completes the proof.

Corollary 159 (Extreme Value Theorem). Let f : X → R be a continuous mapping.
Suppose X is compact. If

M = sup
x∈X

f(x) and m = inf
x∈X

f(x),

then there are points p, q ∈ X such that f(p) = M and f(q) = m.

Proof. The previous theorem says that f(X) is a compact subset of R. Hence, f(X)
is closed and bounded. Because f(X) is bounded, both M = sup f(X) and m =
inf f(X) exist. Moreover, because f(X) is closed, we know that both M = sup f(X)
and m = inf(X) belong to f(X).

Theorem 160. Let f : X → Y be a continuous function. If X is compact and f is
bijective, then the inverse function f−1 : Y → X defined by

f−1(f(x)) = x

is continuous as well.

Proof. For notation’s sake, let g : Y → X denote the inverse. Let U be an open
subset of X. Then the complement U c is closed in X, which is compact, and hence
U c is compact too. Since f is continuous, the image f(U c) is compact in Y . The fact
that f is bijective implies that

f(U)c = f(U c),

and so f(U) is open in Y . But the relation g ◦ f = idX implies that

f(U) = g−1(U)

and so g is continuous by Theorem 154.

Definition 161. Let f : X → Y be a function. We say that f is uniformly
continuous if for each ε > 0, there is a δ > 0 such that whenever x, y ∈ X satisfy
dX(x, y) < δ, then dY (f(x), f(y)) < ε.
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Remark 162. Note that if f is uniformly continuous, then f is continuous. However,
in general, the converse is not true because the choice of δ for the notion of continuity
depends on the point p. On the other hand, the choice of δ for the notion of uniform
continuity is uniform and independent of the particular point in the domain.

Theorem 163. Let f : X → Y be a continuous function. If X is compact, then f is
uniformly continuous.

Proof. Let ε > 0 be given. Because f is continuous, for each point p ∈ X, there
is a real number δ(p) > 0 such that f(Bδ(p)(p)) ⊂ Bε/2(f(p)). The collection
{Bδ(p)/2(p)}p∈X of balls with even smaller radii forms an open cover of X. Because X
is compact, there are finitely many points p1, . . . , pn of X together with radii δi = δ(pi)
such that

X ⊂ (Bδ1/2(p1) ∪ · · · ∪Bδn/2(pn)). (2)

Set

δ =
1

4
min
16i6n

δi.

Let x, y be points of X satisfying d(x, y) < δ. By (2), there is an i ∈ {1, . . . , n} such
that x ∈ Bδi/2(xi). Then by the triangle inequality, we have that

d(xi, y) 6 d(xi, x) + d(x, y) < δi/2 + δ < δi.

We then again use the triangle inequality to find that

d(f(x), f(y)) 6 d(f(x), f(xi)) + d(f(xi), f(y)) < ε/2 + ε/2 = ε.

Example 164. Let X = (0, 1) ⊂ R, and let f : X → R be the function f(x) =
1/x. Then we let the reader check that f is continuous at each point of its domain.
However, note that X is not compact, so the previous result does not apply, and
indeed we verify now that f is not uniformly continuous. Choose ε = 1, and let δ > 0
be arbitrary. By the Archimedean property, there is a positive integer n satisfying
n > 2/δ. Let x = 1/n and let y = 1/(n+ 2). Then note that

|x− y| =
∣∣∣∣ 1n − 1

n+ 2

∣∣∣∣ =
2

n(n+ 2)
<

2

n
< δ.

However, note also that

|f(x)− f(y)| = |n− (n+ 2)| = 2 > ε.

Example 165. If X = R, then X is not compact, and we let the reader verify that
f : X → R defined by f(x) = x2 is continuous but not uniformly continuous.
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4.4 Continuity and connectedness

Definition 166. Let X be a metric space. We say that X is connected if the
following implication is true: If A is a nonempty subset of X that is both open and
closed, then A = X. Otherwise, we say that X is disconnected.

Theorem 167. Let X be a nonempty subspace of R. Then X is connected if and
only if the following property is satisfied: If x, y ∈ X satisfy x < y, then (x, y) ⊂ X.

Proof. Suppose the latter property is not satisfied. This means that there are x, y ∈ X
satisfying x < y, and there is a z ∈ R satisfying x < z < y such that z /∈ X. Let A
denote the subset of X determined by

A = X ∩ (−∞, z).

Note that x belongs to A, so A is nonempty. Also note that y /∈ A, so A 6= X. Note
also that A is open relative to X by construction. Since z /∈ X, we compute that

X \ A = X ∩ (z,∞),

and so X \ A is open as well. This implies that A is closed. We conclude that X is
not connected.

Suppose the latter property is satisfied. Let A be a nonempty subset of X and
suppose that A is both open and closed relative to X. Let B be the complement
B = X \ A, which is both open and closed relative to X as well. Let y be a point of
A. If B is empty, then we are done. If not, let x be a point of B, and we hope to
obtain a contradiction. Up to relabeling x and y, we may assume that x < y. Let By

be the subset of B given by

By = {w ∈ B : w < y}.

Then By is nonempty because x ∈ By. Also By is bounded from above, so By admits
a supremum. Set z = supBy. Note that z satisfies x 6 z 6 y because y is an upper
bound for By. There are three cases for z.

• Suppose that z /∈ X. Then we have contradicted our assumption that X satisfies
the latter property in the statement of the theorem.

• Suppose that z ∈ A. Since A is open relative to X, there is a real number ε > 0
such that (z − ε, z + ε) ∩ X ⊂ A. It follows that (z − ε, z] ∩ B = ∅, which is
a contradiction to the assumption that z is the supremum of B, according to
Problem 4 of Assignment 1.

• Suppose that z ∈ B = X \ A. Since B is open relative to X, there is an ε > 0
such that (z − ε, z + ε) ∩ X ⊂ B. Since y does not belong to B, we find that
z < y. By assumption on X, every element between z and y belongs to X as
well. In particular, this means that z+ ε/2 belongs to X, and hence belongs to
B, but this is a contradiction to the assumption that z is an upper bound for
B.
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We are done.

Corollary 168. The space R is connected.

Proposition 169. Let f : X → Y be a continuous function. If X is connected, then
f(X) is connected.

Proof. Let g : X → f(X) denote the same mapping as f but with the codomain
restricted to f(X). By doing so, we have ensured that g is surjective. Also note that
g is continuous since f is continuous.

Let A be a nonempty subset of f(X) that is both open and closed relative to
f(X). Since A is nonempty, the preimage g−1(A) is a nonempty subset of X. Since g
is continuous, the preimage g−1(A) is open relative to X. Also since g is continuous,
the preimage g−1(A) is closed relative to X. Since X is connected, we find that
g−1(A) = X. Since g is surjective, we conclude that

A = g(g−1(A)) = g(X) = f(X).

We are done.

Theorem 170 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous
function. If c is any number between f(a) and f(b), then there is a point x ∈ [a, b]
such that f(x) = c.

Proof. The image f([a, b]) is connected by the previous result. Without loss of gen-
erality, we may assume that f(a) < f(b). Then Theorem 167 shows that every point
c satisfying f(a) < c < f(b) also satisfies c ∈ f([a, b]). It follows that there is a point
x ∈ [a, b] such that f(x) = c. We are done.

4.5 Discontinuities

For this section, let f be a real-valued function defined on a subset E of R.

Definition 171. Fix a real number p.

(a) Suppose there is a b > p such that the domain of f contains (p, b). Then we
write

lim
x→p+

f(x) = q

to mean whenever pn is a sequence in (p, b) satisfying pn → p, then

lim
n→∞

f(pn) = q.
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(b) Suppose there is an a < p such that the domain of f contains (a, p). Then we
write

lim
x→p−

f(x) = q

to mean whenever pn is a sequence in (a, p) satisfying pn → p, then

lim
n→∞

f(pn) = q.

Remark 172. We let the reader check that if f is defined on (a, b) and p ∈ (a, b),
then

lim
x→p

f(x) = q

if and only if
lim
x→p+

f(x) = lim
x→p−

f(x) = q.

(The forward direction is immediate.)

Example 173. Let f : R→ R be the piecewise function

f(x) =

{
1 x rational

0 x irrational
.

Let p be any point of R. Then we claim that

lim
x→p+

f(x)

does not exist.
Indeed, let q be any number. There are two cases for q: either q 6= 1 or q = 1.

• Suppose q 6= 1. Let pn be a sequence of rational numbers satisfying pn > p.
Then we see that each f(pn) = 1, and so f(pn) → 1. In particular, we do not
have f(pn)→ q.

• Suppose q = 1. Then let pn be a sequence of irrational numbers satisfying
pn > p. Then we see that each f(pn) = 0, and so we do not have f(pn)→ q in
this case either.

It is similarly true that limx→p− f(x) does not exist either.

Example 174. Let f : R→ R be the piecewise function

f(x) =

{
x x rational

0 x irrational
.
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We first claim that f is continuous at p = 0. Indeed, it suffices to prove that

lim
x→0

f(x) = 0.

Let ε > 0 be arbitrary. Let pn be any sequence of real numbers satisfying pn → 0 and
pn 6= 0. There is an N > 0 such that if n > N then |pn| < ε. From the definition
of f , either f(pn) = pn or f(pn) = 0. In either case, if n > N , then we also have
|f(pn)| < ε. The claim now follows from Theorem 147.

We also claim that if p 6= 0, then neither limx→p+ f(x) nor limx→p− f(x) exist.
Indeed, the proof is similar to the previous example, so we omit it, and leave it as an
exercise for the reader.

Example 175. Define f : R>0 → R by the rule

f(x) = sin

(
1

x

)
.

We will check that limx→0+ f(x) does not exist.
Let xn be the sequence xn = 1/n. Note that f(xn) = sin(n). We claim that f(xn)

does not converge to any point of [−1, 1].
In Assignment 4, we show that the subset

E = {n+ 2mπ : n,m ∈ Z}

is dense in R. We will show later that x 7→ sin(x) is a continuous function. It follows
then also from Assignment 4 that sin(E) is dense in [−1, 1]. The 2π-periodicity of
sin(x) implies that

sin(E) = {sin(n) : n ∈ Z}.

Let q be any point of [−1, 1]. Let ε > 0 be arbitrary. Let B denote the subset of
[−1, 1] given by

B = (Bε(q)) ∪Bε(−q)) ∩ [−1, 1].

Note that B satisfies the property that if x ∈ B, then −x ∈ B. Because sin(E) is
dense in [−1, 1], the intersection B∩sin(E) is infinite. We will construct a subsequence
xnk such that f(xnk) ∈ B for each k. Indeed there is a nonzero integer n1 such that
sin(n1) ∈ B. We may assume that n1 is positive because if not, then −n1 is positive
and sin(−n1) = − sin(n1) is still in B. Once n1 < n2 < · · · < nk are chosen, then the
intersection

B ∩ {sin(n) : |n| > nk}

is still infinite, so there is an nk+1 > nk such that sin(nk+1) ∈ B. In this way, we
obtain a subsequence xnk such that f(xnk) ∈ B.

Suppose f(xn) did converge. Then the previous paragraph implies that f(xn)
converges either to q or −q. But q was also arbitrary, and since limits are unique, we
obtain a contradiction.
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5 Differentiation

5.1 Derivatives

Definition 176. Let f be a real-valued function on [a, b], and let x0 be a point of
(a, b). We say that f is differentiable at x0 to mean that the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists, and in such a case, we denote the value of this limit by f ′(x0).

Example 177. Let f(x) = |x|. Let x0 = 0. Then we claim that f is not differentiable
at x0 = 0. Indeed, we consider that for x > 0, we have f(x) = x and so

lim
x→0+

f(x)− f(x0))

x− x0
= lim

x→0+

x

x
= 1.

On the other hand, for x 6 0, we have f(x) = −x and so

lim
x→0−

f(x)− f(x)

x− x0
= lim

x→0−

−x
x

= −1.

On the other hand, the function f is differentiable at points x0 6= 0, which we let the
reader verify. Indeed, more precisely, we have

f ′(x0) =

{
1 x0 > 0

−1 x0 < 0
.

The following lemma asserts that we may “change variables” in limits, provided
certain hypotheses are met.

Lemma 178. Let u : T → X, let E be a subset of X, and let g : E → Y . Let t0 be a
limit point of T , and set x0 = u(t0). Suppose

(a) x0 is a limit point of E

(b) u is continuous

(c) u is injective

(d) limx→x0 g(x) exists.

Then
lim
t→t0

g(u(t)) = lim
x→x0

g(x).

Proof. Exercise.
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Corollary 179. Suppose f is differentiable at x0. Then

f ′(x0) = lim
t→0

f(x0 + t)− f(x0)

t
.

Proof. Let u(t) = x0 + t, which is both continuous and injective. Let g(x) be the
difference quotient

g(x) =
g(x)− g(x0)

x− x0
defined near x0. Then

g(u(t)) =
g(x0 + t)− g(x0)

(x0 + t)− x0
=
g(x0 + t)− g(x0)

t
.

The previous lemma then implies the result.

Corollary 180. If f is differentiable at x0, then f is continuous at x0.

Proof. We investigate

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

f(x)− f(x0)

x− x0
(x− x0)

= f ′(x0) lim
x→x0

(x− x0)

= 0.

We conclude that
lim
x→x0

f(x) = f(x0),

so we are done.

Corollary 181. Let f be a function on [a, b] and x0 a point of (a, b). The following
are equivalent.

(a) The function f is differentiable at x0.

(b) There is a number f ′(x0) such that the error function E(h) defined for h near
zero by

f(x0 + h)− f(x0) = h[f ′(x0) + E(h)]

satisfies E(h)→ 0 as h→ 0.

Proof. Suppose f is differentiable at x0. If we define E as required, then we just need
to check that the statement about the limit is true. For h 6= 0 we have that

f(x0 + h)− f(x0)

h
= f ′(x0) + E(h), (3)
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and then taking the limit as h→ 0 shows that

f ′(x0) = f ′(x0) + lim
h→0

E(h).

We are done with this direction of the proof.
For the other direction, suppose that (b) is satisfied. Taking the limit of equation

(3) as h→ 0 shows that

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0)

because of the hypothesis on E(h). This means that f is differentiable at x0. We are
done.

This corollary says that f(x0+h)−f(x0) is approximated well by a linear function
of h. Indeed the mapping h 7→ f ′(x0)h is a linear map and it only differs from
h 7→ f(x0 + h) − f(x0) by an error term h · E(h) that goes to zero relatively fast as
h→ 0 (indeed faster than h as h goes to zero).

If f is differentiable at x0, then the error term E(h) is defined for h near zero. We
may extend the domain of E to h = 0 by just declaring E(0) = 0. In so doing, we
note that we have ensured that E is continuous at 0 (because E(h)→ 0 as h→ 0).

Theorem 182 (Leibniz rule). Suppose that f and g are differentiable at x0. Let h
be the product h = fg. Then h is differentiable at x0 and we have

h′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

Proof. Note that

h(x)− h(x0) = f(x)g(x)− f(x0)g(x0)

= f(x)[g(x)− g(x0)] + g(x0)[f(x)− f(x0)].

It follows that for x 6= x0, we have

h(x)− h(x0)

x− x0
= f(x)

g(x)− g(x0)

x− x0
+ g(x0)

f(x)− f(x0)

x− x0
.

Taking the limit as x→ x0 shows that

h′(x0) =

(
lim
x→x0

f(x)

)
g′(x0) + g(x0)f

′(x0).

Since f is continuous at x0, the claim follows.

Theorem 183 (Quotient rule). Suppose that f and g are differentiable at x0. Let h
be the quotient h = f/g. Then, provided g(x0) 6= 0, the quotient h is differentiable at
x0 and

h′(x0) =
g(x0)f

′(x0)− f(x0)g
′(x0)

g(x0)2
.
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Proof. The proof is of similar nature to the proof of the previous result, so we omit
it and direct the reader to Rudin for more details.

Theorem 184 (Chain rule). Suppose h = g ◦f is defined. Suppose f is differentiable
at x0 and g is differentiable at f(x0). Then h is differentiable at x0 at

h′(x0) = g′(f(x0))f
′(x0).

Proof. If we define error functions F and G by

f(x0 + t)− f(x0) = t[f ′(x0) + F (t)]

g(f(x0) + s)− g(f(x0)) = s[g′(f(x0)) +G(s)],

then F (t) → 0 as t → 0 and G(s) → 0 as s → 0. (We also define G(0) = 0, which
ensures that G is continuous at zero.) We then compute

h(x0 + t)− h(x0) = g(f(x0 + t))− g(f(x0)

= g[f(x0) + t(f ′(x0) + F (t))︸ ︷︷ ︸
s

]− g(f(x0)

= t[f ′(x0) + F (t)]︸ ︷︷ ︸
s

[g′(f(x0)) +G(t[f ′(x0) + F (t)])︸ ︷︷ ︸
s

]

= t[f ′(x0) + F (t)][g′(f(x0)) +G(f(x0 + t)− f(x0))].

It follows that for t 6= 0, we have

h(x0 + t)− h(x0)

t
= [f ′(x0) + F (t)][g′(f(x0)) +G(f(x0 + t)− f(x0))].

Taking the limit of this as t→ 0, we find that

lim
t→0

h(x0 + t)− h(x0)

t
= f ′(x0)g

′(f(x0))

because F (t)→ 0 and because the function

t 7→ f(x0 + t)− f(x0)

is continuous at t = 0 and G(s) is continuous at s = 0.

5.2 Mean value theorem

Definition 185. Let f be a real function defined on a metric space X. Say that
f has a local maximum at p ∈ X if there is a δ > 0 such that whenever q ∈ X
satisfies d(p, q) < δ, then f(q) 6 p. The notion of local minimum is defined similarly.
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Theorem 186. Let f be defined on [a, b]. Suppose f is differentiable at x ∈ (a, b)
and f has a local maximum at x. Then f ′(x) = 0.

Proof. Exercise. Hint: compute the left-hand and right-hand limits separately.

Let f : [a, b]→ R, and let G ⊂ R2 be the graph of f given by

G = {(x, f(x)) : x ∈ [a, b]}.

Note that the secant line connecting the points (a, f(a)) and (b, f(b)) has slope given
by

f(b)− f(a)

b− a
.

The mean value theorem asserts that if f is differentiable on [a, b], then this slope is
equal to the slope of some tangent line.

Theorem 187 (Mean Value Theorem). Let f be continuous on [a, b] and differentiable
on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let h(t) be the function defined for t ∈ [a, b] by

h(t) = t(f(b)− f(a))− (b− a)f(t).

Then h is continuous on [a, b] and differentiable on (a, b). We also have that

h(b) = b(f(b)− f(a))− (b− a)f(b) = a · f(b)− b · f(a)

and
h(a) = a(f(b)− f(a))− (b− a)f(a) = a · f(b)− b · f(a),

which means that h(a) = h(b). If h is constant, then we are done because we can let
c be any point. Otherwise, there is a point t ∈ (a, b) such that h(t) 6= h(a). Without
loss of generality we may assume that h(t) > h(a). Because h is continuous, there
is a point x ∈ (a, b) where h achieves its maximum. The previous result then shows
that h′(x) = 0, which is what we require.

There is a generalized version of the previous result too.

Theorem 188 (Generalized Mean Value Theorem). Let f, g be continuous on [a, b]
and differentiable on (a, b). Then there is a point x ∈ (a, b) such that

g′(x)[f(b)− f(a)] = f ′(x)[g(b)− g(a)].
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Proof. Replicate the proof above but with

h(x)[f(b)− f(a)]g(t)− [g(b)− g(a)]f(t)

instead.

Definition 189. Let f be defined on [a, b]. We say that

(a) f is monotonically increasing if whenever x 6 y, then f(x) 6 f(y)

(b) f is monotonically decreasing if whenever x 6 y, then f(x) > f(y).

Corollary 190. Suppose f is differentiable on (a, b).

(a) If f ′(x) > 0 for each x ∈ (a, b), then f is increasing.

(b) If f ′(x) 6 0 for each x ∈ (a, b), then f is decreasing.

(c) If f ′(x) = 0 for each x ∈ (a, b), then f is constant.

Proof. The proofs follow from the equation

f ′(c)(x− y) = f(x)− f(y)

which holds for each x < y and for some c satisfying x < c < y.

5.3 L’Hospital’s rule

Theorem 191 (L’Hospital’s Rule: Version 1). Let f and g be differentiable on (a, b).
Suppose that

(a) g′(x) 6= 0 for each x ∈ (a, b)

(b) limx→a
f ′(x)
g′(x)

= A

(c) limx→a f(x) = limx→a g(x) = 0.

Then

lim
x→a

f(x)

g(x)
= A.

Proof. We proceed in steps.
Assertion 1. If q satisfies A < q, then there is a point c ∈ (a, b) such that whenever
a < x < c we have

f(x)

g(x)
< q.
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Proof of Assertion 1. Let r be a number satisfying A < r < q. Because f ′(x)/g′(x)→
A, there is a point c ∈ (a, b) such that whenever a < x < c we have

f ′(x)

g′(x)
< r.

If x, y satisfy a < x < y < c, then the generalized mean value theorem shows that
there is a point t ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
< r.

We then take the limit of this inequality as x→ a and use hypothesis (c) to find that

f(y)

g(y)
6 r < q

for each a < y < c. This completes the proof of Assertion 1.
Assertion 2. If p satisfies p < A, then there is a point d ∈ (a, b) such that whenever
a < x < d we have

p <
f(x)

g(x)
.

Proof of Assertion 2. The proof is similar to that of Assertion 1.
The proof now follows from Assertions 1 and 2 together.

The following version is also useful. Note that hypothesis (c) is replaced by a
slightly different hypothesis (c’) involving only the limit of g(x) as x→ a.

Theorem 192 (L’Hospital’s Rule: Version 2). Let f and g be differentiable on (a, b).
Suppose that

(a) g′(x) 6= 0 for each x ∈ (a, b)

(b) limx→a
f ′(x)
g′(x)

= A

(c’) limx→a g(x) =∞.

Then

lim
x→a

f(x)

g(x)
= A.

Proof. See Rudin.
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5.4 Taylor’s Theorem

Definition 193. If f has a derivative f ′ on an interval and if f ′ is itself differentiable,
then we will denote the derivative of f ′ by f ′′. If we can continue this process, then
we obtain functions

f, f ′, f ′′, f (3), . . . , f (n)

where f (n) is the nth derivative of f .

Theorem 194. Let f be defined on [a, b]. Suppose that f (n−1) is continuous on [a, b]
and f (n)(t) exists for each t ∈ (a, b). Let α and β be distinct points of [a, b] and define
the polynomial

P (t) =
n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there is a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

Remark 195. For the case n = 1, the polynomial P (t) is just constant P (t) = f(α),
and the statement is the mean value theorem.

Proof. Let M be the number defined by

f(β) = P (β) +M(β − α)n.

Note that our goal is to find an x between α and β such that f (n)(x) = Mn!. Define
a function g by the rule

g(t) = f(t)− P (t)−M(t− α)n.

Note that the nth derivative of g satisfies

g(n)(t) = f (n)(t)− 0−Mn!.

It follows that the proof will be complete if we can find a point x between α and β
such that g(n)(x) = 0.

Specializing to the point t = α, we note that because f (k)(α) = P (k)(α) for each
k = 1, . . . , n− 1, we have that

g(α) = g′(α) = · · · = g(n−1)(α) = 0.

At the point t = β, the choice of M implies directly that g(β) = 0. The mean value
theorem asserts that there is a point x1 between α and β such that g′(x1) = 0. For the
same reason, there is a point x2 between α and x1 such that g′′(x2) = 0. Iteratively,
we obtain a point xn between α and xn−1 such that g(n)(xn) = 0.
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6 Integration

6.1 Riemann integrals

Definition 196. By a partition P of [a, b] be mean a finite set of points {x0, . . . , xn}
such that a = x0 < x1 < · · · < xn = b. Let us use the notation ∆xi to mean

∆xi = xi − xi−1, for i = 1, . . . , n.

Definition 197. Let f be a bounded function on [a, b] and let P be a partition of
[a, b]. Set

Mi = sup{f(x) : xi−1 6 x 6 xi}
mi = inf{f(x) : xi−1 6 x 6 xi}

and then define

U(f, P ) =
n∑
i=1

Mi∆xi

L(f, P ) =
n∑
i=1

mi∆xi.

Also define

U(f) = inf{U(f, P ) : P is a partition of [a, b]}
L(f) = sup{I(f, P ) : P is a partition of [a, b]}.

These numbers are called the upper and lower Riemann integrals of f respec-
tively. If these two numbers are equal, then we denote their common value by∫ b

a

f(x) dx

and we say that f is Riemann integrable on [a, b].

Definition 198. Given two partitions P, P ′ of [a, b], we say that P ′ is a refinement
of P if P ⊂ P ′. Any two partitions P1, P2 have a common refinement P ′ = P1 ∪ P2.

Lemma 199. If P ′ refines P , then

L(f, P ) 6 L(f, P ′)

and
U(f, P ′) 6 U(f, P ).
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Proof. Since P and P ′ differ only by a finite number of points (they are both finite
sets), it suffices to prove the claim for the case when P ′ has only one more point than
P . Say that this extra point is x′ and it occurs between xi−1 and xi. Set

w1 = inf{f(x) : xi−1 6 x 6 x′}
w2 = inf{f(x) : x′ 6 x 6 xi}.

Then we have both mi 6 w1 and mi 6 w2. We then compute that

L(f, P ′)− L(f, P ) = w1(x
′ − xi−1) + w2(xi − x′)−mi(xi − xi−1)

= (w1 −mi)(x
′ − xi−1) + (w2 −mi)(xi − x′).

This last quantity is a sum of nonnegative terms. We deduce the result concerning
the lower Riemann sums. The proof of the result for the upper Riemann sums is
analogous.

Theorem 200. We have
L(f) 6 U(f).

Proof. Since L(f) is defined to be a supremum, it suffices to check that U(f) is an
upper bound for the set

E = {L(f, P ) : P is a partition of [a, b]}.

Let P1 be an arbitrary partition. Let ε > 0 be arbitrary. By definition of the infimum,
there is a partition P2 such that

U(f, P2) < U(f) + ε.

Let P ′ = P1 ∪ P2 be the common refinement of P1 and P2. Then the previous lemma
shows that

L(f, P1) 6 L(f, P ′) 6 U(f, P ′) < U(f) + ε.

Since ε is arbtrary, we conclude that

L(f, P1) 6 U(f).

This is as desired.

Theorem 201. A function f is Riemann integrable on [a, b] if and only if for each
ε > 0 there is a partition P such that

U(f, P )− L(f, P ) < ε.
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Proof. Suppose the latter condition is true. Let ε > 0 be arbitrary. There is a
partition P such that U(f, P )− L(f, P ) < ε. From the previous result, we have

L(f, P ) 6 L(f) 6 U(f) 6 U(f, P ).

It follows that U(f)−L(f) < ε. Since ε was arbitrary, we conclude that U(f) = L(f),
and therefore f is Riemann integrable.

Suppose that f is Riemann integrable. Let ε > 0 be arbitrary. By definition of
the supremum and infimum, there are partitions P1 and P2 such that∫ b

a

f(x) dx < L(f, P1) +
ε

2

U(f, P2) <

∫ b

a

f(x) dx+
ε

2
.

Let P ′ = P1 ∪ P2 denote the common refinement of P1 and P2. Using the previous
result, we have

U(f, P ′) 6 U(f, P2)

<

∫ b

a

f(x) dx+
ε

2

<
(
L(f, P1) +

ε

2

)
+
ε

2
6 L(f, P ′) + ε.

We are done.

Theorem 202. If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Proof. Let ε > 0 be arbitrary. Choose η so small that

η(b− a) < ε.

Since f is uniformly continuous on [a, b], there is a δ > 0 such that whenever |x−y| < δ
we have |f(x) − f(y)| < η. Let P be a partition so fine that ∆xi < δ for each
i = 1, 2, . . . , n. Then the choice of δ shows that

Mi −mi 6 η for each i = 1, 2, . . . , n.

We then compute that

U(f, P )− L(f, P ) =
n∑
i=1

(Mi −mi)∆xi 6 η

n∑
i=1

∆xi = η(b− a) < ε.

It follows that f is Riemann integrable by the previous result.
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Theorem 203. IF f is monotonic on [a, b], then f is Riemann integrable.

Proof. Without loss of generality, we assume that f is increasing. Let ε > 0 be given.
Let n be a positive integer so large that

(f(b)− f(a))(b− a)

n
< ε.

Choose a partition P of [a, b] such that each ∆xi satisfies ∆xi = (b − a)/n. Since f
is increasing, we know that the extremal values of f are achieved at the endpoints of
the subintervals determined by the partition. In particular, we have

Mi = f(xi), mi = f(xi−1).

We then have that

U(f, P )− L(f, P ) =
b− a
n

n∑
i=1

(f(xi)− f(xi−1)) =
(b− a)(f(b)− f(a))

n
< ε.

We are done.

Theorem 204. Suppose that the composition h = ϕ ◦ f makes sense. Suppose that
f is Riemann integrable, f is bounded, and ϕ is continuous. Then h is Riemann
integrable.

Proof. Let ε > 0 be given. Since ϕ is uniformly continuous, there is a δ satisfying
0 < δ < ε such that whenever x, y satisfy |x− y| < δ we have |ϕ(x)−ϕ(y)| < ε. Since
f is Riemann integrable, there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < δ2.

Let Mi,mi denote the max and min of f over [xi, xi−1], and let M∗
i ,m

∗
i denote the

max and min of h. Let A denote the subset of {1, . . . , n} defined by

A = {i : Mi −mi < δ}.

Let B be the complement of A, so that for i ∈ B, we have δ 6Mi −mi.

• If i ∈ A, then the choice of δ shows that M∗
i −m∗i < ε.

• Suppose i ∈ B. Because f is bounded, we may ensure that the image of f is
contained in some compact set, and since ϕ is continuous, the restriction of ϕ to
this compact set is bounded, say by the number K > 0. It follows immediately
from the definition of h that M∗

i −m∗i 6 2K. By the definition of B and the
choice of partition P , we have

δ
∑
i∈B

∆xi 6
∑
i∈B

(Mi −mi)∆xi < δ2.
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We infer that ∑
i∈B

∆xi < δ.

It follows that

Putting together the above, we have that

U(h, P )− L(h, P ) =
∑
i∈A

(M∗
i −m∗i )∆xi +

∑
i∈B

(M∗
i −m∗i )∆xi

6 ε
∑
i∈A

∆xi + 2K
∑
i∈B

∆xi

< ε(b− a) + 2Kδ

< ε[(b− a) + 2K].

Since ε > 0 was arbitrary, we obtain the result.

Lemma 205. Let A,B be nonempty bounded subsets of R. Let A+B denote the set
defined by

A+B = {a+ b : a ∈ A, b ∈ B}.
Then

sup(A+B) = sup(A) + sup(B)

inf(A+B) = inf(A) + inf(B).

Proof. Since sup(A) is an upper bound for A and sup(B) is an upper bound for B,
it follows immediately that sup(A) + sup(B) is an upper bound for A+B, and so we
obtain the inequality sup(A+B) 6 sup(A) + sup(B).

For the other inequality, let ε > 0 be given. By Problem 4 of Assignment 1, there
are a ∈ A and b ∈ B such that

sup(A) < a+ ε/2

sup(B) < b+ ε/2.

Since sup(A+B) is an upper bound for A+B, it follows that

sup(A) + sup(B) < (a+ b) + ε 6 sup(A+B) + ε.

Since ε is arbitrary, we obtain sup(A) + sup(B) 6 sup(A+B).
The proof for the infimum is similar.

Theorem 206. Suppose f and g are integrable on [a, b]. Then f + g is integrable on
[a, b] and moreover ∫ b

a

(f(x) + g(x)) =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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Proof. Set h = f + g. Let ε > 0 be given. Since f and g are integrable, there are
partitions P1, P2 such that

U(f, P1)− L(f, P1) < ε

U(g, P2)− L(g, P2) < ε.

Let P = P1 ∪P2 be the common refinement. Then by a previous result, we also have

U(f, P )− L(f, P ) < ε

U(g, P )− L(g, P ) < ε.

Note that
Mh

i = sup{f(x) + g(x) : xi−1 6 x 6 xi}.
The preceding lemma therefore implies that

Mh
i = M f

i +M g
i .

Similarly we have mh
i = mf

i +mg
i . It follows that

U(h, P ) = U(f, P ) + U(g, P )

L(h, P ) = L(f, P ) + L(g, P ).

Thus we find that

U(h, P )− L(h, P ) = [U(f, P )− L(f, P )] + [U(g, P )− L(g, P )] < 2ε.

Since ε is arbitrary, we conclude that h is integrable.
To show the statement about the integrals, it suffices to show that

U(h) 6 U(f) + U(g)

L(f) + L(g) 6 L(h).

We prove only the first, claiming that the proof of the second is similar. There are
partitions P1 and P2 such that

U(f, P1) < U(f) + ε

U(g, P2) < U(g) + ε.

Let P = P1∪P2 be the common refinement. Then since U(h) is an infimum, we have

U(h) 6 U(h, P ) = U(f, P ) + U(g, P )

6 U(f, P1) + U(g, P2)

< U(f) + U(g) + 2ε.

Since ε is arbitrary, we are done.
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There are many other properties of the integral, some of which we state below,
without proof.

Theorem 207. Let f and g be integrable on [a, b]. The following are true

(a)
∫ b
a
(f(x) + g(x)) dx =

∫ b
a
f(x) dx+

∫ b
a
g(x) dx

(b)
∫ b
a
k · f(x) dx = k

∫ b
a
f(x) dx for each constant k

(c) If f 6 g on [a, b], then
∫ b
a
f(x) dx 6

∫ b
a
g(x) dx

(d) If c is a point satisfying a < c < b, then
∫ b
a
f(x) dx =

∫ c
a
f(x) dx+

∫ b
c
f(x) dx.

(e)
∫ b
a
f(x+ x0) dx =

∫ b+x0
a+x0

f(x) dx.

Corollary 208. If f and g are integrable on [a, b], then so is fg.

Proof. If ϕ(t) = t2, which is continuous, then Theorem 204 shows that f 2 is integrable.
The result then follows from the identity

4fg = (f + g)2 − (f − g)2.

Corollary 209. If f is integrable, then so is |f | and moreover∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ 6 ∫ b

a

|f(x)| dx.

Proof. Theorem 204 shows that |f | is integrable because ϕ(t) = |t| is continuous. The
statement about the inequality follows from the identity

−|f | 6 f 6 |f |

and part (c) of Theorem 207.

6.2 Integration and differentiation

Theorem 210 (Fundamental Theorem of Calculus I). Let f be a bounded integrable
function on [a, b]. For x satisfying a 6 x 6 b, define

F (x) =

∫ x

a

f(t) dt.

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x0 ∈ [a, b],
then F is differentiable at x0 and

F ′(x0) = f(x0).
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Proof. Let ε > 0 be given. Since f is bounded, there is anM > 0 such that |f(x)| 6M
for each x ∈ [a, b]. Let δ be smaller than ε/M . Then we compute that whenever
a 6 x < y 6 b and y − x < δ, we have

|F (x)− F (y)| =
∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ 6 ∫ y

x

|f(t)| dt = M(y − x) < ε.

This shows that F is continuous.
Suppose that f is continuous at x0. Let ε > 0 be arbitrary. There is a δ > 0 such

that whenever h satisfies |h| < δ, then |f(x0 + h)− f(x0)| < ε/2. We have that

F (x0 + h)− F (x0)

h
=

1

h

∫ x0+h

x0

f(t) dt =
1

h

∫ h

0

f(t+ x0) dt

and also that

f(x0) =
1

h

∫ h

0

f(x0) dt.

We then compute that if h satisfies |h| < δ, then we have∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ =
1

h

∣∣∣∣∫ h

0

(f(t+ x0)− f(x0)) dt

∣∣∣∣
6

1

h

∫ h

0

|f(t+ x0)− f(x0)| dt

6
1

h
· h ·

( ε
2

)
< ε.

It follows that F ′(x0) = f(x0).

Theorem 211 (Fundamental Theorem of Calculus II). Let f be integrable on [a, b].
If F is any function such that F ′ = f , then∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let ε > 0 be given. Because f is integrable, there is a partition P of [a, b] such
that

U(f, P )− L(f, P ) < ε.

Because F ′ = f , the mean value theorem asserts that there are points ti ∈ [xi−1, xi]
such that

F (xi)− F (xi−1) = f(ti)∆xi (4)

Because mi 6 f(ti) 6Mi, we have that the sum
∑

i f(ti)∆xi satisfies

L(f, P ) 6
∑
i

f(ti)∆xi 6 U(f, P ).
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It follows from our choice of P that∣∣∣∣∣∑
i

f(ti)∆xi −
∫ b

a

f(x) dx

∣∣∣∣∣ < ε.

But the sum
∑

i f(ti)∆xi is telescoping from relation (4) and is equal to

F (b)− F (a) =
∑
i

f(ti)∆xi

so that in fact we have ∣∣∣∣(F (b)− F (a))−
∫ b

a

f(x) dx

∣∣∣∣ < ε.

Because ε is arbitrary, we are done.

Theorem 212 (Change of variables). Let ϕ : [a, b] → [c, d] and f : [c, d] → R.
Assume

(a) f is a continuous

(b) the derivative ϕ′(x) exists, is positive everywhere, and is integrable on [a, b]

(c) ϕ is surjective onto [c, d].

Then the composition g(x) = f(ϕ(x)) is integrable on [a, b] and∫ b

a

g(x) ϕ′(x)dx =

∫ d

c

f(y) dy.

Proof. Let F (y) =
∫ y
a
f(t) dt. Then the first fundamental theorem tells us that

F ′(y) = f(y) because f is assumed to be continuous by hypothesis (a). Let G(x) be
the composition G(x) = F (ϕ(x)). Then the chain rule implies that

G′(x) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x) = g(x)ϕ′(x)

by the definition of g. We then just apply the fundamental theorem twice to obtain∫ b

a

g(x) ϕ′(x) dx = G(b)−G(a)

= F (ϕ(b))− F (ϕ(a))

=

∫ ϕ(b)

ϕ(a)

f(y) dy

=

∫ d

c

f(y) dy,

where the equalities c = ϕ(a) and d = ϕ(b) follow from the fact that ϕ is bijective
and increasing.
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Theorem 213 (Integration by parts). Suppose F and G are differentiable functions
on [a, b] and their derivatives f and g are integrable. Then∫ b

a

F (x)g(x) dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x) dx.

Proof. Let H(x) be the product H(x) = F (x)G(x). Note that the derivative of H is
given by

H ′(x) = f(x)G(x) + F (x)g(x).

Then the fundamental theorem asserts that∫ b

a

H ′(x) = H(b)−H(a).

Rewriting this, we find that∫ b

a

f(x)G(x) dx+

∫ b

a

F (x)g(x) dx = F (b)G(b)− F (a)G(a).

This is the result.

6.3 Arc length of curves

Definition 214. By a curve in Rk we mean a continuous mapping γ : [a, b] → Rk.
If γ is injective, we say that γ is an arc. If γ(a) = γ(b) we say that γ is a closed
curve.

Example 215. Let γ : [0, π] be the curve in R2 given by γ(t) = (cos(t), sin(t)). Then
γ is an arc.

If the domain of γ is extended to [0, 2π], then γ is a closed curve.

Definition 216. To each partition P of [a, b] associate the number

Λ(γ, P ) =
n∑
i=1

|γ(xi)− γ(xi−1)|.

The number Λ(γ, P ) represents the length of the polygonal path approximating the
image of γ with vertices at the points γ(xi). We define the length of γ to be

Λ(γ) = sup{Λ(γ, P ) : P a partition of [a, b]},

provided this supremum is finite. In the case that the supremum is finite, we say that
γ is rectifiable.
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Theorem 217. Suppose γ admits a continuous derivative γ′ on [a, b]. Then γ is
rectifiable and

Λ(γ) =

∫ b

a

|γ′(t)| dt.

Proof. From the fundamental theorem of calculus applied to each component of γ,
we have

|γ(xi)− γ(xi−1)| =
∣∣∣∣∫ xi

xi−1

γ′(t) dt

∣∣∣∣ 6 ∫ xi

xi−1

|γ′(t)| dt.

It follows therefore that

Λ(Λ) 6
∫ b

a

|γ′(t)| dt.

Let’s prove the other inequality.
Let ε > 0 be given. Since γ′ is uniformly continuous, there is a δ > 0 such that

|γ′(s)− γ′(t)| < ε whenever |s− t| < δ. Let P be a partition so fine that ∆xi < δ for
each i. Then if t satisfies xi−1 6 t 6 xi, we have that

|γ′(t)| 6 |γ′(xi)|+ ε. (5)

Upon integrating both sides of this inequality along [xi−1, xi] we find that∫ xi

xi−1

|γ′(t)| dt 6 |γ′(xi)|∆xi + ε∆xi =

∣∣∣∣∫ xi

xi−1

[γ′(t) + γ′(xi)− γ′(t)] dt
∣∣∣∣+ ε∆xi.

An application of the triangle inequality shows that∫ xi

xi−1

|γ′(t)| dt 6
∣∣∣∣∫ xi

xi−1

γ′(t) dt

∣∣∣∣+

∣∣∣∣∫ xi

xi−1

[γ′(xi)− γ′(t)] dt
∣∣∣∣+ ε∆xi.

Now we use the fundamental theorem of calculus and (5) again to find that∫ xi

xi−1

|γ′(t)| dt 6 |γ(xi)− γ(xi−1)|+ ε∆xi + ε∆xi.

If we add up all such inequalities, we find that∫ b

a

|γ′(t)| dt 6 Λ(γ, P ) + 2ε(b− a).

Since ε > 0 was arbitrary, we obtain∫ b

a

|γ′(t)| dt 6 Λ(γ, P )

as desired.
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7 Sequences and series of functions

7.1 Pointwise convergence

Definition 218. Let E be a subset of a metric space X, and let fn be a sequence of
real-valued functions defined on E. (This means that each fn is a function fn : E →
R.) We say that fn converges (pointwise) if there is a function f : E → R with
the property that for each x ∈ E, the sequence of real numbers fn(x) converges to
f(x). In this case, the function f is called the limit of the sequence fn.

Example 219. Let fn : [0, 1]→ R be the sequence

fn(x) = xn.

Note that whenever x 6= 1, we have xn → 0 as n→∞. On the other hand, for x = 1,
we have 1n → 1 as n → ∞. It follows that the limit of the sequence fn is given by
the function

f(x) =

{
1 x = 1

0 otherwise.

Remark 220. It is also important to remark that a more precise version of the
definition of convergence of functions can be written as follows. For each point x ∈ E
and each ε > 0, there is an N > 0 such that |fn(x) − f(x)| 6 ε whenever n > N .
In particular, in this version of the definition, it is apparent that the choice of N =
N(x, ε) can depend both on ε and the point x. Indeed, for the previous example, we
see that as x approaches 1, the choice of N must become larger to ensure that xn is
small.

Remark 221. The previous example also illustrates that in general fairly disastrous
things can happen to the limit function. In particular, each of the functions fn in the
example are continuous, but the limiting function f fails to be so. The next example
presents an even worse situation.

Example 222. For a positive integer m, let fm : R→ R be defined by

fm(x) = lim
n→∞

(cos(m!πx))2n.

We note that if m!x is an integer, then fm(x) = 1. For all other values of x, we have
fm(x) = 0. We summarize as follows

fm(x) =

{
1 m!x is an integer

0 otherwise.

Now, when x is rational, there is a positive integer M such that m!x is an integer
whenever m >M . It follows that for x rational, we have limm→∞ fm(x) = 1. On the
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other hand, for x irrational, we see that fm(x) = 0, and so limm→∞ fm(x) = 0 in this
case. We realize that the limit function f is defined by

f(x) =

{
1 x rational

0 otherwise.

In particular, f is not Riemann integrable on any closed subinterval, even though
each fm is.

Example 223. Let fn : [0, 1]→ R be the sequence of integrable functions

fn(x) =

{
n 0 < x < 1/n

0 otherwise.

Note that the integral of each fn satisfies∫ 1

0

fn(x) dx = 1.

Also whenever x ∈ (0, 1], the sequence of values fn(x) is eventually zero (provided
n > 1/x.) It follows that the sequence converges to the zero function f(x) = 0.
However, note that in this case, the sequence of integrals do not converge because∫ 1

0

f(x) dx = 0.

This example shows that even though the limiting function may be integrable, its
integral may not be the expected number.

7.2 Uniform convergence

Definition 224. Let fn be a sequence of functions on E, and let f be a function on
E. We say that fn converges uniformly to f if for each ε > 0 there is an N > 0
such that whenever n > N , we have

|fn(x)− f(x)| < ε for each x ∈ E.

In other words, the choice of N is only allowed to depend on ε.

Corollary 225. If fn converges uniformly to f , then fn converges (pointwise) to f .

Proof. Immediate.
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Example 226. For each n, let fn : [0, 1]→ R be

fn(x) =
x2

x2 + (1− nx)2
.

Then for each fixed x ∈ [0, 1], the denominator of fn(x) grows large as n → ∞, and
so we find that the (pointwise) limit function is

f(x) = 0.

However, we claim that the convergence is not uniform. Indeed let ε = 1/2, and let
N > 0 be arbitrary. Then at the point x = 1/N , we have that

fN

(
1

N

)
= 1,

and so ∣∣∣∣f ( 1

N

)
− fN

(
1

N

)∣∣∣∣ > 1 > ε.

Lemma 227. Let fn be a sequence of functions on E. There there is a function f
on E which is the uniform limit of the sequence fn if and only if for each ε > 0 there
is an N > 0 such that whenever m,n > N we have

|fn(x)− fm(x)| < ε for each x ∈ E.

Proof. Suppose that fn → f uniformly. Let ε > 0 be given. There is an N > 0 such
that whenever n > N we have

|fn(x)− f(x)| < ε/2 for each x ∈ E.

It then follows from the triangle inequality that for m,n > N and x ∈ E have

|fn(x)− fm(x)| 6 |fn(x)− f(x)|+ |f(x)− fm(x)| < ε.

Suppose on the other hand that the latter condition in the statement of the the-
orem is satisfied. Let ε > 0 be arbitrary. There is an N > 0 such that whenever
m,n > N , we have

|fn(x)− fm(x)| < ε/2 for each x ∈ E. (6)

It follows that for each fixed x, the sequence of numbers fn(x) is Cauchy in R, and
hence converges to some number f(x). This defines a limiting function f(x). We
prove now that the convergence is uniform. Keeping n fixed and letting m → ∞ in
(6) we have that

|fn(x)− f(x)| 6 ε/2 < ε for each x ∈ E.

This completes the proof.
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Theorem 228 (Weierstrass M -test). Let fn be a sequence of functions defined on E.
Suppose that there is a sequence of real numbers Mn such that

|fn(x)| 6Mn for each x ∈ E.

If the series
∑

nMn converges, then the series
∑

n fn converges uniformly on E.

Proof. Suppose
∑

nMn converges. Let ε > 0 be given. If m and n are large enough,
we have ∣∣∣∣∣

m∑
k=n

fk(x)

∣∣∣∣∣ 6
m∑
k=n

Mk < ε.

We conclude that the series
∑

n fn converges uniformly from Lemma 227.

7.3 Uniform convergence and continuity

Theorem 229. Suppose fn converges uniformly to f and each fn is continuous. Then
f is continuous.

Proof. Let x0 be a fixed point of E. We will show that f is continuous at x0. Let
ε > 0 be given. Because fn(x0)→ f(x0), there is an N1 > 0 such that

|fn(x0)− f(x0)| < ε/3 whenever n > N1.

Because fn → f uniformly, there is an N2 such that

|fn(x)− f(x)| < ε/3 for each x ∈ E whenever n > N2.

Let n0 be larger than N1 and N2. Then because fn0 is continuous at x0, there is a
δ > 0 such that

|fn0(x)− fn0(x0)| < ε/3 whenever |x− x0| < δ.

We then have for |x− x0| < δ that

|f(x)− f(x0)| 6 |f(x)− fn0(x)|+ |fn0(x)− fn0(x0)|+ |fn0(x0)− f(x0)|
< ε/3 + ε/3 + ε/3 = ε.

We conclude that f is continuous at x0.

Example 230. Let fn : [0, 1]→ R be fn(x) = xn. We saw that fn → f where

f(x) =

{
0 x 6= 1

1 x = 1
.

Since f is discontinuous, the previous result implies that the convergence is not uni-
form.
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Definition 231. For a metric space X, let C(X) denote the set of all real-valued
continuous and bounded functions on X. The set C(X) is eqipped with a metric
defined as follows. For f ∈ X, we define the supremum norm to be the number

‖f‖ = sup
x∈X
|f(x)|.

We then set
d(f, g) = ‖f − g‖ .

Corollary 232. A sequence fn in C(X) converges to f if and only if fn converges
uniformly to f on X.

Proof. This is just a restatement of the definitions.

Theorem 233. The space C(X) is complete.

Proof. Let fn be a Cauchy sequence in X. It follows from Lemma 227 that there is
a function f defined on X such that fn → f uniformly on X. This means also that
fn → f in C(X). By Theorem 229, the function f is continuous.

It remains to show that f is bounded, which we do now. There is an n > 0 such
that

|fn(x)− f(x)| < 1 for each x ∈ E.

It therefore follows that
‖f‖ 6 ‖fn‖+ 1.

We are done.

7.4 Uniform convergence and integration

Theorem 234. Let fn be a sequence of functions on [a, b]. Suppose each fn is inte-
grable and fn → f uniformly on [a, b]. Then f is integrable and moreover∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

Proof. Let ε > 0. There is an N > 0 such that for n > N we have

fn(x)− εf(x) 6 fn(x) + ε for x ∈ [a, b].

From this, it follows that for n > N , we have

U(f) 6
∫ b

a

(fn + ε) dx = ε(b− a) +

∫ b

a

fn(x) dx.

L(f) >
∫ b

a

(fn − ε) dx = −ε(b− a) +

∫ b

a

fn(x) dx.
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Taking ε→ 0, we conclude that U(f) = L(f) and f is integrable.
In addition, we find that for n > N , we have∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ < ε(b− a).

The statement about the integrals now follows.

Corollary 235. If each fn is integrable on [a, b] and the series

f(x) =
∞∑
n=1

fn(x)

converges uniformly on [a, b], then f is integrable and∫ b

a

f(x) dx =
∞∑
n=1

∫ b

a

fn(x) dx.

7.5 Uniform convergence and differentiation

Lemma 236. Let E be a subset of X, and let x0 be a limit point of E. Suppose
fn → f uniformly on E. Then

lim
x→x0

f(x) = lim
n→∞

lim
x→x0

f(x).

Proof. Exercise or see Rudin. (Hint: Follow the proof of 229.)

Theorem 237. Let fn be a sequence of differentiable functions on [a, b], and let x0
be a point of [a, b]. Suppose

(a) the derivatives f ′n converge uniformly on [a, b]

(b) the sequence of values fn(x0) converges.

Then fn converges uniformly on [a, b] to a function f such that f ′n → f ′.

Proof. Let ε > 0 be given. Hypotheses (a) and (b) guarantee the existence of an N
such that

|fn(x0)− fm(x0)| < ε/2 whenever n > N

|f ′n(t)− f ′m(t)| < ε

2(b− a)
whenever n > N and t ∈ [a, b].

The second inequality implies by the mean value theorem that

|fn(x)− fm(x)− fn(t) + fm(t)| 6 |x− t|ε
2(b− a)

6
ε

2
for each x, t ∈ [a, b].
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But then we also have from the triangle inequality that

|fn(x)− fm(x)| 6 |fn(x)− fm(x)− fn(x0) + fm(x0)|+ |fn(x0)− fm(x0)|.

Putting together all of the inequalities, we find that

|fn(x)− fm(x)| 6 ε for m,n > N and x ∈ [a, b].

This shows that fn converges uniformly on [a, b].
Now let’s prove the statement about the derivatives. Let f be the limit of the

fn’s. Let x be a fixed point in [a, b]. Define a sequence of difference quotients

ϕn(t) =
fn(t)− fn(x)

t− x

and the limiting difference quotient

ϕ(t) =
f(t)− f(x)

t− x
.

The functions ϕn and ϕ are defined near x with x being a limit point in their domains.
If we could show that ϕn → ϕ away from x, then we would be done by the lemma.
But a previous inequality implies that for each ε > 0 there is an N such that

|ϕn(t)− ϕm(t)| 6 ε

2(b− a)
for n > N and t ∈ [a, b].

This means that the sequence ϕn is uniformly Cauchy, and hence converges to a
limiting function. At least when t 6= x, we conclude from the definition of ϕ and the
fact that fn → f that we in fact have ϕn → ϕ. We are done.

Theorem 238. There is a continuous function on R which is nowhere differentiable.

Proof. Define ϕ : [−1, 1]→ R by ϕ(x) = |x|. Extend the definition of ϕ to all real x
by requiring that

ϕ(x+ 2) = ϕ(x) for each x ∈ R.

Then ϕ satisfies

|ϕ(x)− ϕ(y)| 6 |x− y| (7)

and so in particular ϕ is continuous on R. Because |ϕ(x)| 6 1, the Weierstrass M -test
shows that the series

f(x) =
∞∑
n=0

(
3

4

)n
ϕ(4nx)

converges uniformly on R. By Theorem 229 the function f is continuous on R.
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We show now that f is nowhere differentiable. Let x be a point of R. For each
positive integer m, let δm be the number

δm =
1

2 · 4m
.

Because 4mδm = 1/2, it is impossible that both of the intervals [4mx, 4m(x + δm)]
and [4m(x− δm), 4mx] contain an integer. Let σm be the sign (+ or −) such that no
integer lies between 4mx and 4m(x+ σmδm). Set

γn,m =
ϕ(4n(x+ σmδm))− ϕ(4nx)

σmδm
.

When n > m, the number 4nδm is an even integer, so that γn,m = 0 in this case.
When n satisfies 0 6 n 6 m, then equation (7) implies that

|γn,m| 6
|4n(x+ σmδm)− 4nx|

δm
= 4n.

When n = m, we have that

|γm,m| =
|4m(x+ σmδm)− 4mx|

δm
= 4m.

Then let us compute∣∣∣∣f(x+ σmδm)− f(x)

σmδm

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(
3

4

)n
γn,m

∣∣∣∣∣
=

∣∣∣∣∣
m∑
n=0

(
3

4

)n
γn,m

∣∣∣∣∣
=

∣∣∣∣∣
(

3

4

)m
γm,m −

(
−

m∑
n=0

(
3

4

)n
γn,m

)∣∣∣∣∣
> 3m −

m−1∑
n=0

3n

= 3m − 1− 3m

1− 3

= 3m − 3m − 1

2

=
3m + 1

2
.

This shows that the difference quotient is bounded below as we vary m. But as
m→∞, we have δm → 0. This implies that f cannot be differentiable at x. Since x
is arbitrary, we conclude that f is nowhere differentiable.
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7.6 Arzela-Ascoli

Recall that C([a, b]) denotes the metric space of continuous functions on [a, b] together
with the supremum norm. The question we turn to now is which subsets A ⊂ C([a, b])
are compact.

The celebrated Arzela-Ascoli theorem gives sufficient conditions for a subset A to
be compact.

Definition 239. Let A be a family of continuous functions on [a, b].

• We say that A is uniformly bounded if there is a constant M > 0 such that

|f(x)| 6M whenever f ∈ A and x ∈ [a, b].

• We say that A is equicontinuous if for each ε > 0 there is a δ > 0 such that

|f(x)− f(y)| < ε whenever |x− y| < δ and f ∈ A.

Corollary 240. If A is equicontinuous, then each f ∈ A is uniformly continuous.

Proof. The proof is immediate from the definitions.

Example 241. Let us turn to our favorite sequence of fn : [0, 1] → R defined
by fn(x) = xn. Let A denote the family A = {fn : n = 1, 2, . . .}. Then this
family is uniformly bounded (by the constant 1). However, we claim that A is not
equicontinuous. Indeed, let ε = 1/2. Let δ > 0 be arbitrary. Let x ∈ [0, 1] be a point
satisfying 0 < |x−1| < δ. Because xn → 0, there is an n such that |xn−1| > 1/2 = ε.

Theorem 242. If a sequence fn in C([a, b]) is uniformly bounded and equicontinuous,
then it has a uniformly convergent subsequence.

Proof. One proof consists of a diagonalization argument along the countable dense
subset given by the rational points in [a, b]. Let xn be an enumeration of the set
Q ∩ [a, b].

Consider the point x1. Because the sequence fn is uniformly bounded, the se-
quence of values fn(x1) is bounded, and hence admits a convergent subsequence. It
follows that by passing to a subsequence f1,n of fn, we may ensure that f1,n converges
at x1.

Suppose for a fixed k > 1 that we have a subsequence fk,n of fn such that fk,n con-
verges at the points x1, . . . , xk. Because the sequence of values fk,n(xk+1) is bounded,
it has a convergent subsequence. Hence, by passing to another subsequence fk+1,n,
we may ensure that fk+1,n converges at the points x1, . . . , xk+1.

Thus, we have obtained the following. For each positive integer k, there is a
subsequence fk,n of fn which converges at the points x1, . . . , xk. Moreover, we have
ensured that the subsequences are nested in the sense that

{fn} ⊃ {f1,n} ⊃ {f2,n} ⊃ · · ·
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Construct a the new subsequence given by the diagonal subsequence {fn,n}. By
construction, the subsequence fn,n converges at each x`, and hence at each rational
point in [a, b].

Because the sequence fn,n is equicontinuous, there is a δ > 0 such that

|fn,n(x)− fn,n(y)| < ε/3 whenever |x− y| < δ for each n = 1, 2, . . ..

Choose a finite number of rational points q1, . . . , q` such that the collection Bδ(qj)
covers [a, b] (which we can do because [a, b] is compact). Because fn,n converges at
each qj, there is an Nj such that

|fn,n(qj)− fm,m(qj)| < ε/3 whenever n > Nj.

Let N = max16j6`Nj. Let n be any positive integer satisfying n > N and let x be
any point of [a, b]. Because the balls cover [a, b], there is a qj such that x belongs to
Bδ(qj). Then we have that

|fn,n(x)− fm,m(x)|
6 |fn,n(x)− fn,n(qj)|+ |fn,n(qj)− fm,m(qj)|+ |fm,m(qj)− fm,m(x)|
< ε/3 + ε/3 + ε/3 = ε.

This shows that the sequence fn,n is uniformly Cauchy, as required.

Using some basic topology, namely, that a space is compact if and only if it is
sequentially compact, we can obtain the following restatement of the Arzela-Ascoli
theorem.

Corollary 243. Let A be a subset of C([a, b]). If A is uniformly bounded and equicon-
tinuous, then the closure of A is compact. In particular, if A is is uniformly bounded
and equicontinuous and closed with respect to the supremum norm, then A is compact.

Proof. We won’t prove this result here but the proof just follows from the basic
topological fact that any sequentially compact space is also compact.

Definition 244. Let us say that a function f : [a, b] → R belongs to C1([a, b]) if f
is differentiable and the derivative f ′ is continuous on [a, b]. For this space C1([a, b]),
let us define the norm

‖f‖C1 = sup
x∈[a,b]

|f(x)|+ sup
x∈[a,b]

|f ′(x)|.

This norm induces a metric on C1([a, b]) in the usual way.

Corollary 245. Let fn be a sequence in C1([a, b]). If fn is uniformly bounded with
respect to the C1-norm, then there is a subsequence fnk that converges in C0([a, b]).
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Proof. Suppose M > 0 is such that

‖fn‖C1 6M for each n = 1, 2, . . ..

From the definition of the C1-norm, we have that

|fn(x)| 6M for each x ∈ [a, b] and each n = 1, 2, . . .

|f ′n(x)| 6M for each x ∈ [a, b] and each n = 1, 2, . . ..

It follows that the sequence fn is uniformly bounded with respect to the C0-norm.
The proof would follow from the Arzela-Ascoli theorem if we could show that the
sequence fn is equicontinuous, which we do now.

Let ε > 0 be given. The mean value theorem together with the previous paragraph
implies that

|fn(x)− fn(y)| 6M |x− y| for each x, y ∈ [a, b] and each n = 1, 2, . . ..

If we choose δ = ε/2M , then it follows that

|fn(x)− fn(y)| 6 ε/2 < ε whenever |x− y| < δ for each n = 1, 2, . . .,

as desired.

Definition 246. More generally, say that f : [a, b] → R belongs to Ck([a, b]) if f
admits k derivatives f ′, f (2), . . . , f (k) each of which is continuous. Define the Ck-norm
by

‖f‖Ck =
k∑
`=0

sup
x∈[a,b]

|f (`)(x)|.

Corollary 247. Let fn be a sequence in Ck+1([a, b]). If the sequence fn is uniformly
bounded with respect to the Ck+1-norm, then there is a subsequence fnm that converges
in Ck([a, b]).

Proof. Exercise.

The Arzela-Ascoli theorem has a generalization to any compact metric space X.

Theorem 248. Let X be a compact metric space, and let A be a subset of C(X). If
A is uniformly bounded and equicontinuous, then the closure of A is compact.

Proof. The proof will be analogous to the case of [a, b] if we can show that there is a
countable dense subset E of X. So this is what we will show.

For each n, the balls {B1/n(x)}x∈X cover X, and since X is compact, there is a
finite subset En ⊂ X of centers such that

X ⊂
⋃
x∈En

B1/n(x).
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Define

E =
∞⋃
n=1

En.

Then E is countable as it is the countable union of finite sets. Moreover, we claim
that E is dense in X. Indeed, suppose that E 6= X and let x0 be a point in X \ E.
Let ε > 0 be given. Choose n0 so large that n > 1/ε. Then since

X ⊂
⋃
x∈En

B1/n(x)

there is a x ∈ En such that d(x, x0) < 1/n < ε. Since x0 /∈ En, we see that x0 is a
limit point of En and hence of E. It follows that E = X. We are done.

7.7 Stone-Weierstrass Theorem

Lemma 249. For any positive integer n, we have

(1− x2)n > 1− nx2

for −1 < x < 1.

Proof. Let f(x) be the function

f(x) = (1− x2)n − 1 + nx2.

To prove the claim, it suffices to prove that f is nonnegative on (−1, 1). Since f is
even, it actually suffices to prove that f is nonnegative on [0, 1). We note that the
derivative satisfies

f ′(x) = n(1− x2)n−1 + 2nx.

It follows that for x ∈ (0, 1), the number f ′(x) is positive. From the mean value
theorem, we infer that f is monotonically increasing on [0, 1). Since f(0) = 0, we
conclude that f is nonnegative on [0, 1), as desired.

Lemma 250. Let f : [0, 1] → R be a continuous function and suppose that f(0) =
f(1) = 0. Then there is a sequence of polynomials pn on [0, 1] converging uniformly
to f on [0, 1].

Proof. We may extend f in a continuous manner to the whole real line by declaring
f to be zero outside of [0, 1]. In this way, f becomes uniformly continuous on R.

For each n = 1, 2, . . . , let

cn =

∫ 1

−1
(1− x2)n dx,
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and let qn be the polynomial

qn(x) = c−1n (1− x2)n.

In this way, we have ensured that
∫ 1

−1 qn(x) dx = 1.

We claim that cn satisfies cn > 1/
√
n. Indeed, we compute using the lemma that

cn =

∫ 1

−1
(1− x2)n dx

= 2

∫ 1

0

(1− x2)n dx

> 2

∫ 1/
√
n

0

(1− x2)n dx

> 2

∫ 1/
√
n

0

(1− nx2) dx

=
4

3
√
n

>
1√
n
.

We claim it readily follows from the previous paragraph that

qn(x) 6
√
n(1− δ2)n for δ 6 x 6 1.

In particular, we can make |qn(x)| as small as we want independently of x whenever
δ 6 x 6 1. This implies that the sequence qn converges uniformly to 0 on the closed
subinterval [δ, 1].

For x satisfying 0 6 x 6 1, define

pn(x) =

∫ 1

−1
f(x+ t)qn(t) dt.

Then the fact that f(t) is zero for t outside of [0, 1] implies that

pn(x) =

∫ 1−x

−x
f(x+ t)qn(t) dt.

Also by changing variables (u = x+ t), we find that

pn(x) =

∫ 1

0

f(u)qn(u− x) du.

In particular, we recognize that pn(x) is a polynomial in x (because qn is).

90



We will show that pn converges uniformly to f . Let ε > 0 be given. Since f is
uniformly continuous, there is a δ > 0 such that

|f(x)− f(y)| < ε/2 whenever |x− y| < δ.

Let M = sup |f(x)|. Now we try to estimate |pn(x) − f(x)|. Because the integral of
qn is 1, we have that

f(x) =

∫ 1

−1
qn(t)f(x) dt.

It follows that

|pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
[f(x+ t)− f(x)]qn(t)

∣∣∣∣ 6 ∫ 1

−1
|f(x+ t)− f(x)||qn(t)| dt.

We now split the interval [−1, 1] into the three pieces [−1,−δ] ∪ [−δ, δ] ∪ [δ, 1], since
we have control of qn on two of these pieces. We find that

|pn(x)− f(x)| 6 2M

∫ −δ
−1
|qn(t)| dt+

ε

2

∫ δ

−δ
|qn(t)| dt+ 2M

∫ 1

δ

|qn(t)| dt

and we use the inequality qn(t) 6
√
n(1− δ2)n to find that

|pn(x)− f(x)| 6 4M
√
n(1− δ2)n + ε/2.

If n is large enough, we can make (1− δ2)n as small as we want. It follows that

|pn(x)− f(x)| < ε for all x ∈ [0, 1]

for n sufficiently large.

Corollary 251. Let f be a continuous function on [0, 1]. Then there is a sequence
of polynomials pn on [0, 1] converging uniformly to f on [0, 1].

Proof. Define g on [0, 1] by

g(x) = f(x)− f(0)− x[f(1)− f(0)].

Then it is routine to check that g satisfies g(0) = g(1) = 0. Hence by the previous
result, there is a sequence qn of polynomials converging uniformly to g on [0, 1]. If we
define

pn(x) = qn(x) + f(0) + x[f(1)− f(0)],

then each pn(x) is a polynomial on [0, 1]. Moreover, we check that

|f(x)− pn(x)| = |(g(x) + f(0) + x[f(1)− f(0)])− (qn(x) + f(0) + x[f(1)− f(0)])|
= |g(x)− qn(x)|.

It follows that the sequence pn converges uniformly to f on [0, 1].
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Lemma 252. Let ϕ be a continuous bijection from [c, d] to [a, b] with a continuous
inverse. Let f be a function on [a, b], and let g denote the composition g = f ◦ ϕ.
Suppose that gn is a sequence of functions on [c, d] converging uniformly to g. Then
gn ◦ ϕ−1 is a sequence of functions converging uniformly to f on [a, b].

Proof. Exercise.

Corollary 253. Let f be a continuous function on [a, b]. Then there is a sequence
of polynomials pn converging uniformly to f on [a, b].

Proof. Define ϕ : [0, 1]→ [a, b] by

ϕ(x) = a+ x(b− a).

Check that ϕ is a continuous from [0, 1] to [a, b] with a continuous inverse, and then
apply the lemma to the function g = f ◦ ϕ : [0, 1]→ R, which is the uniform limit of
a sequence of polynomials by the previous result.

Corollary 254. In particular, let f : [−a, a] → R be the function f(x) = |x|. Then
there is a sequence of polynomials pn on [−a, a] satisfying

(a) pn converges uniformly to f on [−a, a]

(b) each pn satisfies pn(0) = 0.

Proof. By the previous result, there is a sequence of polynomials p∗n converging uni-
formly to f on [−a, a]. Define the polynomials pn(x) = p∗n(x)− p∗n(0). The sequence
of constant functions p∗n(0) converges uniformly to the zero function on [−a, a]. It
follows that pn converges uniformly to f − 0 = f by a homework problem.

Rudin then isolates those properties of the polynomials that make the approxi-
mation theorem possible.

Definition 255. Let X be a metric space. A family A of real-valued functions on X
is called an algebra if

(a) f + g ∈ A whenever f, g ∈ A

(b) fg ∈ A whenever f, g ∈ A

(c) cf ∈ A whenever c ∈ R and f ∈ A.

In other words, the requirements are that A be closed under addition, multiplication,
and scalar multiplication.

Example 256. Let X = [a, b]. The family P of polynomials on [a, b] is an algebra.
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Example 257. Let X = R. The family T of trigonometric polynomials on [0, 2π] is
an algebra. Here a function f is a trigonometric polynomial if

f = A0 +
n∑
k=1

Ak sin(kx) +
m∑
`=1

B` cos(`x)

for some constants Ak, B`.

Definition 258. We say that A is uniformly closed if whenever fn is a sequence
in A that converges uniformly to some function f on X then f also belongs to A.
The uniform closure of A consists of all uniform limits of sequences from A.

Example 259. The algebra P of polynomials [a, b] is not uniformly closed because
any continuous function belongs to the uniform closure of P . In fact, the uniform
closure of P consists of all continuous functions on [a, b].

Theorem 260. Assume A is an algebra consisting of bounded functions. Then the
uniform closure of A is itself an algebra.

Proof. Conditions (a) and (c) are satisfied for the uniform closure regardless of whether
A consists of bounded functions or not. The hypothesis that A consists of bounded
functions ensures that condition (b) is satisfied.

Definition 261. Let A be an algebra of functions on X.

(a) We say that A separates points of X if for each pair of distinct points x1, x2 ∈
X, there is a function f in A such that f(x1) 6= f(x2).

(b) We say that A vanishes at no points of X if for each point x ∈ X, there is
a function f in A such that f(x) 6= 0.

Example 262. The algebra of even polynomials on [−1, 1] does not separate points (it
does not separate the points −x and x for example). The algebra of odd polynomials
on [−1, 1] vanishes at the point x = 0.

Example 263. The algebra of trigonometric polynomials on R does not separate
points (it does not separate the points 0 and 2π for example).

Lemma 264. Let A be an algebra of functions on X, let x1 and x2 be distinct points
of X, and let c1, c2 be any two real numbers. Suppose that A separates points of X
and vanishes at no points of X. Then there is a function f in A such that

f(xi) = ci i = 1, 2.
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Proof. Because A vanishes at no points of X, there are functions h1 and h2 in A such
that hi(xi) 6= 0. Because A separates points of X, there is a function g in A such
that g(x1) 6= g(x2). Let u be the function defined by

u = h1 · (g − g(x2)).

Then we see from construction that u(x1) 6= 0 and u(x2) = 0. Let v be the function

v = h2 · (g − g(x1))

so that v(x2) 6= 0 and v(x1) = 0. Let f be the function defined by

f =
c1

u(x1)
u+

c2
v(x2)

v.

Then f satisfies the requirements.

Theorem 265. Let A be an algebra of continuous functions on a compact set K.
If A separates points on K and if A vanishes at no points of K, then the uniform
closure of A consists of all continuous functions on K.

Proof. We omit the full proof because of time constraints. Instead we give examples.

Example 266. Let K = [a, b]. Then the algebra P of polynomials on [a, b] separates
points and vanishes at no points of [a, b]. By the theorem, the uniform closure of P
consists of all continuous functions on [a, b].

Example 267. Let K = S1 be the unit circle in R2. There is a natural bijective
correspondence between C(K) and the set of continuous 2π-periodic functions on
R in such a way that the metrics on the two spaces correspond. In this way, the
algebra T of trigonometric polynomials on R corresponds to an algebra of continuous
functions on S1. This algebra separates points and vanishes at no points of S1. By
the theorem, the uniform closure of T consists of all continuous functions on S1, that
is, all continuous 2π-periodic functions on R.

8 Appendix

Example 268. Let fk(x) be defined on R \ 0 by

fk(x) =

{
xk/k! x > 0

−xk/k! x < 0
.

We compute that the `th derivative of fk satisfies

f
(`)
k (x) =

{
xk−`/(k − `)! x > 0

−xk−`/(k − `)! x < 0
.
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In particular, the kth derivative is given by

f
(k)
k (x) =

{
1 x > 0

−1 x < 0
.

Such a function, because we have excluded x = 0 from the domain, is continuous.

Lemma 269. Let k be a positive integer, and let f be k-times differentiable in a
neighborhood of x = 0 except possibly at x = 0. If f satisfies |f(x)| 6 |x|k+1, then
f (k)(0) = 0.

Proof. Assume the claim is true for some positive integer k. Assume that f satisfies
|f(x)| 6 |x|k+2. For x between −1 and 1, we have that |x|k+2 6 |x|k+1. It follows
that |f(x)| 6 |x|k+1. By the inductive hypothesis, we infer that fk(0) = 0. Now we
have also that for x 6= 0 that ∣∣∣∣f(x)

xk+1

∣∣∣∣ 6 |x| x 6= 0.

The squeeze theorem implies that

lim
x→0

f(x)

xk+1
= 0.

L’Hospital’s rule applied k times in a row implies that

lim
x→0

f (k)(x)

(k + 1)!x
= 0.

We deduce that

lim
x→0

f (k)(x)− f (k)(0)

x
= 0.

This means that f (k+1)(0) = 0. The proof is complete by induction.

Example 270. For a positive integer k, let fk(x) be defined by

fk(x) =

{
xk+1 sin(1/x) x 6= 0

0 x = 0.

By the lemma, we have that f (k)(0) = 0. However, we claim that f (k) is not continuous
at zero.

Let us investigate first the case that k = 1. In this case, we have that

f1(x) = x2 sin(1/x) x 6= 0.
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Taking the first derivative, we find that

f ′1(x) = 2x sin(1/x)− cos(1/x).

As x→ 0, the first term tends to zero, but the second term has no limit.
Perhaps it is also instructive to look at the k = 2 case. In this case, we have that

f ′2(x) = 3x2 sin(1/x)− x cos(1/x) x 6= 0.

For the second derivative, we have that

f ′′2 (x) = 6x sin(1/x)− 4 cos(1/x)− x−1 sin(1/x) x 6= 0.

As x → 0 in this expression, we see that only the first term has a limit. In fact, for
any real number M > 0 and each δ > 0, there is an x satisfying 0 < x < δ such that
|f ′′2 (x)| > M .

For other positive integers k, it is similarly possible to show that f
(k)
k (x) has no

finite limit as x→ 0.
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