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Chapter 1

Introduction

1.1 Historical remarks

The immediate precursor of a vertex operator algebra is the notion of a vertex algebra, first
introduced in 1986. In particular, Borcherds [Bo] constructed an algebraic structure on a certain
Fock space (a space of particle states) associated with a root lattice of a Kac-Moody algebra. He
called these constructions vertex algebras, because they were related to particle interactions at a
“vertex,” employing concepts in quantum mechanics and quantum field theories, as well as the
representation theory of infinite-dimensional Lie algebras.

Roughly speaking a vertex algebra is a quadruple (V, Y, 1, d) where V is a Z-graded vector
space,

Y(·, x) : V −→ (End V)[[x, x−1]]

is a linear map from V to the space of formal Laurent series in x with coefficients in End V, 1 is
a special vector, which serves as a type of identity for Y(·, x), and d is an endomorphism of V.
These data are supposed to satisfy certain axioms, among which imply that the multiplication
Y(·, x) is “almost” commutative and “almost” associative, in some sense. The axioms have been
simplified and modernized over the years, especially due to the work of Frenkel, Lepowsky, and
Meurman [FLM88].

Surprisingly, vertex algebras quickly found a place in group theory, answering a conjecture
concerning sporadic groups. The largest of the sporadic groups (the Monster) exhibited inter-
esting connections with a certain modular function, denoted j, which led Conway and Norton
[CN] to conjecture that an infinite-dimensional Z-graded representation of this group could be
constructed in such a way that the graded dimension coincided with the Laurent series expan-
sion of j. Borcherds [Bo] conjectured that such a representation could acquire the structure of
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a vertex algebra, and in 1984, Frenkel, Lepowsky, and Meurman [FLM84] showed that this was
indeed the case, constructing the notable Moonshine module on which the Monster group acts
by symmetries. This construction demonstrated the rich, diverse connections among number
theory, group theory, Lie algebras, and physics.

With the construction of the Moonshine module, Frenkel, Lepowsky, and Meurman [FLM88]
modified Borcherds’s definition of a vertex algebra to give the notion of a vertex operator al-
gebra. The modification included the addition of an element ω of weight two whose vertex
operator Y(ω, z) gives a representation of the Virasoro algebra, that is, the complex Lie algebra
spanned by elements Ln for n ∈ Z and central element c subject to the relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

This algebra is a central extension of the Witt algebra, which consists of the meromorphic vector
fields on the unit circle S1 in C and which plays a key role in the study of conformal field theory
and string theory.

The algebraic formulation of vertex algebras (and consequently vertex operator algebras)
was revised and organized over the years, perhaps culminating in Li’s results on local systems of
vertex operators. In [L96], Li studied equivalent formulations of the algebraic axioms of a vertex
algebra, generalizing Dong and Lepwosky’s result [DL] which states that the Jacobi identity
axiom may be replaced by commutativity for vertex algebras under mild assumptions. From
this axiomatic approach, Li then went on to show that any local system of vertex operators
on a vector space M carries a natural vertex algebra structure. These results allow for easier
construction of vertex algebras, as it is merely sufficient to find a local system of vertex operators.

A major development in the representation theory of vertex operator algebras was the con-
struction of a functor Λ, found originally in [Z], from the category of vertex operator algebras
to the category of associative algebras with unit. This functor is useful because it gives rise to a
bijective correspondence between the irreducible weak-admissible modules for a vertex operator
algebra V and irreducible modules for its corresponding associative algebra Λ(V). The corre-
sponding algebra Λ(V) is often called Zhu’s algebra in the literature, and it has played a key role
in the classification of rational and regular vertex operator algebras [DLM97a, DLM97b, FZ, W].

Finally a work of Huang [H97] established an equivalence between vertex operator alge-
bras and a certain construction resulting from the study of two-dimensional conformal geom-
etry. It was known that vertex operator algebras played a role in mathematical physics and
string theory, but it was only until Huang’s work that the role of the sewing equation and
two-dimensional conformal geometry in the formulation of vertex operator algebras was made
rigorous. In simplest terms, Huang showed that vertex operator algebras arise as algebraic
structures governed by the interactions of closed vibrating strings in space time. More specif-
ically, he demonstrated that vertex operator algebras are categorically equivalent to (partial)
algebras that arise over a certain partial operad consisting of moduli spaces of Riemann spheres
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with punctures and local coordinates together with a composition given by the sewing equation.
Huang’s work extended the already fascinating connections with vertex operator algebras even
further, outlining rigorously the role of two-dimensional conformal geometry and the sewing
equation in their formulations.

1.2 Overview

In Chapter 2, we follow [LL] to introduce the notion of a vertex operator algebra from a purely
formal algebraic standpoint. We first study formal calculus, developing the necessary notation
and theory, specifically the delta function identities, which are fundamental tools to study the
algebraic relations involved in the theory of vertex operator algebras. After discussing the more
general notion of a vertex algebra, we introduce a vertex operator algebra as a type of vertex
algebra with a distinguished Virasoro vector ω. We then provide a non-trivial, yet basic example
which we call the space of one free boson.

The next chapter shows how vertex operator algebras are a symmetric monoidal category
when equipped with a tensor product structure. For the reader less familiar with the language
of category theory, we have included several sections on this material, introducing the notions of
categories, functors, monoidal categories, and monoidal functors. We then provide basic exam-
ples of monoidal categories through studying ring modules, and more specifically, associative
algebras. We complete Chapter 3 by developing a tensor product structure (or monoidal struc-
ture) on the category of vertex operator algebras, and we show how this monoidal structure is
symmetric.

Chapter 4 is a study of the functorial properties of Zhu’s algebra (first constructed in [Z])
especially with respect to the monoidal structures of the categories at play. Our main result is
showing how this functor respects the symmetric monoidal structures of these categories. We
then summarize other properties of this and related functors important to the representation
theory of vertex operator algebras.

The last chapter is an introduction to the geometry underlying the theory of vertex operator
algebras, following closely Huang’s work [H97]. We leave out some of the more intricate details
of Huang’s original work, and we are content simply to motivate and introduce the geometric
structures necessary to develop the notion of a geometric vertex operator algebra. It is lastly stated
that this geometric construction is equivalent to the algebraic construction developed in the
first chapter, that is, the categories of vertex operator algebras and geometric vertex operator
algebras are isomorphic.
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1.3 Notations

C Field of complex numbers
C× Group of nonzero elements of C

N Set of nonnegative integers
Q Field of rational numbers
R Field of real numbers
Sn Symmetric group on n letters
Z Ring of integers

Z+ Set of positive integers
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Chapter 2

Vertex operator algebras

Following [LL], we introduce the notion of a vertex operator algebra from a purely algebraic
standpoint. While this algebraic approach is perhaps easier to grasp quickly, it fails to capture
how the geometry of propagating strings motivates the definition. Therefore, after the algebraic
approach of this chapter and the next, we supply the geometric motivation in the last.

An important tool in the study of vertex operator algebras is formal calculus, which consists
of the study of formal power series with coefficients in some vector space as an algebraic-like
object with a natural partial multiplication structure. The formal delta function δ(x) and formal
exponentiation function play key roles, as does the binomial expansion convention

(x1 + x2)
r = ∑

k∈N

(
r
k

)
xr−k

1 xk
2

which is an extension of the convention for complex numbers. The study of formal calculus
helped to condense some of the relations of the algebraic structure for vertex operator algebras
to the single Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y(u, x1)Y(v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y(v, x2)Y(u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y(u, x0)v, x2),

which uses in a fundamental way the properties of the formal delta function. The next two
sections are designed to highlight and offer a proof of these properties, as well as to discuss
other important results within formal calculus.
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2.1 Formal Calculus

We work exclusively over the complex numbers C. In particular, all vector spaces are assumed
to be complex. We typically use the variables x, y, t to denote commuting independent formal
variables.

For a vector space V, we let V[[x, x−1]] denote the space of formal Laurent series in x with
coefficients in V, that is,

V[[x, x−1]] =

{
∑

n∈Z

vnxn : vn ∈ V

}
.

This space is a vector space endowed with the usual operations of addition and scalar multi-
plication (from C). If Y : V → W is a linear map of vector spaces, then Y induces a linear
map

Y : V[[x, x−1]] −→W[[x, x−1]]

which we still denote by Y. Two important subspaces of V[[x, x−1]] are the space

V[[x]] =

{
∑

n∈N

vnxn : vn ∈ V

}

of formal power series in x with coefficients in V and the space

V((x)) =

{
∑

n∈Z

vnxn : vn ∈ V, vn = 0 for n sufficiently negative

}

of truncated formal Laurent polynomials in x with coefficients in V.

Remark 2.1.1. Even though the space of polynomials in x with coefficients in V has a multi-
plication structure, the above space of formal Laurent series does not in general inherit this
well-defined multiplication structure. In particular, the reader should consider how to define
the product (

∑
n∈Z

xn

)(
∑

n∈Z

xn

)

in C[[x, x−1]], using the methods of polynomial multiplication. (The problem is that too many
coefficients will be “lumped” into a single power of x, thus giving an ill-defined coefficient for
this power of x.)

Nevertheless, we wish to define a product structure on this space. In particular, we must
define a partial multiplicative structure on the space (End V)[[x, x−1]] where V is a vector space.
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The idea will be to define multiplication in the usual way, but only to restrict our attention to
those products which are well-defined. In particular, we do not want products with the type of
infinite lumping found in the ill-defined product of Remark 2.1.1.

A family of operators { fi}i∈I in End V is said to be summable if for each v ∈ V, the element
fiv is zero for all but a finite number of i in the indexing set I. If this is the case, we write the
“sum” operator as

∑
i∈I

fi : V −→ V

v 7→∑
i∈I

fi(v).

Let {Fi(x)}i∈I be a family in (End V)[[x, x−1]] and for each i ∈ I, set

Fi(x) = ∑
n∈Z

fi(n)xn.

We say that the sum ∑i∈I Fi(x) exists if for each n ∈ Z, the family { fi(n)}i∈I is summable. If this
is the case, we then set

∑
i∈I

Fi(x) = ∑
n∈Z

(
∑
i∈I

fi(n)

)
xn.

We say that the product F1(x) · · · Fr(x) exists if for each n ∈ Z, the family

{ f1(n1) · · · fr(nr)}n1+···+nr=n

is summable. If this is the case, we then set

F1(x) · · · Fr(x) = ∑
n∈Z

(
∑

n1+···+nr=n
f1(n1) · · · fr(nr)

)
xn.

Remark 2.1.2. These elementary principles and definitions play an important role in the devel-
opment of formal calculus. The notion of nonexistent product should not be taken lightly, and
the careful student of formal calculus will do well to pay close attention to how these definitions
play a role when attempting exercises or computations.

Key to the axioms of vertex operator algebras is the delta function and the identities in which
it appears. The formal delta function δ(x) is the formal series defined by

δ(x) = ∑
n∈Z

xn ∈ C[[x, x−1]].

Although suppressed, the coefficients of each term in the series are taken to be the identity
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element 1 of the field C.

If V is a complex vector space, then we have a natural injection

C[[x, x−1]] −→ (End V)[[x, x−1]]

∑
n∈Z

cnxn 7→ ∑
n∈Z

(cn · idV)xn,

and we regard δ(x) as an element of (End V)[[x, x−1]] in this way.

Remark 2.1.3. Although the label function suggests that δ(x) can be evaluated for some complex
values of x, this is certainly not the case. In fact, δ(x) cannot be evaluated for any value of x, and
this “function” should instead be considered a formal series. The x simply denotes the letter we
are using to denote the formal variable.

Remark 2.1.4. When working with the delta function, it is important to keep in mind the rules
for existent and non-existent products, as discussed above. For example, it is clear that the
product

δ(x)δ(x)

mentioned in Remark 2.1.1 does not exist. This example shows how challenging it could be
to demonstrate that a product of two formal series is defined: we must check whether the
coefficient of each power of x acts like a finite sum. This example also shows that having a
well-defined product is a very restrictive condition: only one coefficient can ruin the whole
product.

We use the following binomial expansion convention. For a complex number r ∈ C, we let
(x1 + x2)r be the formal series

(x1 + x2)
r = ∑

k∈N

(
r
k

)
xr−k

1 xk
2

in C[[x1, x−1
1 , x2]] where (

r
k

)
=

r(r− 1) · · · (n− k + 1)
k!

.

We also have a formal derivative, defined in the obvious way. If V is a complex vector
space and v(x) = ∑n∈Z vnxn is an element of V[[x, x−1]], then we define the formal derivative
d

dx v(x) = v′(x) to be the formal series

d
dx

v(x) = ∑
n∈Z

nvnxn−1.
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The formal partial derivatives ∂
∂x1

, ∂
∂x2

, . . . are defined in similar fashions. It is easy to see that
d

dx acts as a linear operator on the space V[[x, x−1]], and more specifically, as a derivation. The
same is true of the partial derivatives.

Another key series is the exponential function, which is an extension of the exponential
function from the complex numbers.

Let S be an element of x(End V)[[x]], that is, S has no constant term. As convention, we let
S0 denote the element id ∈ (End V)[[x]] and set Sn = Sn−1 · S for n positive. Then each Sn is a
well-defined element of (End V)[[x]] since S is truncated from below. Also the sum

eS = ∑
n∈N

1
n!

Sn

exists and is a well defined element of (End V)[[x]], since S involves only positive powers of x.

Finally, we need formal limits. Let ∑m,n∈Z F(m, n)xm
1 xn

2 be an element of V[[x1, x−1
1 , x2, x−1

2 ]].
We say that the limit

lim
x1→x2

∑
m,n∈Z

F(m, n)xm
1 xn

2

exists if for each n ∈ Z the family {F(m, n−m)}m∈Z is summable, in which case, we set

lim
x1→x2

∑
m,n∈Z

F(m, n)xm
1 xn

2 = ∑
n∈Z

(
∑

m∈Z

F(m, n−m)

)
xn

2 .

From the above definitions, we obtain the Formal Taylor Theorem.

Theorem 2.1.5. Let v(x) be an element of V[[x, x−1]]. Then the equality

ey d
dx v(x) = v(x + y)

holds, and in particular, both expressions exist.

Proof. Write v(x) = ∑n∈Z vnxn. Then observe that

ey d
dx v(x) = ∑

k∈N

∑
n∈Z

yk

k!

(
d

dx

)k

vnxn

= ∑
k∈N

∑
n∈Z

yk

k!
n(n− 1) · · · (n− k + 1)vnxn−k

= ∑
n∈Z

vn ∑
k∈N

(
n
k

)
ykxn−k

= ∑
n∈Z

vn(x + y)n
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= v(x + y).

�

Exercise 2.1.6. Show that the product (
∑
n≥0

xn

)(
∑
n≤0

xn

)

does not exist.

Exercise 2.1.7. Show that the product(
∑
n≥0

xn

2n

)(
∑
n≤0

xn

)

does not exist.

Exercise 2.1.8. If f (x) ∈ V[x, x−1], show that the product f (x)δ(x) does exist. Also show that

f (x)δ(x) = f (1)δ(x).

(Hint: First show that xnδ(x) = δ(x) for any n ∈ Z.)

Exercise 2.1.9. Show that

x−1δ
(y

x

)
= y−1δ

(y
x

)
= y−1δ

(
x
y

)
.

2.2 Delta function identities

The goal of this section is to address some important identities involving the formal delta func-
tion. These identities play a fundamental role in the formulation of the Jacobi identity axiom
for vertex algebras and vertex operator algebras.

As usual, fix a complex vector space V. We use the variables x0, x1, x2 to denote formal
independent commuting variables.

Lemma 2.2.1. For m ∈ C and k ∈N, we have

(−1)k
(

k−m− 1
k

)
=

(
m
k

)
.

10



Proof. Note that

(−1)k
(

k−m− 1
k

)
= (−1)k ∏k−1

j=0 (k−m− 1− j)

k!

=
∏k−1

j=0 (m− k + 1 + j)

k!
.

Replacing i = −j + k− 1, we see that

∏k−1
j=0 (m− k + 1 + j)

k!
=

∏0
i=k−1(m− i)

k!

=
∏k−1

i=0 (m− i)
k!

=

(
m
k

)
.

�

Proposition 2.2.2. In V[[x0, x−1
0 , x1, x−1

1 , x2, x−1
2 ]], we have

x−1
2 δ

(
x1 − x0

x2

)
= x−1

1 δ

(
x2 + x0

x1

)
. (2.2.1)

Proof. Observe that

x−1
2 δ

(
x1 − x0

x2

)
= x−1

2 ∑
n∈Z

x−n
2 (x1 − x0)

n

= ∑
n∈Z

x−n−1
2 ∑

k∈N

(
n
k

)
xn−k

1 (−1)kxk
0

= ∑
n∈Z

∑
k∈N

(−1)k
(

n
k

)
xk

0xn−k
1 x−n−1

2 .

Now let n = k−m− 1, and use Lemma 2.2.1 to observe that

∑
n∈Z

∑
k∈N

(−1)k
(

n
k

)
xk

0xn−k
1 x−n−1

2 = ∑
m∈Z

∑
k∈N

(−1)k
(

k−m− 1
k

)
xk

0x−m−1
1 xm−k

2

= ∑
m∈Z

∑
k∈N

(
m
k

)
xk

0x−m−1
1 xm−k

2

= ∑
m∈Z

x−m−1
1 ∑

k∈N

(
m
k

)
xm−k

2 xk
0

= x−1
1 ∑

m∈Z

x−m
1 (x2 + x0)

m

11



= x−1
1 δ

(
x2 + x0

x1

)
,

as desired. �

We call (2.2.1) the two-term delta function identity. We also have the following three-term delta
function identity (2.2.2), which requires some intermediary results.

Lemma 2.2.3. We have

(−1)k
(
−1
k

)
= 1

for each k ∈N.

Proof. This follows from Lemma 2.2.1 with m = k. �

Lemma 2.2.4. In V[[x1, x−1
1 , x2, x−1

2 ]], we have

(x1 − x2)
−m−1 − (−x2 + x1)

−m−1 =
(−1)m

m!

(
∂

∂x1

)m

x−1
2 δ

(
x1

x2

)
for each m ∈N.

Proof. We prove the claim by induction on the letter m. For m = 0, we apply Lemma 2.2.3 to
obtain

(x1 − x2)
−1 − (−x2 + x1)

−1 = ∑
k∈N

(
−1
k

)
(−1)kx−1−k

1 xk
2 − ∑

k∈N

(
−1
k

)
(−1)−1−kxk

1x−1−k
2

= ∑
k∈N

x−1−k
1 xk

2 + ∑
k∈N

xk
1x−1−k

2

= x−1
2 δ

(
x1

x2

)
,

as desired.

Now assume that the claim holds for some nonnegative integer m. Then observe that

(−1)(m+1)

(m + 1)!

(
∂

∂x1

)(m+1)

x−1
2 δ

(
x1

x2

)
=
−1

m + 1
∂

∂x1

(
(−1)m

m!

(
∂

∂x1

)m

x−1
2 δ

(
x1

x2

))
=
−1

m + 1
∂

∂x1

(
(x1 − x2)

−m−1 − (−x2 + x1)
−m−1

)
=
−1

m + 1
(
(−m− 1)(x1 − x2)

−m−2 − (−m− 1)(−x2 + x1)
−m−2)

= (x1 − x2)
−(m+1)−1 − (−x2 + x1)

−(m+1)−1,
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thus completing the inductive step and the proof. �

Proposition 2.2.5. In V[[x0, x−1
0 , x1, x−1

1 , x2, x−1
2 ]], we have

x−1
0 δ

(
x1 − x2

x0

)
− x−1

0 δ

(
−x2 + x1

x0

)
= x−1

2 δ

(
x1 − x0

x2

)
. (2.2.2)

Proof. Observe that

x−1
0 δ

(
x1 − x2

x0

)
− x−1

0 δ

(
−x2 + x1

x0

)
= ∑

n∈Z

x−n−1
0 ((x1 − x2)

n − (−x2 + x1)
n) .

Letting m = −n− 1, we see that

∑
n∈Z

x−n−1
0 ((x1 − x2)

n − (−x2 + x1)
n) = ∑

m∈Z

xm
0 ((x1 − x2)

−m−1 − (−x2 + x1)
−m−1).

Since (x1 − x2)r = (−x2 + x1)
r for r ∈N, we find that

∑
m∈Z

xm
0 ((x1 − x2)

−m−1 − (−x2 + x1)
−m−1) = ∑

m∈N

xm
0 ((x1 − x2)

−m−1 − (−x2 + x1)
−m−1).

Finally an application of Lemma 2.2.4 and Theorem 2.1.5 gives

∑
m∈N

xm
0 ((x1 − x2)

−m−1 − (−x2 + x1)
−m−1) = ∑

m∈N

1
m!

(
−x0

∂

∂x1

)m

x−1
2 δ

(
x1

x2

)
= x−1

2 e−x0
∂

∂x1 δ

(
x1

x2

)
= x−1

2 δ

(
x1 − x0

x2

)
,

as desired. �

2.3 Vertex algebras and vertex operator algebras

A vertex algebra is a quadruple (V, Y, 1, d) where V is a vector space,

Y(·, x) : V −→ (End V)[[x, x−1]]

a 7→ ∑
n∈Z

anx−n−1

is a linear map, 1 is a distinguished vector, and d : V → V is an endomorphism of V so that the
following conditions are satisfied

13



(VA1) Y(1, x) = idV ;

(VA2) Y(a, x)1 ∈ V[[x]] and limx→0 Y(a, x)1 = a for a ∈ V;

(VA3) [d, Y(a, x)] = Y(da, x) = d
dx Y(a, x) for any a ∈ V;

(VA4) Y(a, x)b ∈ V((x)) for any a, b ∈ V;

(VA5) The Jacobi identity holds:

x−1
0 δ

(
x1 − x2

x0

)
Y(a, x1)Y(b, x2)c− x−1

0 δ

(
−x2 + x1

x0

)
Y(b, x2)Y(a, x1)c

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y(a, x0)b, x2)c

for any a, b, c ∈ V.

If (V1, Y1, 11, d1) and (V2, Y2, 12, d2) are vertex algebras, then a vertex algebra homomorphism
from V1 into V2 is linear map f : V1 → V2 such that

(Hom1) f is compatible with Y1 and Y2 in the sense that

Y2( f (u), x) f (v) = f (Y1(u, x)v) for each u, v ∈ V1,

or equivalently,

f (u)n f (v) = f (unv) for each u, v ∈ V1 and n ∈ Z;

(Hom2) f sends 11 to 12;

(Hom3) f is compatible with d1 and d2 in the sense that f ◦ d1 = d2 ◦ f .

A vertex algebra (V, Y, 1, d) is called a vertex operator algebra if there is another distinguished
vector ω ∈ V called the Virasoro vector such that

(VOA1) the vertex operators associated with ω form a representation of the Virasoro algebra, that
is, if we set Y(ω, x) = ∑n∈Z L(n)x−n−2, then

[L(m), L(n)] = (m− n)L(m + n) +
m3 −m

12
δm+n,0cV

for some cV ∈ C call the central charge of V;

(VOA2) L(−1) ≡ d ∈ (End V);

14



(VOA3) V is Z-graded by the finite-dimensional eigenspaces for L(0) which are truncated from
below, that is, we may write

V = ä
n∈Z

V(n)

where V(n) = {a ∈ V : L(0)v = na} and we have dim V(n) < ∞ and V(n) = 0 for n
sufficiently negative.

In this case, we would write that the quadruple (V, Y, 1, ω) is a vertex operator algebra. Note
that there is no need to specify the endomorphism d anymore, since by axiom (VOA2), we know
that d = L(−1) = ω0.

If (V1, Y1, 11, ω1) and (V2, Y2, 12, ω2) are vertex operator algebras, a vertex operator algebra
homomorphism from V1 into V2 is a vertex algebra homomorphism f : V1 → V2 such that f (ω1) =

ω2. Note that this implies in particular that the central charges of the vertex operator algebras
V1 and V2 must be the same.

The category of vertex operator algebras of central charge c, denoted VOA(c), has as its
objects vertex operator algebras of central charge c and as its morphisms vertex operator al-
gebra homomorphisms between these objects. More generally, the category of vertex operator
algebras, denoted VOA, has as its objects vertex operator algebras and as its morphisms vertex
operator algebra homomorphisms.

A module for a vertex algebra (V, Y, 1, d) is a pair (M, YM, D) where M is a vector space,

Y(·, x) : V −→ (End M)[[x, x−1]]

is a linear map, and D ∈ End M is an endomorphism of M so that the following conditions are
satisfied

(M1) YM(1, x) = idM;

(M2) YM(a, x)u ∈ M((x)) for any a ∈ V and u ∈ M;

(M3) [D, YM(a, x)] = YM(da, x) = d
dx YM(a, x) for a ∈ V;

(M4) For any a, b ∈ V and u ∈ M, the modified Jacobi identity holds

x−1
0 δ

(
x1 − x2

x0

)
YM(a, x1)YM(b, x2)u− x−1

0 δ

(
−x2 + x1

x0

)
YM(b, x2)YM(a, x1)u

= x−1
2 δ

(
x1 − x0

x2

)
YM(Y(a, x0)b, x2)u.

In particular, if (V, Y, 1, d) is a vertex algebra, then (V, YV , d) is a module for itself if we set
YV ≡ Y.
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If (M1, Y1, D1) and (M2, Y2, D2) are two modules for a vertex algebra (V, Y, 1, d), a homomor-
phism of V-modules from M1 into M2 is a linear map f : M1 → M2 which is compatible with the
actions of Y1 and Y2 in the sense that

f (Y1(a, x)u) = Y2(a, x) f (u)

for each a ∈ V and u ∈ M1.

Now let (V, Y, 1, ω) be a vertex operator algebra. A weak module for the vertex operator
algebra V is a module for the vertex algebra (V, Y, 1, L(−1)). If (M1, Y1, D1) and (M2, Y2, D2) are
weak modules for V, a weak V-module morphism from M1 into M2 is a linear map f : M1 → M2

that is compatible with the action of Y in the sense that

f (an(v)) = an( f (v)) for each a ∈ V and v ∈ M1. (2.3.1)

The category of weak V-modules is denoted Weak(V).

There is a slightly stronger notion of a module which enjoys an N-grading that is compatible
with the Z-grading of V. In particular, a weak module (M, YM, D) is called a weak-admissible
module for the vertex operator algebra V if M carries an N-grading M =

⊕
n∈N M(n) such that

ak(M(j)) ⊂ M(j + n− k− 1) for homogeneous a ∈ V(n).

A morphism of two weak admissible V-modules M1 and M2 is a morphism of weak V-modules
f : M1 → M2. The category of weak-admissible V-modules is denoted Adm(V).

There is yet a stronger notion of a module where the grading of the module is compatible
with the eigenspaces for the vertex operator ω1 = L(0). More specifically, an ordinary module for
the vertex operator algebra V is a weak V-module M which carries a C-grading M = äλ∈C Mλ

such that

(OM1) The dimension dim Mλ is finite,

(OM2) For fixed λ, we have Mλ+n = 0 for n ∈ Z small enough,

(OM3) The eigenspaces for the operator L(0) = ω1 ∈ End M give M its grading, in the sense that

Mλ = {u ∈ M : L(0)u = λu}.

A morphism of ordinary modules is simply a morphism of weak modules. This implies in
particular that morphisms respect the C-gradings (see Exercise 2.3.3). The category of ordinary
modules for a vertex operator algebra V is denoted Ord(V).
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As an example of a trivial vertex algebra, consider the quadruple

E = (C, YE, 1, dE) (2.3.2)

where YE(·, x) : C → (End C)[[x, x−1]] is the unique linear map satisfying YE(1, x) = idC and
where dE : C → C is the zero map. Then the quadruple E so defined is a vertex algebra, albeit
a trivial one. Indeed, the axioms (VA1) through (VA4) are easily verified, and axiom (VA5) uses
the three-term delta function identity 2.2.2.

Moreover, we may consider the vertex algebra E to be a vertex operator algebra if we specify
the Virasoro vector to be ω = 0. The vector space C is then trivially graded, with the whole
vector space C lying in the weight zero eigenspace for L(0) = ω−1. The central charge of this
vertex operator algebra is trivial cE = 0.

At this point, we could give more examples of vertex operator algebras. However, to verify
that they indeed satisfy the axioms above, we would require more tools and a much more
extensive study. We direct the reader to [L96, LL, Ba13] for more discussion of the axioms of
vertex operator algebras and for some nontrivial examples.

Exercise 2.3.1. Let (V, Y, 1, ω) be a vertex operator algebra.

(a) Show that the vacuum vector is unique.

(b) Show that for each v ∈ V, we have v−11 = v.

(c) Show that the map Y(·, x) : V → (End V)[[x, x−1]] is injective.

Exercise 2.3.2. Show that for each vectors u and v in a vertex operator algebra V, we have

[Y(u, x1), Y(v, x2)] = Resx0 x−1
2 δ

(
x1 − x0

x2

)
Y(Y(u, x0)v, x2),

where Resx0(A) is the coefficient of x−1
0 in the element A and where [−,−] denotes the commu-

tator.

Exercise 2.3.3. Let (V, Y, 1, ω) be a vertex operator algebra. Let (M1, Y1) and (M2, Y2) be ordi-
nary modules for V and let f : M1 → M2 be a morphism of ordinary V-modules. Show that f
preserves the C-grading of M1 and M2.

2.4 Example: The space of one free boson

In this section, we give an example of a non-trivial vertex operator algebra, which, following for
instance [Ba13], we call the space of one free boson. This vertex operator algebra will be formulated
as a local system of vertex operators acting on some vector space (cf. [L96]).
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Recall that a vertex operator algebra is foremost a vector space V. In the case of one free
boson, we set our vector space to be

Vbos = C[a1, a2, . . .],

that is, the space of polynomials in an infinite number of formal commuting variables. Note
that, on the one hand, this space has the structure of a commutative C-algebra. We will show
that this space can also be endowed with the structure of a nontrivial vertex algebra.

Next, we are to select a linear map Ybos(·, x) : Vbos → (End Vbos)[[x, x−1]]. However, this is by
far the most complicated of the data from the quadruple (V, Y, 1bos, ωbos), so we save the task of
defining Ybos(·, x) for last.

We are also called to distinguish two vectors 1bos and ωbos. These vectors are supposed to
be homogeneous of weight zero and two respectively (in the Z-grading given by the operator
L(0) = ω1.) Selecting ωbos seems kind of circular, since a selection of ω determines L(0),
which determines a grading, but conversely, a selection of a Z-grading limits our selection of
homogeneous vectors of weight two. Nevertheless, we will choose to select a natural Z-grading
on Vbos first, before discussing how to form ω.

The space Vbos enjoys a natural Z-grading. Indeed, it would seem appropriate to declare
ak to be homogeneous of weight k, and more generally, to let the monomial ar1

i1
· · · ars

is
to be

homogeneous of weight ∑s
j=1 rjij. In this way, we obtain a Z-grading of the algebra Vbos.

The vector 1bos is supposed to be homogeneous of weight zero. By our grading above, this
means that 1bos is supposed to be some constant polynomial. It would seem natural to select the
particular constant polynomial given by 1 ∈ C so let us do that, and set 1bos = 1 ∈ Vbos.

Now the vector ωbos is supposed to be homogeneous of weight two in Vbos. Note that this
implies ωbos belongs to the subspace Ca2

1 ⊕Ca2. It turns out that ωbos = 1
2 a2

1 is a good choice.

It is finally time to determine the action of Ybos on our space Vbos. We will do this in steps.
The idea will be to determine the action of Ybos on the variables ak inductively and then on
the monomials using a sort of product rule which is called normal ordering. We then of course
extend the action linearly to our whole space Vbos.

To satisfy axiom (VA1), we set Ybos(1
bos, x) = 1. We then set Ybos(a1, x) = ∑n∈Z(a1)nx−n−1

where

(a1)n =


a−n n < 0
n ∂

∂an
n > 0

0 n = 0
.

The operator aj is to be understood as left multiplication by the formal variable aj in the com-
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mutative algebra structure of Vbos, which is clearly an endomorphism of Vbos. The operator ∂
∂aj

is the partial derivative endomorphism defined in Section 2.1.

We now define the action of Y(·, x) on ak for k > 1. Inductively, we set

Ybos(ak, x) =
1

(k− 1)!

(
∂

∂x

)k−1

Ybos(a1, x)

for k ≥ 2. If we write

Ybos(ak, x) = ∑
n∈Z

(ak)nx−n−1

then it is easy to see that each (ak)n is an endomorphism of Vbos.

To define our operator Ybos(·, x) on products of variables, we need to introduce the notion
of normal ordering, which is a type of product rule for Ybos. We do this for general u, v ∈ Vbos. If
u ∈ Vbos, we write

Y+
bos(u, x) = ∑

n<0
unx−n−1

Y−bos(u, x) = ∑
n≥0

unx−n−1

and we call Y+
bos(u, x) and Y−bos(u, x) the regular and singular parts of Ybos(u, x) respectively. We

then set
◦
◦Y(u, x1)Y(v, x2)

◦
◦ = Y+(u, x1)Y(v, x2) + Y(v, x2)Y−(u, x1)

and we call ◦◦Y(u, x1)Y(v, x2)◦◦ the normal-ordered product of Ybos(u, x1) and Ybos(v, x2).

Now if u, v ∈ Vbos, we set

Ybos(uv, x) = ◦
◦Ybos(u, x)Ybos(v, x)◦◦. (2.4.1)

Note that we are able to multiply u and v in the left hand side of (2.4.1) since Vbos also carries
the structure of a commutative C-algebra (recall Vbos = C[a1, a2, . . .]). Using (2.4.1), we are now
able to define Y(v, x) for any v ∈ Vbos.

The claim is that with these definitions the quadruple (Vbos, Ybos, 1bos, ωbos) acquires the struc-
ture of a vertex operator algebra. Of course, there are many things to show in order to prove
this claim, and we outline a few of the steps in the exercises. However, a major development in
the theory of vertex operator algebras was a simplification of the axioms down to a much more
manageable set of axioms (cf. [L96]). These axioms are also discussed in the exercises.

Exercise 2.4.1. Show that Vbos satisfies the truncation condition (VA4) for elements a of the form
a1, a2, . . .. Can you reason why the truncation condition holds for all a ∈ Vbos?
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Exercise 2.4.2. Show that the creation property (VA2) is satisfied for a of the form a1, a2, . . . in Vbos.
Can you reason why the creation property holds for all a ∈ Vbos?

Exercise 2.4.3. Set Ybos(ω
bos, x) = ∑n∈Z L(n)x−n−2.

(a) Find the operators L(n) : Vbos → Vbos for n = −1, 0, 1, 2, 3.

(b) Show that the operator L(0) grades the space Vbos in the sense that if a ∈ V(n), then
L(0)a = na.

(c) Given that L(2)ωbos = 1
2 cbos1

bos, calculate the central charge cbos for Vbos.

(d) One can show (cf. [L96]) that for the L(−1)-derivative property to hold on Vbos (given the
way we defined Ybos and ωbos), it suffices to show that

Ybos(L(−1)a1, x) =
d

dx
Ybos(a1, x).

Show that this sufficient condition holds.

Exercise 2.4.4. (a) Show that the commutator

[Ybos(a1, x1), Ybos(a2, x2)]

is nonzero in (End Vbos)[[x1, x−1
1 , x2, x−1

2 ]].

(b) One can show (cf. [L96]) that for the Jacobi identity to hold on Vbos (given the way we
defined Ybos), it suffices to show that there is an integer k so that

(x1 − x2)
k[Ybos(a1, x1), Ybos(a1, x2)] = 0.

Find such a k. We remark that this exercise shows that although the elements Ybos(a1, x1)

and Ybos(a1, x2) do not commute in (End Vbos)[[x1, x−1
1 , x2, x−1

2 ]], they do commute up to a
clearing of a formal pole.
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Chapter 3

Vertex operator algebras as a symmetric
monoidal category

3.1 Basic category theory

A category C consists of the following data:

• A set Obj(C) of objects;

• For each pair of objects X, Y ∈ Obj(C), a collection C(X, Y) of morphisms from X to Y;

• For objects X, Y, Z ∈ Obj(C), a function ◦ : C(Y, Z)× C(X, Y)→ C(X, Z), which assigns to
a pair of morphisms (g, f ) ∈ C(Y, Z)× C(X, Y) their composite morphism g ◦ f ∈ C(X, Z);

• For each object X ∈ Obj(C), an element idX ∈ C(X, X) called the identity morphism of X

subject to the following rules:

• Composition is associative: For objects W, X, Y, Z ∈ Obj(C), if f ∈ C(X, Y), g ∈ C(Y, Z), h ∈
C(Z, W), then (h ◦ g) ◦ f = h ◦ (g ◦ f );

• The unit laws are satisfied: If f ∈ C(X, Y), then idY ◦ f = f = f ◦ idX.

We typically denote the collection of morphisms of a category C by

Mor(C) =
⋃

X,Y∈C
C(X, Y).
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Let f : X → Y be a morphism in a category C. The morphism f is called an isomorphism if
there is another morphism f−1 : Y → X such that f ◦ f−1 = idY and f−1 ◦ f = idX. It is easily
shown that if such a morphism f−1 exists, then it is unique and called the inverse of f .

Let C and D be categories. A functor F from C into D is a map which assigns to each object
X ∈ Obj(C) an object F (X) ∈ Obj(D) and to each morphism f ∈ HomC(X, Y) a morphism
F ( f ) ∈ HomD(F (X),F (Y)) such that the following properties are satisfied:

• Compatibility with composition: F (g ◦ f ) = F (g) ◦ F ( f ) whenever g ◦ f is defined;

• Compatibility with identities: For each X ∈ Obj(C), we have F (idX) = idF (X).

If F and G are two functors from C into D, then a natural transformation from F into G is an
assignment

η : C −→ Mor(D)
X 7→ ηX ∈ D(F (X),G(X))

to each object X ∈ C a morphism ηX : F (X)→ G(X) such that the following property holds for
each pair of objects X and Y in C: for each morphism f ∈ C(X, Y), the diagram

F (X)
F ( f ) //

ηX

��

F (Y)
ηY

��
G(X)

G( f ) // G(Y)

commutes. If for each object X ∈ C, the morphism ηX is an isomorphism, then we say that η is
a natural isomorphism from F into G and the functors F and G are called naturally isomorphic.

Let C and D be two categories. We form a new category C ×D called the product category in
the following manner:

• The objects of C ×D are pairs (X, Y) where X is an object of C and Y is an object of D;

• A morphism from (X1, Y1) to (X2, Y2) is a pair ( f , g) where f ∈ C(X1, X2) and g ∈
D(Y1, Y2);

• The composition of C ×D is the composition induced by the point-wise composition com-
position from C and D:

( f2, g2) ◦ ( f1, g1) = ( f2 ◦ f1, g2 ◦ g1);

• For an object (X, Y) of C ×D, the corresponding identity morphism is (idX, idY).
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It is routine to check that this construction indeed defines a new category.

Let C1, C2 and D be categories and let C1 × C2 denote the product category of C1 and C2. A
bifunctor from C1 and C2 into D is a functor

F : C1 × C2 −→ D

from the product category C1 × C2 into D.

More generally, a multifunctor is a functor out of a multiproduct category into some other
category.

Exercise 3.1.1. Show that the product category construction indeed defines a new category.

3.2 Monoidal categories

For a category C with a bifunctor ⊗ : C × C → C, we define the following functors. For objects
X, Y, Z and morphisms f , g, h of C, we have:

• The identity functor I : C → C defined by

X 7→ X

f 7→ f ;

• The bifunctor ⊗op : C × C → C defined by

(X, Y) 7→ Y⊗ X

( f , g) 7→ g⊗ f ;

• The tri-functor A⊗L : (C × C)× C → C defined by

(X, Y, Z) 7→ (X⊗Y)⊗ Z

( f , g, h) 7→ ( f ⊗ g)⊗ h;

• The tri-functor A⊗R : C × (C × C)→ C defined by

(X, Y, Z) 7→ X⊗ (Y⊗ Z)

( f , g, h) 7→ f ⊗ (g⊗ h);
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• The functor L⊗X : C → C defined by

Y 7→ X⊗Y

f 7→ idX ⊗ f ;

• The functor R⊗X : C → C defined by

Y 7→ Y⊗ X

f 7→ f ⊗ idX .

A monoidal category is a six-tuple (C,⊗, E, α, λ, ρ) where C is a category, ⊗ : C × C → C is a
bifunctor, E is a distinguished object of C, and α, λ, ρ are natural isomorphisms of functors so
that the following conditions are satisfied:

(MC1) The map α is a natural isomorphism of A⊗L into A⊗R ;

(MC2) The map λ is a natural isomorphism of L⊗E into I ;

(MC3) The map ρ is a natural isomorphism of R⊗E into I ;

(MC4) For objects W, X, Y, Z of C, the following pentagon diagram commutes:

(W ⊗ X)⊗ (Y⊗ Z)
αW,X,Y⊗Z

**
((W ⊗ X)⊗Y)⊗ Z

αW⊗X,Y,Z
44

αW,X,Y⊗idZ
��

W ⊗ (X⊗ (Y⊗ Z))

idW ⊗αX,Y,Z
��

(W ⊗ (X⊗Y))⊗ Z
αW,X⊗Y,Z //W ⊗ ((X⊗Y)⊗ Z)

(MC5) For objects X, Y in C, the following triangle diagram commutes:

(X⊗ E)⊗Y
αX,E,Y //

ρX⊗idY ((

X⊗ (E⊗Y)

idX ⊗λY
��

X⊗Y

A braided monoidal category is a seven-tuple (C,⊗, E, α, λ, ρ, β) where C is a category, ⊗ :
C × C → C is a bifunctor, E is a distinguished object of C, and α, λ, ρ, β are natural isomorphisms
of functors so that the following conditions are satisfied:

(BCM1) The six-tuple (C,⊗, E, α, λ, ρ) is a monoidal category;
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(BCM2) The map β is a natural isomorphism (called the braiding) of ⊗ into ⊗op;

(BCM3) For objects X, Y, Z of C, the following first hexagon diagram commutes:

X⊗ (Y⊗ Z)
βX,Y⊗Z

((
(X⊗Y)⊗ Z

αX,Y,Z
66

βX,Y⊗idZ
��

(Y⊗ Z)⊗ X

αY,Z,X

��
(Y⊗ X)⊗ Z

αY,X,Z ((

Y⊗ (Z⊗ X)

Y⊗ (X⊗ Z)
idY ⊗βX,Z

66

(BCM4) For objects X, Y, Z of C, the following second hexagon diagram commutes:

(X⊗Y)⊗ Z
βX⊗Y,Z

((
X⊗ (Y⊗ Z)

α−1
X,Y,Z

66

idX ⊗βY,Z
��

Z⊗ (X⊗Y)

α−1
Z,X,Y
��

X⊗ (Z⊗Y)

α−1
X,Z,Y ((

(Z⊗ X)⊗Y

(X⊗ Z)⊗Y
βX,Z⊗idY

66

A symmetric monoidal category is a seven-tuple (C,⊗, E, α, λ, ρ, β) where C is a category, ⊗ :
C × C → C is a bifunctor, E is a distinguished object of C, and α, λ, ρ, β are natural isomorphisms
of functors so that the following conditions are satisfied:

(SMC1) The seven-tuple (C,⊗, E, α, λ, ρ, β) is a braided monoidal category;

(SMC2) The braiding isomorphism β satisfies the property

βY,X ◦ βX,Y = idX⊗Y .

3.3 Monoidal functors

Let (C,⊗C , EC , αC , λC , ρC) and (D,⊗D, ED, αD, λD, ρD) be monoidal categories. A functor F :
C → D is called lax monoidal if there is a morphism ε ∈ HomD(ED,F (EC)) and a natural
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transformation

φ : Obj(C)×Obj(C) −→ Mor(D)
(X, Y) 7→ φX,Y ∈ HomD(F (X)⊗D F (Y),F (X⊗C Y))

such that the following conditions are satisfied for objects X, Y, Z of C:

(LM1) Associativity holds:

F (X)⊗F (Y)⊗F (Z)
idF (X) ⊗φY,Z //

φX,Y⊗idF (Z)
��

F (X)⊗F (Y⊗ Z)

φX,Y⊗Z
��

F (X⊗Y)⊗F (Z)
φX⊗Y,Z // F(X⊗Y⊗ Z)

(LM2) We have

ED ⊗F (X)
ε⊗idF (X) //

λDF (X)
��

F (ED)⊗F (X)

φEC ,X

��
F (X) F (EC ⊗ X)

F (λCX)oo

(LM3) We have

F (X)⊗ ED
idF (X) ⊗ε

//

ρDF (X)
��

F (X)⊗F (ED)

φX,EC
��

F (X) F (X⊗ EC)
F (ρCX)oo

A lax monoidal functor F : C → D is called a braided monoidal functor if for each pair of
objects X, Y in C, the following diagram commutes:

F (X)⊗F (Y)
βF (X),F (Y) //

φX,Y
��

F (Y)⊗F (X)

φY,X
��

F (X⊗Y)
F (βX,Y) // F (Y⊗ X)

(BMF)

If moreover, the categories C and D are symmetric monoidal categories, then F is called a
symmetric monoidal functor.
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3.4 Ring modules

Let R be a ring with identity 1R. The category ModR has as its objects left R-modules and as its
morphisms module homomorphisms. This category comes equipped with a bifunctor ⊗ given
by the tensor product, which we describe now.

Let us first recall that a (left) R-module is an additive group M together with an action

R×M −→ M

(r, m) 7→ r ·m

of R on M which is compatible with the structures on M and R in the sense that

(i) 1R ·m = m for each m ∈ M;

(ii) (r + s) ·m = r ·m + s ·m for each r, s ∈ R and m ∈ M;

(iii) (rs) ·m = r · s ·m for each r, s ∈ R and m ∈ M;

(iv) r · (m + m′) = r ·m + r ·m′ for each r ∈ R and m, m′ ∈ M.

If M and N are two R-modules, then an R-module homomorphism from M into N is a group
homomorphism f : M→ N which is compatible with the action of R in the sense that

r · f (m) = f (r ·m)

for each r ∈ R and m ∈ M.

If M and N are two R-modules, then we may form another R-module M×N called the direct
sum of M in N in the following manner. We let M× N denote the direct product of M and N (as
groups) and we let R act on M× N by setting

R× (M× N) −→ M× N (3.4.1)

(r, (m, n)) 7→ (r ·m, r · n). (3.4.2)

It is routine to show that M× N is an R-module under this action.

Let M, N, P be R-modules. A bilinear map φ : M× N → P is a function such that

φ(r ·m + m′, n) = r · φ(m, n) + φ(m′, n)

φ(m, r · n + n′) = r · φ(m, n) + φ(m, n′)

for each r ∈ R, each m, m′ ∈ M and each n, n′ ∈ N.
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Let M and N be two left R-modules. Then a tensor product of M and N is pair (M⊗R N, φ)

where M ⊗R N is a left R-module and φ : M × N → M ⊗R N is a bilinear map such that the
following universal property holds: For each bilinear map B : M× N → P into a left R-module P,
there is a unique linear map b : M⊗R N → P such that b ◦ φ = B.

The universal property actually guarantees the if a tensor product exists, then it is unique
up to isomorphism. That is, we have the following result, whose proof we leave as an exercise.

Lemma 3.4.1. Let M and N be two R-modules. If (T, φT) and (T′, φT′) are two tensor products of M
and N, then T and T′ are isomorphic as R-modules.

For a set X, we let FR(X) denote the free R-module generated by X. This means that FR(X)

is the set of all symbols of the form

r1x1 + · · ·+ rkxk

for some k ≥ 1, for ri ∈ R and xi ∈ X. The set FR(X) is an additive group by the rule

∑
i∈I

rixi + ∑
i∈I

sixi = ∑
i∈I

(ri + si)xi.

The action of R on FR(X) is defined by

r · (r1x1 + · · ·+ rkxk) = (rr1)x1 + · · ·+ (rrk)xk.

It is a simple exercise to show that FR(X) is indeed an R-module.

If X is a set and FR(X) denotes the free R-module generated by X, then there is a natural
inclusion map ι : X → FR(X) defined by sending xi 7→ 1Rxi.

We now construct a tensor product of R-modules. We omit, however, a proof of the theorem
and refer the reader to [DF] for further discussion.

Theorem 3.4.2. Let M and N be two R-modules. Let FR(M× N) denote the free module generated by
the cartesian product M× N and let ι : M× N → FR(M× N) denote the natural inclusion map. Let
I denote the submodule of FR(M× N) generated by all elements of the form

(m + m′, n)− (m, n)− (m′, n)

(m, n + n′)− (m, n)− (m, n′)

r · (m, n)− (r ·m, n)

r · (m, n)− (m, r · n),

and let π : FR(M× N)→ FR(M× N)/I denote the projection map. Let M⊗R N denote the quotient
module FR(M× N)/I and let φ : M× N → M⊗R N denote the composition φ = π ◦ ι. Then the pair
(M⊗R N, φ) is a tensor product of M and N.
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The construction M ⊗R N is usually called the tensor product of M and N, but it is really
only unique up to isomorphism.

Note that the construction ⊗R above describes a mapping of objects needed to define a
bifunctor

⊗R : ModR ×ModR −→ModR.

We now extend ⊗R to a bifunctor by describing its action on morphisms.

If f1 : M1 → N1 and f2 : M2 → N2 are R-module homomorphisms, then we may form a
bilinear map f1# f2 : M1 ×M2 → N1 ⊗R N2 by setting

( f1# f2)(m1, m2) = f1(m1)⊗ f2(m2) (3.4.3)

for (m1, m2) ∈ M1 ×M2. By the universal property, there is a unique linear map

f1 ⊗ f2 : M1 ⊗R M2 → N1 ⊗R N2

such that the following diagram commutes

N1 × N2

φ

��
M1 ⊗R M2 f1⊗ f2

//

f1# f2
77

N1 ⊗R N2

The bifunctor⊗R then assigns to each pair of morphisms f1 and f2, the tensor product morphism
f1 ⊗ f2. This completes the discussion of the bifunctor ⊗R.

Exercise 3.4.3. Show that the direct sum M× N is indeed an R-module with the action defined
in (3.4.1).

Exercise 3.4.4. Prove Lemma 3.4.1.

Exercise 3.4.5. Show that the free R-module FR(X) generated by a set X is indeed an R-module.

Exercise 3.4.6. Show that the map defined in (3.4.3) is a bilinear map of R-modules.

Exercise 3.4.7. Show that ⊗R indeed defines a bifunctor

⊗R : ModR ×ModR −→ModR.

3.5 Associative algebras

The category VectF of F-vector spaces has as its objects F-modules over a field F and as its
morphisms module homomorphisms. The tensor product construction endows this category
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with a bifunctor
⊗F : VectF ×VectF −→ VectF

In the special case where our field is C, we omit some notation and simply denote the
category of C-vector spaces by Vect and the corresponding bifunctor by ⊗. It is well-known that
the bifunctor ⊗ endows the category Vect with the structure of a symmetric monoidal category,
and we leave this as an exercise.

We use the term associative algebra to refer to a ring A with identity 1 that is also a vector
space over C such that the action of C on A is bilinear in the sense that

r · (xy) = (r · x)y = x(r · y)

for all r ∈ C and x, y ∈ A. For associative algebras A1 and A2, a map φ : A1 → A2 is called an
associative algebra homomorphism if

(i) φ is a homomorphism of rings,

(ii) φ is a homomorphism of C-modules, and

(iii) φ(1A1) = 1A2 .

The category Alg has as its objects associative algebras and as its morphisms homomorphisms
between associative algebras.

The tensor product construction restricts to a construction on associative algebras. In partic-
ular, if A1 and A2 are associative algebras, then we may form the tensor product vector space
A1 ⊗ A2. We already showed that this space comes equipped with a C-module structure. As a
vector space, it also comes equipped with an additive structure, and a multiplicative structure
is given by

(a1 ⊗ a2)(b1 ⊗ b2) := (a1b1)⊗ (a2b2). (3.5.1)

It is left as an exercise to show that with these definitions the vector space A1 ⊗ A2 acquires
the structure of an associative algebra with unit 1 = 1A1 ⊗ 1A2 . Moreover, it can easily be seen
that the tensor product morphism f1 ⊗ f2 is a homomorphism of associative algebras for any
homomorphisms f1 and f2. In this way, we obtain a bifunctor

⊗ : Alg×Alg −→ Alg.

It is not too difficult to see that the category Alg together with the bifunctor ⊗ enjoys the
structure of a symmetric monoidal category. (This is, in some ways, a consequence of the fact
that the more general category Vect is symmetric monoidal.)
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A module for an associative algebra A is a pair (M, φ) where M is a vector space and

φ : A −→ End M

a 7→ φa

is an associative algebra homomorphism. If (M1, φ1) and (M2, φ2) are A-modules, an A-module
homomorphism from M1 into M2 is a linear map f : M1 → M2 which is compatible with the
action of A:

f ((φ1)a(m)) = (φ2)a( f (m)) for each a ∈ A and each m ∈ M1.

The category of A-modules, denoted Mod(A), has as its objects A-modules and as its mor-
phisms A-module homomorphisms.

Lemma 3.5.1. Let f : A1 → A2 be a homomorphism of associative algebras and let (M, φ) be a module
for A2. Then (M, φ ◦ f ) is a module for A1.

Proof. This is because the composition of algebra homomorphisms is a homomorphism. �

Corollary 3.5.2. If the algebras A1 and A2 are isomorphic, then the categories Mod(A1) and Mod(A2)

are isomorphic.

Proof. Let ρ : A1 → A2 be an isomorphism of associative algebras. We define a functor ρ∗ :
Mod(A2) → Mod(A1) in the following manner. To each module (M, φ) for A2, the functor ρ∗

assigns the module (M, φ ◦ ρ) for A1. To each module homomorphism g ∈ HomMod(A2)(M, N),
the functor ρ∗ assigns the module homomorphism g ◦ ρ ∈ HomMod(A1)(ρ

∗(M), ρ∗(N)). One can
check that the above assignment indeed defines a functor ρ∗. Moreover, the inverse of ρ∗ is
(ρ−1)∗. Thus we obtain an isomorphism ρ∗ : Mod(A2)→ Mod(A1). �

Exercise 3.5.3. Show that the category Vect together with the bifunctor ⊗ enjoys the structure
of a symmetric monoidal category. More precisely, find a distinguished vector space E, natu-
ral isomorphisms α, ρ, λ and a braiding β, such that the seven tuple (Vect,⊗, E, α, λ, ρ, β) is a
braided monoidal category and β satisfies the property in (SMC2).

Exercise 3.5.4. Show that with the multiplication as defined in (3.5.1) the space A1⊗ A2 acquires
the structure of an associative algebra.

Exercise 3.5.5. If f1 : A1 → B1 and f2 : A2 → B2 are homomorphisms of associative algebras,
show that the tensor product vector space homomorphism f1 ⊗ f2 : A1 ⊗ A2 → B1 ⊗ B2 is
actually a homomorphism of associative algebras.

Exercise 3.5.6. Show that the category Alg together with the bifunctor ⊗ enjoys the structure
of a symmetric monoidal category. More precisely, find a distinguished associative algebra E,
natural isomorphisms α, ρ, λ and a braiding β, such that the seven tuple (Alg,⊗, E, α, λ, ρ, β) is
a braided monoidal category and β satisfies the property in (SMC2).
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3.6 Tensor product vertex operator algebras

The goal of this section is to show that the tensor product construction for vertex operator
algebras endows the category of vertex operator algebras with a symmetric monoidal structure.

Suppose that (V1, Y1, 11, d1) and (V2, Y2, 12, d2) are vertex algebras. The tensor product vertex
algebra of V1 and V2 is the quadruple (V1 ⊗V2, Y, 1, d) where

(TPVA1) V1 ⊗V2 is the tensor product of the vector spaces V1 and V2;

(TPVA2) The map

Y(·, x) : V1 ⊗V2 −→ End(V1 ⊗V2)[[x, x−1]]

is the unique linear map satisfying

Y(v1 ⊗ v2, x) = Y1(v1, x)⊗Y2(v2, x)

for v1 ∈ V1 and v2 ∈ V2;

(TPVA3) 1 = 11 ⊗ 12;

(TPVA4) d = d1 ⊗ idV2 + idV1 ⊗d2.

It can be shown (see e.g. [LL]) that the quadruple (V1 ⊗ V2, Y, 1, d) indeed defines a vertex
algebra.

If (V1, Y1, 11, ω1) and (V2, Y2, 12, ω2) are vertex operator algebras, then the above construction
gives a tensor product vertex algebra (V1 ⊗ V2, Y, 1, d) where d = ω1

0 ⊗ idV2 + idV1 ⊗ω2
0. More-

over, this vertex algebra carries the structure of a vertex operator algebra with Virasoro vector
given by

ω = ω1 ⊗ 12 + 11 ⊗ω2.

Furthermore, if f1 : V1 →W1 and f2 : V2 →W2 are morphisms of vertex operator algebras, then
the vector space morphism f1 ⊗ f2 : V1 ⊗V2 →W1 ⊗W2 is a vertex operator algebra morphism.

In this way the tensor product construction endows the category VOA of vertex operator
algebras with a bifunctor

⊗ : VOA×VOA −→ VOA.

Note that in particular, if V1 is a vertex operator algebra of central charge c1 and V2 is a vertex
operator algebra of central charge c2, then the tensor product V1⊗V2 is a vertex operator algebra
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of central charge c1 + c2. This implies that ⊗ restricts to a bifunctor

⊗ : VOA(c1)×VOA(c2) −→ VOA(c1 + c2).

However, for the purposes of these notes, we often consider ⊗ as a bifunctor for the more
general category VOA of vertex operator algebras.

Lemma 3.6.1. Let (V, Y, 1, ω) be a vertex operator algebra and let E = (C, YE, 1, 0) be the vertex
operator algebra of (2.3.2). Then the linear maps defined by

λV : C⊗V −→ V

k⊗ v 7→ kv

and

ρV : V ⊗C −→ V

v⊗ k 7→ kv

are isomorphisms of vertex operator algebras.

Proof. It is clear that conditions (Hom2) and (Hom3) are satisfied for both λV and ρV . We prove
condition (Hom1) for simple tensors u = k⊗ v for the map λV . The case for ρV is similar.

By the vacuum property (VA1), we have

(k⊗ v)n = k ∑
m∈Z

1m ⊗ vn−m−1 = k⊗ vn.

If v1 ∈ C and v2 ∈ V, then

λV((k⊗ v)n(v1 ⊗ v2)) = λV((k⊗ vn)(v1 ⊗ v2))

= λV(kv1 ⊗ vn(v2))

= (kv)n(v1v2)

= (λV(k⊗ v))n(λV(v1 ⊗ v2)),

as desired.

Finally, it is clear that the maps λV and ρV are bijective maps, and hence, they are isomor-
phisms of vertex operator algebras. �

Corollary 3.6.2. The functors L⊗E andR⊗E are naturally isomorphic to the identity functor I : VOA→
VOA.

Proof. The natural isomorphisms are given by λ and ρ respectively. �
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Let V1, V2, V3 be vertex operator algebras. By the universal mapping property, the bilinear
map

AV1,V2,V3 : (V1 ⊗V2)×V3 −→ V1 ⊗ (V2 ⊗V3)

(v1 ⊗ v2, v3) 7→ v1 ⊗ (v2 ⊗ v3)

induces a well-defined linear map

αV1,V2,V3 : (V1 ⊗V2)⊗V3 −→ V1 ⊗ (V2 ⊗V3)

(v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3).

It is routine to check that αV1,V2,V3 is an isomorphism of vector spaces (e.g. by constructing an
inverse). And moreover, we have the following stronger result, which we leave as a simple
exercise.

Lemma 3.6.3. The map αV1,V2,V3 is an isomorphism of vertex operator algebras.

Corollary 3.6.4. The functors A⊗L and A⊗R are naturally isomorphic.

Proof. The natural isomorphism is given by α. �

Corollary 3.6.5. The six-tuple (VOA,⊗, E, α, λ, ρ) is a monoidal category.

Proof. We have shown axioms (MC1) through (MC3). It is a well-known fact that the pentagon di-
agram (MC4) and triangle diagram (MC5) commute for the category of Z-graded vector spaces
equipped with the graded tensor product, and hence we obtain the result. �

Let (V1, Y1, 11, ω1) and (V2, Y2, 12, ω2) be vertex operator algebras. By the universal mapping
property, the bilinear map

BV1,V2 : V1 ⊕V2 −→ V2 ⊗V1

(v1, v2) 7→ v2 ⊗ v1

induces a well-defined linear map

βV1,V2 : V1 ⊗V2 −→ V2 ⊗V1

v1 ⊗ v2 7→ v2 ⊗ v1.

Lemma 3.6.6. The map βV1,V2 : V1 ⊗V2 → V2 ⊗V1 is an isomorphism of vertex operator algebras.

Proof. It is clear that conditions (Hom2) and (Hom3) are satisfied. We prove condition (Hom1)
for simple tensors u = u1 ⊗ u2 ∈ V1 ⊗V2.
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Let u1 ∈ V1 and u2 ∈ V2. Observe that

(u1 ⊗ u2)k = ∑
m∈Z

u1
m ⊗ u2

k−m−1.

If v1 ∈ V1 and v2 ∈ V2, then

βV1,V2

(
(u1 ⊗ u2)k(v1 ⊗ v2)

)
= βV1,V2

(
∑

m∈Z

(u1
m ⊗ u2

k−m−1)(v
1 ⊗ v2)

)
= ∑

m∈Z

βV1,V2(u
1
m(v

1)⊗ u2
k−m−1(v

2))

= ∑
m∈Z

u2
k−m−1(v

2)⊗ u1
m(v

1)

= (u2 ⊗ u1)k(v2 ⊗ v1)

= (βV1,V2(u
2 ⊗ u1))k(βV1,V2(v

1 ⊗ v2)),

as desired.

The inverse of βV1,V2 is βV2,V1 . �

Corollary 3.6.7. The bifunctors ⊗ and ⊗op are naturally isomorphic.

Proof. The isomorphism is given by β. �

Corollary 3.6.8. The seven-tuple (VOA,⊗, E, α, λ, ρ, β) is a symmetric monoidal category.

Proof. The axioms (BCM1) are stated in Corollary 3.6.5 and the axiom (BCM2) is stated in
Corollary 3.6.7. It is well-known that the first (BCM3) and second (BCM4) hexagon diagrams
commute for the category of Z-graded vector spaces equipped with the graded tensor product,
and thus we see that the seven-tuple (VOA,⊗, E, α, λ, ρ, β) is a braided monoidal category. The
fact that the inverse of βV1,V2 is βV2,V1 shows that, in fact, the seven-tuple (VOA,⊗, E, α, λ, ρ, β)

is a symmetric monoidal category. �

Exercise 3.6.9. Show that if V1 is a vertex operator algebra of central charge c1 and V2 is a vertex
operator algebra of central charge c2, then the central charge c of the tensor product V1 ⊗ V2 is
c = c1 + c2.

Exercise 3.6.10. Show that the map

αV1,V2,V3 : (V1 ⊗V2)⊗V3 −→ V1 ⊗ (V2 ⊗V3)

(v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3)

is an isomorphism of vertex operator algebras.
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Chapter 4

Zhu’s algebra

Following [Z], we construct a functor Λ from the category VOA of vertex operator algebras to
the category Alg of associative C-algebras.

4.1 Construction of the functor

To each vertex operator algebra V, the map Λ assigns an associative algebra Λ(V) formed in
the following way. For any a, b ∈ V with a homogeneous, let a ◦ b denote the element

a ◦ b = Resz

(
(1 + z)wt(a)

z2 Y(a, z)b

)
∈ V.

Let O(V) denote the subspace of V spanned by all elements of the form a ◦ b for some a, b ∈ V
with a homogeneous. Let Λ(V) denote the quotient space V/O(V). For a ∈ V, we let [a] denote
the equivalence class of a in Λ(V).

For a, b ∈ V with a homogeneous, let a ∗ b denote the element

a ∗ b = Resz

(
(1 + z)wt(a)

z
Y(a, z)b

)
∈ V.

The map ∗ defines a bilinear map from V×V into V. One can show that O(V) is an ideal under
the operation ∗ (cf. [Z]), and hence Λ(V) acquires a well-defined induced bilinear map:

[a] ∗ [b] := [a ∗ b],

which we still denote by ∗. It is shown in [Z], that [1] becomes a unit for Λ(V) under this
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multiplicative structure. It is also shown that the multiplication is associative.

To a homomorphism f : V → W of vertex operator algebras V and W, the map Λ assigns a
map of associative algebras fΛ : Λ(V)→ Λ(W) defined in the following manner:

fΛ([v]) = [ f (v)] for each v ∈ V.

Proposition 4.1.1. For any homomorphism f : V → W of vertex operator algebras V and W, the
induced map fΛ : Λ(V)→ Λ(W) is a well-defined homomorphism of associative algebras.

Proof. We first show that the map fΛ is well-defined. Let v, v′ ∈ V, and suppose that v′ = v + w
for some w ∈ O(V). Then w is of the form

w = Resz

(
(1 + z)wt(a)

z2 Y(a, z)b

)

for some a, b ∈ V. Since f is a homomorphism of vertex operator algebras, it follows that

f (v + w) = f (v) + f (w)

= f (v) + f

(
Resz

(
(1 + z)wt(a)

z2 Y(a, z)b

))

= f (v) + Resz

(
(1 + z)wt( f (a))

z2 Y( f (a), z) f (b)

)
= f (v) + f (a) ◦ f (b).

This shows that f (v′) ∈ [ f (v)] as desired.

To see that fΛ is a homomorphism of associative algebras, first note that

fΛ([1V ]) = [ f (1V)] = [1W ].

Moreover, for any a, b ∈ V, we have

fΛ([a] ∗ [b]) = fΛ([a ∗ b])

= [ f (a ∗ b)]

=

[
f

(
Resz

(
(1 + z)wt(a)

z
Y(a, z)b

))]

=

[
Resz

(
(1 + z)wt( f (a))

z
Y( f (a), z) f (b)

)]
= [ f (a) ∗ f (b)]

= [ f (a)] ∗ [ f (b)]
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= fΛ([a]) ∗ fΛ([b]),

as desired. �

Corollary 4.1.2. The map Λ : VOA→ Alg is a functor. �

4.2 Symmetric monoidal properties

A natural question is to ask how the functor Λ behaves under the tensor product structure. We
will show, perhaps unsurprisingly, that Λ is compatible with the tensor product structure.

Lemma 4.2.1. Let V and W be vertex operator algebras. If a belongs to O(V) and b is any vector in W,
then the element a⊗ b belongs to O(V ⊗W).

Proof. Let v, v′ ∈ V and w, w′ ∈W. Recall that

v ◦ v′ = Resz

(
(1 + z)wt(v)

z2 Y(v, z)v′
)

= ∑
n∈N

(
wt(v)

n

)
vn−2(v′).

Observe that

v⊗ w ◦ v′ ⊗ w′

= Resz

(
∑

n∈N

∑
m∈Z

∑
k∈Z

(
wt(v⊗ w)

n

)
vm(v′)⊗ wk(w′)zn−m−k−4

)
. (4.2.1)

Taking w = 1 in (4.2.1), we obtain

(v⊗ 1) ◦ (v′ ⊗ w)

= ∑
n∈N

(
wt(v)

n

)
vn−2(v′)⊗ w′

= (v ◦ v′)⊗ w.

Since v and v′ are arbitrary, this proves the result. �

Theorem 4.2.2. Let V and W be vertex operator algebras. Define a map

ΦV,W : Λ(V)×Λ(W)→ Λ(V ⊗W)

([v], [w]) 7→ [v⊗ w].
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Then ΦV,W is a well-defined bilinear map of vector spaces.

Proof. We first show that ΦV,W is well-defined. Let v ∈ V and w ∈W and suppose that v′ = v+ a
for some a ∈ O(V) and w′ = w + b for some b ∈ O(W). Then observe that

v′ ⊗ w′ = (v + a)⊗ (w + b)

= v⊗ w + v⊗ b + a⊗ w + a⊗ b.

By the Lemma 4.2.1, the terms v⊗ b, a⊗w and a⊗ b all belong to O(V ⊗W). Therefore, v′ ⊗w′

belongs to [v⊗ w] as desired.

To see that the map is bilinear, observe that if c ∈ C, then

ΦV,W(c[v] + [v′], [w]) = ΦV,W([cv + v′], [w])

= [(cv + v′)⊗ w]

= [c · (v⊗ w) + v′ ⊗ w]

= c · [v⊗ w] + [v′ ⊗ w]

= c ·ΦV,W([v], [w]) + ΦV,W([v′], [w]).

Showing linearity in the second slot is similar. �

By the universal mapping property, we obtain a well-defined linear map of vector spaces
described by

φV,W : Λ(V)⊗Λ(W)→ Λ(V ⊗W)

[v]⊗ [w] 7→ [v⊗ w].

We now show that φV,W is a homomorphism of associative algebras.

Proposition 4.2.3. The map φV,W : Λ(V)⊗ Λ(W) → Λ(V ⊗W) is a homomorphism of associative
algebras.

Proof. For any v, v′ ∈ V and w, w′ ∈W, we have

φV,W(([v]⊗ [w]) ∗ ([v′]⊗ [w′])) = φV,W(([v] ∗ [v′])⊗ ([w] ∗ [w′]))
= φV,W([v ∗ v′]⊗ [w ∗ w′])

= [(v ∗ v′)⊗ (w ∗ w′)]

= [(v⊗ w) ∗ (v′ ⊗ w′)]

= [v⊗ w] ∗ [v′ ⊗ w′]

= φV,W([v]⊗ [w]) ∗ φV,W([v′]⊗ [w′]),

as desired. �
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A proof of the following lemma can be found in [Z].

Lemma 4.2.4. Let v, v′ be elements of a vertex operator algebra V. For n ∈ Z, let v ◦ (znv′) denote the
element

v ◦ (znv′) = Resz

(
(1 + z)wt(v)

z2−n Y(v, z)v′
)

.

Then for each k ∈N, the element v ◦ (z−kv′) belongs to O(V). �

Lemma 4.2.5. Let V be a vertex operator algebra and let v, v′ ∈ V. Let

v(m, k)(v′) = ∑
n∈N

(
wt(v)

n

)
vn+m−k−3(v′).

Then for each m ∈N and k ≥ m− 1, the element v(m, k)(v′) belongs to O(V).

Proof. Fix m ∈N and k ≥ m− 1. By Lemma 4.2.4, the sum

∑
n∈N

(
wt(v)

n

)
vm+n−k−3(v′) = v ◦ (zm−k+1v′)

belongs to O(V). �

Lemma 4.2.6. For vertex operator algebras V and W, the equality

O(V ⊗W) = O(V)⊗W + V ⊗O(W)

holds.

Proof. Recall that O(V) ⊗W ⊂ O(V ⊗W) and V ⊗O(W) ⊂ O(V ⊗W) by Lemma 4.2.1. It
follows that the sum of subspaces O(V)⊗W + V ⊗O(W) is a subset of O(V ⊗W).

Suppose that a ∈ O(V ⊗W). Then there are elements v, v′ ∈ V and w, w′ ∈W such that

a = (v⊗ w) ◦ (v′ ⊗ w′)

= Resz

(
(1 + z)wt(v⊗w)

z2 Y(v⊗ w, z)(v′ ⊗ w′)

)
= Resz

(
z−2(1 + z)wt(v)Y(v, z)v′ ⊗ (1 + z)wt(w)Y(w, z)w′

)
= Resz

(
∑

m,n∈N

∑
k,l∈Z

(
wt(v)

n

)(
wt(w)

m

)
vl(v′)⊗ wk(w′)zn+m−k−l−4

)
.

Let

v = ∑
m∈N

(
wt(w)

m

)(
∑

k≥m−1
v(m, k)(v′)⊗ wk(w′)

)
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w = ∑
n∈N

(
wt(v)

n

)(
∑

l≥n−1
vl(v′)⊗ w(n, l)(w′)

)
.

It is not too difficult to verify that
a = v+w.

Moreover, by Lemma 4.2.5, the element v belongs to O(V)⊗W and the element w belongs to
V ⊗O(W). �

Theorem 4.2.7. The map φV,W : Λ(V) ⊗ Λ(W) → Λ(V ⊗W) is an isomorphism of associative
algebras.

Proof. It is clear that φV,W is surjective, so it remains only to show that φV,W is injective.

Suppose that a ∈ V ⊗W belongs to O(V ⊗W). Then Lemma 4.2.6 shows that a is of the
form

a = ∑
i

v′(i) ⊗ w(i) + ∑
j

v(j) ⊗ w′(j)

for some v′(i) ∈ O(V), w(i) ∈W, v(j) ∈ V, and w′(j) ∈ O(W). It follows that

∑
i
[v′(i)]⊗ [w(i)] + ∑

j
[v(j)]⊗ [w′(j)]

is a representative of the zero element of Λ(V)⊗ Λ(W). This shows that φV,W is injective, as
desired. �

Furthermore, we claim that the map φV,W is natural, in the following sense.

Proposition 4.2.8. Let f : V → V ′ and g : W → W ′ be homomorphisms of vertex operator algebras.
Then the following diagram commutes

Λ(V)⊗Λ(W)
φV,W //

fΛ⊗gΛ
��

Λ(V ⊗W)

( f⊗g)Λ
��

Λ(V ′)⊗Λ(W ′)
φV′ ,W′ // Λ(V ′ ⊗W ′).

Proof. Let v ∈ V and w ∈W. Then observe that

φV′,W ′(( fΛ ⊗ gΛ)([v]⊗ [w])) = φV′,W ′( fΛ([v])⊗ gΛ([w]))

= φV′,W ′([ f (v)]⊗ [g(w)])

= [ f (v)⊗ g(w)]

= [( f ⊗ g)(v⊗ w)]
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= ( f ⊗ g)Λ([v⊗ w])

= ( f ⊗ g)Λ(φV,W([v]⊗ [w])),

as desired. �

The proof of the following lemma is left as an exercise.

Lemma 4.2.9. Let ε : C→ Λ(E) denote the map of associative algebras described by

ε : C→ Λ(E)

k 7→ k[1]

where E is the vertex operator algebra of (2.3.2). Then ε is a homomorphism of associative algebras. �

Theorem 4.2.10. The functor Λ is a lax monoidal functor from the monoidal category (VOA,⊗, E, α, λ, ρ)

into (Alg,⊗, C, α, λ, ρ).

Proof. Let V, W, Z be vertex operator algebras and let v ∈ V, w ∈W, z ∈ Z. Observe that

φV⊗W,Z(φX,Y ⊗ idΛ(Z)([v]⊗ [w]⊗ [z]))

= φV⊗W,Z([v⊗ w]⊗ [z])

= [v⊗ w⊗ z]

= φV,W⊗Z([v]⊗ [w⊗ z])

= (φV,W⊗Z(idΛ(V)⊗φW,Z([v]⊗ [w]⊗ [z])),

showing that (LM1) holds.

Also note that

Λ(λV)(φE,V(ε⊗ idΛ(V)(k⊗ [v])))

= Λ(λV)(φE,V(k[1]⊗ [v]))

= Λ(λV)(φE,V([k]⊗ [v]))

= Λ(λV)([k⊗ v])

= [kv]

= k[v]

= λΛ(V)(k⊗ [v]),

showing that (LM2) holds. The proof of (LM3) is similar. �

Corollary 4.2.11. The functor Λ is symmetric monoidal.

Proof. It is routine to verify that the diagram (BMF) commutes. �
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Exercise 4.2.12. Prove Lemma 4.2.9.

4.3 Related module functors

For each vertex operator algebra V, the functor Λ induces a functor ΩV on the level of modules,
which has played an important role in the classification of vertex operator algebras and their
modules. The goal of this section is to construct this functor and outline some of its properties.
More specifically, for a vertex operator algebra (V, Y, 1, ω), we follow [Z] to construct a functor
ΩV : Weak(V) → Mod(Λ(V)) from the category of weak modules for V to the category of
modules for the associative algebra Λ(V).

Let (M, YM) be a weak module for a vertex operator algebra (V, Y, 1, ω). Recall that this
means that (M, YM, L(−1)) is a module for the vertex algebra (V, Y, 1, L(−1)). We then let
ΩV(M) denote the space of lowest weight vectors in M:

ΩV(M) = {v ∈ M : akv = 0 for homogeneous a and each k ≥ wt(a)}.

The space ΩV(M) acquires the structure of a module for the algebra Λ(V) in the following
manner.

Define a linear map µ′ : V → End M by setting µ′(a) = awt(a)−1 for homogeneous a ∈ V. In
[Z], it is shown that O(V) is a subset of the kernel of µ′, and hence µ′ descends to a well-defined
linear map µ : Λ(V) → End M on the quotient space, which is described by µ([a]) = awt(a)−1.
In [Z, L94], we find the following result.

Theorem 4.3.1. Let (M, YM) be a weak module for a vertex operator algebra (V, Y, 1, ω). Then the pair
(ΩV(M), µ) is a module for the associative algebra Λ(V).

Remark 4.3.2. In his original work [Z], Zhu defines the space ΩV(M) in a slightly different
manner. Indeed, he shows that for a weak-admissible module M =

⊕
n∈N Mn, the homogeneous

subspace M0 is a module for the associative algebra Λ(V). It was realized (e.g. by Li in his thesis
[L94]) that more generally, for any weak module M, the space ΩV(M) acquires the structure of
a Λ(V)-module. In particular, if M is a weak-admissible module, then the top homogeneous
weight space M0 will be a subspace of the space ΩV(M), and thus M0 is a submodule of the
Λ(V)-module ΩV(M). Thus, Zhu’s original formulation is extended by Li’s ΩV construction.

Moreover, we can let ΩV act on morphisms in the following manner.

Proposition 4.3.3. Let V be a vertex operator algebra and let M and N be two weak modules for V. Let
f : M → N be a weak V-module homomorphism. Then the image of the restriction fΩV = f |ΩV(M) is
contained within ΩV(N) and f is a well-defined Λ(V)-module homomorphism.
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Proof. We first show that the image of fΩV is a subset of ΩV(N). Let v be an element of ΩV(M).
Recall that this means that akv = 0 for each homogeneous a ∈ V and k ≥ wt(a). Using (2.3.1),
we see that

ak( f (v)) = f (ak(v)) = f (0) = 0

for each homogeneous a ∈ V and k ≥ wt(a). It follows that f (v) belongs to ΩV(N), as desired.

We now show that fΩV is an Λ(V)-module homomorphism. Let (ΩV(M), µM) and (ΩV(N), µN)

denote the respective modules for Λ(V). For v ∈ ΩV(M) and homogeneous a ∈ V, we compute

µN([a]) f (v) = awt(a)−1( f (v))

= f (awt(a)−1(v))

= f (µM([a])v),

showing that f is a Λ(V)-module homomorphism. �

Corollary 4.3.4. The assignment ΩV defines a functor from the category Weak(V) into the category
Mod(Λ(V)).

Proof. Exercise. �

Moreover, one can construct a functor ΓV : Mod(Λ(V)) → Adm(V) ⊂ Weak(V) which acts
as an inverse for the functor ΩV , when restricted to the category of weak-admissible V-modules.
In fact, there are at least two different formulations of this functor, namely Zhu’s original for-
mulation in [Z] and Li’s approach in [L94]. Zhu’s formulation uses recurrent formulas for
correlation functions on the sphere to define a representation of V whose action is completely
determined by the action of the algebra Λ(V) on the module ΩV(M). Li’s formulation involves
constructing the corresponding affine vertex algebra V̂ and letting a quotient of this (which car-
ries the structure of a Lie algebra) act on a module for the algebra Λ(V)Lie, thereby obtaining
an induced module from which we can obtain the desired V-module as a quotient module. A
complete discussion of either of these approaches, however, would take us too far from course.
Instead, let us summarize the main result below.

Theorem 4.3.5. The functors ΩV and ΓV induce a bijection

{simple Λ(V)-modules}/ ∼ ←→ {simple weak-admissible V-modules}/ ∼

between the isomorphism classes of simple objects in the categories of Λ(V)-modules and weak-admissible
V-modules.

This result is somewhat striking. It says that this Zhu’s algebra contains essentially all of the
information of the original vertex algebra V. Indeed there is a bijective correspondence between
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simple objects in certain module categories. Thus, this result has been particularly important
in the representation theory of vertex algebras (and more specifically vertex operator algebras)
because the corresponding Zhu’s algebra is an associative algebra, and the representation theory
of associative algebras is arguably better understood.

Exercise 4.3.6. Verify that ΩV indeed defines a functor.

45



Chapter 5

Geometric motivation

A field theory in physics usually refers to a physical theory about how certain fields (that is,
scalar fields) interact with one another and with matter. The term classical field theory is usually
reserved for those theories that are concerned with (i) the field of gravity or (ii) fields associated
with electrodynamics. These types of field theories have been well developed (both mathemati-
cally and physically).

The data of a classical field theory are a smooth manifold M, called the space of states, together
with a smooth action S : M → R. The physics given by this field theory consists of those fields
that are critical points for the action S, that is,

Crit(S) = {φ ∈ M : dS(φ) = 0}.

The set of critical points is also described as the space of solutions to the Euler-Lagrange equa-
tion(s) for the action S.

For example, in the case of gravity, there is a corresponding classical field theory that declares
which paths φ : [a, b] → X a particle of mass m may take if it were to travel from a point x ∈ X
in a manifold X to a point y ∈ X while being subject to Newton’s equation

m · φ̈(t) = F(φ(t)).

The space of states in this case is the set

Mx,y = {φ ∈ C∞([a, b], X) : φ(a) = x, φ(b) = y}

of paths in X with starting point x and terminal point y, and the action is

S(φ) =
∫ b

a
L(φ(t), φ̇(t))dt,
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a certain integration function. (Here, L denotes the Lagrangian function from mechanics.) The
allowable paths plucked out by Newton’s equation are realized as exactly those paths which are
critical points for the action S : Mx,y → R.

On the other hand, the term quantum field theory is reserved for an obvious setting, but lacks
an obvious rigorous (mathematical) definition. Indeed, a quantum field theory should be a field
theory that constructs models for particle (or subatomic particle) interactions subject to certain
quantum mechanical phenomena. However, how exactly one goes about constructing such a
theory has been difficult to pin down.

Nevertheless, there are many approaches to quantum field theories. Among them are

• Vertex operator algebras [H91, H97, K],

• Functorial field theories [S88, S89, A, HK04, HK05], and

• Factorization algebras [BD].

These approaches interact and intersect not only with each other, but with various other areas of
mathematics and physics. These interactions make these areas of study useful not only for their
implications in theoretical physics, but also for their potential to offer better understanding of
various other fields of mathematics.

Some approaches have even developed in tandem a method of quantization, by which one
can try to quantize a classical field theory to arrive at a given quantum field theory [AE]. The
hope is that a quantum field theory together with a quantization method will tie classical field
theories and quantum field theories together into one unified framework.

Even better than just a quantum field theory, however, would be a complete quantum field
theory, which would incorporate all known particles and forces. In particular, the force of major
concern is the gravitational force, and it has not found its way into any accepted quantum
field theory. Nevertheless, several theories, including string theories, have been postulated to
incorporate this elusive force.

A string theory is a particular type of quantum field theory which is based upon the principle
that particles are vibrating strings in space-time. As strings travel and interact in time, they are
assumed to sweep out smooth manifolds, called world sheets. The classic example of a world
sheet is that of a pair of pants, whereby two strings interact to form one. The world sheets are
usually given a certain sewing operation, which says how world sheets should be sewn together
at their tubes and which amounts to a geometric way of studying consecutive string interactions.
This geometric picture is the setting for several approaches to quantum field theories, including
those constructions given by Segal [S88, S89] and vertex operator algebras [H97], which are
actually construction of a specific piece (namely the genus-zero piece) of Segal’s construction.
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Such theories that work in this setting of two-dimensional manifolds together with sewing
are usually then simplified by asserting that all geometry be studied up to conformal equiva-
lence. That is, if a world sheet may be mapped onto another by an invertible function which is
angle preserving, then the two world sheets are assumed to be equivalent. One then shows that
the sewing operation on world sheets induces a well-defined sewing operation on conformal
equivalence classes of world sheets, and one studies the space of these equivalence classes of
world sheets together with this induced sewing operation. When such assumptions are made, it
is usually said that one is formulating a conformal field theory, or more precisely, a two-dimensional
conformal field theory.

Vertex operator algebras arise in this setting of two-dimensional conformal field theory. How-
ever, a vertex operator algebra is not a full conformal field theory in the usual sense. Instead, a
vertex operator algebra is an algebraic object realizing a basic sub-structure within the geometric
picture of world sheets and sewing, namely the sub-structure of genus-zero world sheets and
their sewing.

More precisely, following [H97], if our attention is restricted only to those equivalence classes
of world sheets of genus zero together with a sewing operation (which produces world sheets
of genus zero), then a classical uniformization theorem from complex analysis is relevant. A
version of this theorem, usually dubbed the Riemann Uniformization Theorem, states that any
compact, genus zero Riemann surface is conformally equivalent to the standard sphere Ĉ =

C ∪ {∞}, the one-point compactification of the complex numbers. This result gives a way
of translating the conformal data of a genus-zero world sheet with n incoming tubes and 1
outgoing tube to the data of a certain standard sphere with tubes of type (1, n)

(Ĉ; ∞, z1, . . . , zn−1, 0; (Br0
∞, ψ0), (Br1

z1
, ψ1), . . . , Brn

0 , ψn))

where the zi are distinct nonzero complex numbers, the Bri
zi are open neighborhoods of these

numbers, and the ψi : Bri
zi → C are local analytic injective maps vanishing at these punctures.

This translation of data implies that the moduli space K(n) of equivalence classes of spheres
with tubes of type (1, n) may be identified with a certain subset of infinite sequences of complex
numbers, whose coordinates give (i) the locations of the punctures and (ii) the germs of the
analytic injective maps vanishing at these punctures (by taking the coefficients of their Laurent
series expansions).

The sewing operation for world sheets induces a sewing operation for these moduli spaces

K(m)×K(n) −→ K(m + n− 1)

(S1,S2) 7→ S1 i∞0 S2,

which states how the 0-th tube of S2 may be sewn into the i-th tube of S1. The resulting sewn
sphere with tubes is realized as a solution to a certain sewing equation, which gives algebraic
relations on the two input sequences of complex numbers. One can show that not only does
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a formal algebraic solution to this equation exist, but also that it is unique and moreover that
it defines an analytic solution, in the sense that certain power series described by the result-
ing sequence of complex numbers converge in necessary neighborhoods of the complex plane.
Present in the formal solution to this equation is a certain series Γ which in some sense describes
the sewing structure.

A geometric vertex operator algebra is an algebraic-like object of vector space homomorphisms
realizing the sewing structure of the above moduli spaces. The homomorphisms at play are
those of the form

V ⊗ · · · ⊗V︸ ︷︷ ︸
n times

−→ V

from the n-fold tensor product of a vector space V to its algebraic completion V. Given two
homomorphisms f ∈ Hom(V⊗m, V) and g ∈ Hom(V⊗n, V), one may sometimes form a new
homomorphism

f i∗0 g : V ⊗ · · · ⊗V︸ ︷︷ ︸
m + n− 1 times

−→ V (5.0.1)

obtained by “sewing” the function g into the i-th component for f . The idea is that the equiva-
lence class [S] of a sphere S with tubes of type (1, n) should correspond to a homomorphism
νn([S]) ∈ Hom(V⊗n, V) and that the sewing structure in (5.0.1) should somehow reflect the
sewing of world sheet interactions. More formally, this is to say that a geometric vertex operator
algebra consists of roughly the following:

• A vector space V,

• A sequence ν = {νn}n∈N of maps

νn : K(n) −→ Hom(V⊗n, V)

subject to certain conditions, among which is that the following diagram should “almost” com-
mute.

K(m)×K(n)

νm×νn
��

i∞0 // K(m + n− 1)

νm+n−1
��

Hom(V⊗m, V)×Hom(V⊗n, V)
i∗0 // Hom(V⊗m+n−1, V)

More precisely, the diagram should commute up to a factor of ecΓ, for some complex number c
which is called the central charge of the geometric vertex operator algebra (V, ν).
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5.1 Spheres with tubes

The goal of this section is to make rigorous the geometry of string interactions using the lan-
guage of complex analytic manifolds. Following Huang [H97], we introduce a notion of a
sphere with tubes, which should correspond to a genus-zero world sheet of string interactions
in space-time.

Let M be a connected Hausdorff topological space. An n-dimensional complex chart on M is
a pair (U, φ) where U is an open subset of M and φ : U → Cn is a homeomorphism of U onto
some open subset of Cn. A complex analytic atlas of n-dimensional complex charts is a collection of
n-dimensional complex charts A = (Uα, φα)α∈A such that

(i) the union ∪α∈AUα covers M and

(ii) whenever α, β ∈ A are such that Uα ∩Uβ 6= ∅, the map

φβ ◦ φ−1
α : φα(Uβ ∩Uα) −→ φβ(Uβ ∩Uα)

is complex analytic.

A connected Hausdorff topological space M together with a complex analytic atlas A of
n-dimensional complex charts is called an n-dimensional complex manifold. Henceforth, we often
neglect to mention the atlas associated with a complex manifold, and we simply say such things
as “M is a complex manifold.”

Let M and M′ be two complex manifolds (possibly of different dimensions) with atlases A
and A′, respectively. A map F : M → M′ is called complex analytic if for each chart (V, ψ) in A′,
the following property is satisfied: for each chart (U, φ) in A such that F(U) ⊂ V, the map

ψ ◦ F ◦ φ−1 : φ(U) −→ ψ(V)

is complex analytic. A complex analytic map F : M → M′ is a conformal equivalence if F has an
inverse function F−1 : M′ → M that is also complex analytic, and in such a case, we say that the
complex manifolds M and M′ are conformally equivalent.

In the particular case where the dimension of the complex analytic manifold M is one, we
call M a Riemann surface. For example, let Ĉ denote the compactification C ∪ {∞} of C. Let idC

and J denote the maps

idC : C −→ C

w 7→ w

J : C× ∪ {∞} −→ C
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w 7→ 1
w

.

Then the collection A = {(C, idC), (C× ∪ {∞}, J)} is a complex analytic atlas for Ĉ. Henceforth,
we assume that the one-dimensional complex analytic manifold Ĉ is equipped with this atlas,
and we call this the standard sphere.

The standard sphere plays a fundamental role in what follows, mainly due to the following
uniformization theorem.

Theorem 5.1.1 (Riemann Uniformization Theorem). Any compact Riemann surface of genus zero is
conformally equivalent to the standard sphere Ĉ.

For the purposes of these notes, we omit a detailed proof. We direct the reader to [D] for a
more detailed discussion.

As a consequence of the uniformization theorem, we use the term sphere to refer to a compact
genus-zero Riemann surface. A point p on a sphere together with an element ε of {+,−} is
called an oriented point of a sphere.

Let S be a sphere. An oriented tube on S is an oriented point p (called a puncture) together
with a pair (U, φ) where U is an open set containing p and φ : U → C is a complex analytic
injective map such that φ(p) = 0. Such a pair (U, φ) is called a local coordinate chart vanishing at
p. A sphere with tubes of type (m, n) is a sphere S together with m negatively oriented tubes and
n positively oriented tubes, whose punctures are all distinct.

If S is a sphere with tubes of type (1, n) then we will denote the negative puncture by p0 and
the n positive punctures by p1, . . . , pn. We denote this sphere by

(S; p0, . . . , pn; (U0, φ0), . . . , (Un, φn))

or more succinctly by

S = S(S, n, p, U, φ).

Henceforth, we only concern ourselves with spheres with tubes of type (1, n) for n a nonnegative
integer, and any mention of a sphere with tubes should be understood in this way.

Remark 5.1.2. The notion of “tube” given above in terms of punctures and local analytic coor-
dinates vanishing at these punctures may seem divorced from the usual notion from geometry.
Nevertheless, the information given by such a “tube” is in fact conformally equivalent to a half-
infinite tube in the geometric sense. More precisely, let p be a positively oriented point on a
sphere S, and let (U, φ) be a local coordinate chart vanishing at p. (This procedure will work
similarly for negatively oriented points.) For a complex number z and a positive real number r,
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denote by Br
z the open disc of radius r centered at z

Br
z = {w ∈ C : |w− z| < r}.

There is some r > 0 so that Br
0 ⊂ φ(U). Let Tr denote the set of complex numbers

Tr = {z ∈ C : Re(z) < log(r)}.

Define an equivalence relation ∼ on Tr by p ∼ q if and only if p = q + 2πki for some integer
k. Let τr denote the quotient τr = T/∼ endowed with the quotient topology inherited from the
usual metric on Tr. Then τr is a half-infinite tube in the usual geometric sense. Moreover, the
map

Log ◦ φ : φ−1(Br
0) −→ τr

is a conformal equivalence of Riemann surfaces.

The notion of conformal equivalence may be extended to spheres in a natural way. In par-
ticular, let

S1 = S1(S1, m, U, p, φ)

S2 = S2(S2, n, V, q, ψ)

be two spheres with tubes. We say that these two spheres with tubes are conformally equivalent
if m = n and if there is a conformal equivalence F : S1 → S2 such that

(i) F(pi) = qi and

(ii) φi and ψi ◦ F are equal when restricted to some neighborhood of pi.

We denote the conformal equivalence class of a sphere with tubes S by [S].

Remark 5.1.3. It is apparent from the definition of conformal equivalence that the conformal
data of a sphere with tubes S1(S1, m, U, p, φ) are given by the following:

• the surface S,

• the number of positive punctures m,

• the locations of all m + 1 punctures, and

• the germs of the local coordinate maps φi.

Indeed, condition (ii) asserts that a conformal equivalence F : S1 → S2 must only respect the
germs of the local coordinate maps—not the maps themselves.
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For a positive integer n, the symmetric group Sn acts on the set of all spheres with tubes of
type (1, n) in a natural way. Specifically, we define a left action

Sn × {spheres with tubes of type (1, n)} −→ {spheres with tubes of type (1, n)}
(σ,S) 7→ σ(S)

of Sn on the set of all spheres with tubes of type (1, n) in the following way: if σ is an element
of Sn and if S is a sphere with tubes of type (1, n), then let σ(S) denote the sphere with tubes
of type (1, n) where the i-th incoming puncture of σ(S) is the σ−1(i)-th incoming puncture of
S for each i = 1, . . . , n.

Remark 5.1.4. This action simply amounts to a reordering of the punctures, and thus is con-
formally invariant, in the sense that it requires as input data only items found in Remark 5.1.3.
This implies that we obtain a well-defined left group action of Sn on the space of conformal
equivalence classes of spheres with tubes of type (1, n), which we denote by

(σ, [S]) 7→ σ([S]).

5.2 The sewing operation

In this section, we follow Huang [H97] to introduce a “sewing operation” for spheres with tubes.
The idea behind sewing will be to “sew” the 0-th tube of one sphere with tubes into the i-th
tube of another sphere with tubes.

For a positive real number r, denote by Br
∞ the open disc of radius r about ∞

Br
∞ = {w ∈ Ĉ : |1/w| < r}.

Denote by Cl(Br
z) the closed disc about z ∈ C

Cl(Br
z) = {w ∈ C : |w− z| ≤ r},

and similarly by Cl(Br
∞) the closed disc about ∞

Cl(Br
∞) = {w ∈ Ĉ : |1/w| ≤ r}.

Let

S1 = S1(S1, m, U, p, φ)

S2 = S2(S2, n, V, q, ψ)

be two spheres with tubes with m > 0. Let i be an integer satisfying 1 ≤ i ≤ m. Assume that
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there is a positive number r such that

Cl(Br
0) ⊂ φi(Ui)

Cl(B1/r
0 ) ⊂ ψ0(V0)

and that pi and q0 are the only punctures in φ−1
i (Cl(Br

0)) and ψ−1
0 (Cl(B1/r

0 )), respectively. Then
we say that the i-th tube of S1 can be sewn with the 0-th tube of S2.

If the i-th tube of S1 can be sewn with the 0-th tube of S2, then we have the following sewing
procedure.

There are real numbers r1 and r2 satisfying 0 < r2 < r < r1 such that

Cl(Br1
0 ) ⊂ φi(Ui)

Cl(B1/r2
0 ) ⊂ ψ0(V0).

Define an equivalence relation on the disjoint union

(S1 \ φ−1
i (Cl(Br2

0 ))) t (S2 \ ψ−1
0 (Cl(B1/r1

0 )))

by p ∼ q if an only if one of the following two conditions is satisfied

• p = q or

• p ∈ φ−1
i (Cl(Br1

0 )) \ φ−1
i (Cl(Br2

0 )) and q ∈ ψ−1
0 (Cl(B1/r2

0 )) \ ψ−1
0 (Cl(B1/r1

0 )) satisfy

(ψ−1
0 ◦ J ◦ φi)(p) = q. (5.2.1)

Let S1 i∞0 S2 denote the one-dimensional complex manifold given by the topological space

((S1 \ φ−1
i (Cl(Br2

0 ))) t (S2 \ ψ−1
0 (Cl(B1/r1

0 ))))/ ∼

together with the atlas determined by the atlases of S1 \ φ−1
i (Cl(Br2

0 )) and S2 \ ψ−1
0 (Cl(B1/r1

0 ))

with the complex analytic transition map

ψ−1
0 ◦ J ◦ φi : φ−1

i (Cl(Br1
0 )) \ φ−1

i (Cl(Br2
0 )) −→ ψ−1

0 (Cl(B1/r2
0 )) \ ψ−1

0 (Cl(B1/r1
0 )).

The punctures with ordering on S1 i∞0 S2 are given by

p0, p1, . . . , pi−1, q1, q2, . . . , qn, pi+1, pi+2, . . . , pm.

For j 6= i, let

U′j = Uj \ φ−1
i (Cl(Br

0))
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φ′j = φj|U′j ,

and for k 6= 0, let

V ′k = Vk \ ψ−1
0 (Cl(B1/r

0 ))

ψ′k = ψk|V′k .

Then the tubes centered at the above ordered punctures are

(U′0, φ′0), . . . , (U′i−1, φ′i−1), (V
′
1, ψ′1), . . . , (V ′n, ψ′n), (U

′
i+1, φ′i+1), . . . , (U′m, φ′m).

We let S1 i∞0 S2 denote the resulting sphere with m + n− 1 tubes as described above.

Remark 5.2.1. The conformal equivalence class of the sewn sphere with tubes S1 i∞0 S2 is
determined by the following input data:

• the surfaces S1 and S2,

• the number of positive punctures m and n,

• the locations of all m + 1 punctures on S1 and the location of all n + 1 punctures on S2,
and

• the germs of the local coordinate maps φi and ψj.

These data coincide with the conformal data of the spheres with tubes S1 and S2, and hence
the sewing operation gives rise to a well-defined operation on conformal equivalence classes of
spheres with tubes.

5.3 The moduli space of spheres with tubes

Following Huang [H97], we introduce more explicit descriptions of the collections of all confor-
mal equivalence classes of spheres with tubes of type (1, n) for n a nonnegative integer.

The collection of all equivalence classes of spheres with tubes of type (1, n) is called the
moduli space of spheres with tubes of type (1, n), and we denote this moduli space by K(n). The
collection of all equivalence classes of spheres with tubes is called the moduli space of spheres with
tubes, and we denote this moduli space by

K =
⋃

n∈N

K(n).
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The moduli space of spheres with tubes of type (1, n) will be realized as a subset of the set
C∞ of infinite sequences of complex numbers. This description allows one to introduce a notion
of a meromorphic map from the moduli space of spheres with tubes of type (1, n) as a certain
type of rational function in variables given by the coordinates of these sequences of complex
numbers.

Proposition 5.3.1. Let n be a positive integer and let S = S(S, n, p, U, φ) be a sphere with tubes of
type (1, n). Then S is conformally equivalent to a sphere with tubes of the form

(Ĉ; ∞, z1, . . . , zn−1, 0; (Br0
∞, ψ0), (Br1

z1
, ψ1), . . . , Brn

0 , ψn)) (5.3.1)

where z1, . . . , zn−1 are nonzero distinct complex numbers and ψ0, . . . , ψn are analytic functions such that

ψ0(∞) = 0

ψi(zi) = 0 for each i = 1, . . . , n− 1

ψn(0) = 0

and

lim
w→∞

wψ0(w) = 1

lim
w→zi

ψi(w)

w− zi
6= 0 for each i = 1, . . . , n− 1

lim
w→0

ψn(w)

w
6= 0.

Proof. By the Riemann Uniformization Theorem 5.1.1, there is a complex analytic isomorphism
F : S→ Ĉ, giving a sphere with tubes

S1 = (Ĉ; F(p0), . . . , F(pn), (F(U0), φ0 ◦ F−1), . . . , (F(Un), φn ◦ F−1))

that is conformally equivalent to S. The goal is to now find an automorphism T of the standard
sphere which

(i) sends F(p0) to ∞,

(ii) sends F(pn) to 0,

(iii) satisfies the property that when (φ0 ◦ F−1 ◦ T−1)(w) is expanded about ∞, the coefficient
of w−1 is 1.

Define complex numbers a(0)1 and A by

a(0)1 = lim
w→F(p0)

(φ0 ◦ F−1)(w)

w− F(p0)
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A = a(0)1 (F(p0)− F(pn)).

Let T : Ĉ→ Ĉ be the conformal map

T(w) =
1
A
· w− F(pn)

w− F(p0)
.

Let S2 denote the sphere with tubes given by

S2 = (Ĉ; ∞, z1, . . . , zn−1, 0;((T ◦ F)(U0), φ0 ◦ F−1 ◦ T−1),

. . . , ((T ◦ F)(Un), φn ◦ F−1 ◦ T−1))

where zi = (T ◦ F)(pi) for each i = 1, . . . , n− 1. Then S2 is conformally equivalent to S1 by
the map T (and hence also conformally equivalent to S by the map F). Choose positive real
numbers r0, . . . , rn such that

Br0
∞ ⊂ (T ◦ F)(U0),

Bri
zi
⊂ (T ◦ F)(Ui), for each i = 1, . . . , n− 1,

Brn
0 ⊂ (T ◦ F)(Un).

Let

ψ0 = φ0 ◦ F−1 ◦ T−1|Br0
∞

,

ψi = φi ◦ F−1 ◦ T−1|Bri
zi

for each i = 1, . . . , n− 1

ψn = φn ◦ F−1 ◦ T−1|Brn
0

.

Then S2 is conformally equivalent to the sphere with tubes given by

(Ĉ; ∞, z1, . . . , zn−1, 0; (Br0
∞, ψ0), (Br1

z1
, ψ1), . . . , Brn

0 , ψn)).

Moreover, we have

lim
w→∞

wψ0(w) = lim
w→∞

wφ0 ◦ F−1 ◦ T−1|Br0
∞
(w)

= lim
u→F(p0)

T(u)(φ0 ◦ F−1(u))

= lim
u→F(p0)

1
A
(u− F(pn))

φ0 ◦ F−1(u)
u− F(p0)

= lim
u→F(p0)

1

a(0)1 (F(p0)− F(pn))
(u− F(pn))a(0)1

= 1.
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The fact that

lim
w→zi

ψi(w)

w− zi
6= 0 for each i = 1, . . . , n− 1

follows from the observation that ψi = φi ◦ F−1 ◦ T−1|Bri
zi

is injective on a neighborhood of zi.
Similarly, we obtain

lim
w→0

ψn(w)

w
6= 0,

as desired. �

For n a positive integer, a sphere of the form of (5.3.1) is called a canonical sphere of tubes of type
(1, n). The next proposition describes when two canonical spheres with tubes are conformally
equivalent. We must first recall the following well-known result from complex analysis.

Lemma 5.3.2. The set of all conformal equivalences from the standard sphere Ĉ to itself is the set of all
Möbius transformations, that is, the set of all rational functions T : Ĉ→ Ĉ of the form

T(w) =
aw + b
cw + d

where ad− bc 6= 0.

Proposition 5.3.3. Let n be a positive integer, and let

S = (Ĉ; ∞, z1, . . . , zn−1, 0; (Br0
∞, ψ0), (Br1

z1
, ψ1), . . . , Brn

0 , ψn))

and

S̃ = (Ĉ; ∞, z̃1, . . . , z̃n−1, 0; (Br̃0
∞, ψ̃0), (Br̃1

z̃1
, ψ̃1), . . . , Br̃n

0 , ψ̃n))

be two canonical spheres with tubes of type (1, n). Then S and S̃ are conformally equivalent if and only
if zi = z̃i for each i = 1, . . . , n− 1 and ψi ≡ ψ̃i on some neighborhood of zi = z̃i for each i = 0, . . . , n.

Proof. If zi = z̃i for each i = 1, . . . , n− 1 and ψi = ψ̃i for each i = 0, . . . , n, then it is clear that the
identity map will give a conformal equivalence between S and S̃.

On the other hand, suppose that F : Ĉ→ Ĉ is a conformal equivalence from S onto S̃. Then
by definition we have

F(∞) = ∞

F(0) = 0.

Therefore, since F is a Möbius transformation, we see that F(w) = aw for some a 6= 0. Since S̃

58



is a standard sphere, we know that ψ̃0 satisfies

lim
w→∞

wψ̃0(w) = 1.

Also, since F is a conformal equivalence, we have

ψ̃0|Bmin(r0,r̃0)
∞

≡ ψ0 ◦ F−1|
Bmin(r0,r̃0)

∞
.

Therefore, we see that

lim
w→∞

wψ0

(w
a

)
= 1.

Since S is also a canonical sphere, the function ψ0 may be expanded in the form

ψ0(w) = w−1 + ∑
j∈Z+

ajw−j−1.

This implies that a = 1, and therefore F is the identity map. The proposition now follows. �

Therefore, we see that the conformal equivalence data of a canonical sphere consist only of
the complex numbers zi and the germs of the local analytic coordinates ψi. Expanding these
coordinates {ψi}n

i=0 in terms of their unique Laurent series expansions about ∞, zi, or 0, re-
spectively, we obtain, for each coordinate ψi, an infinite list of complex numbers, namely, the
coefficients of its Laurent expansion. Thus, for each positive integer n, we have made a bijective
correspondence

K(n)←→ T(n) ⊂ C∞ (5.3.2)

where T(n) is some subset of the space of infinite countable sequences with coefficients in C. It
remains to consider the moduli space K(0). In this case, we will again obtain an identification
similar to the one above. The only difference will be more restrictive conditions on the sequence
of coefficients associated with the local coordinate vanishing at ∞. These extra conditions come
from the fact that such tubes lack a second puncture, which would usually be sent to zero
using a Möbius transformation. This extra degree of freedom in the Möbius transformation can
instead be used to place another condition on the local coordinate vanishing at ∞, namely that
the coefficient a(0)2 is 0. More specifically, we have the following results, which can be proved in
manners similar to Propositions 5.3.1 and 5.3.3.

Proposition 5.3.4. Any sphere with tubes of type (1, 0) is conformally equivalent to a sphere with tubes
of the form

(Ĉ; ∞; (Br0
∞, ψ0))
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where ψ0 may be expanded as

ψ0(w) =
1
w

+ ∑
j∈Z++1

ajw−j−1. (5.3.3)

A sphere with tubes of type (1, 0) as in Proposition 5.3.4 is called a canonical sphere with tubes
of type (1, 0).

Proposition 5.3.5. Let

S = (Ĉ; ∞; (Br0
∞, ψ0))

and

S̃ = (Ĉ; ∞; (Br̃0
∞, ψ̃0))

be two canonical spheres with tubes of type (1, 0). Then S and S̃ are conformally equivalent if and only
if ψ0 ≡ ψ̃0 on some neighborhood of ∞. �

As a consequence of Propositions 5.3.1, 5.3.3, 5.3.4, and 5.3.5, we have the following corollary,
which makes more explicit the identification in (5.3.2).

Corollary 5.3.6. Let n be a positive integer. Then the moduli space of spheres with tubes of type (1, n)
can be identified with the set of all 2n-tuples of the form

(z1, . . . , zn−1; ψ0, . . . , ψn)

where zi are distinct nonzero complex numbers, the functions ψi have Laurent series expansions about
∞, zi, and 0, respectively, of the form

ψ0(w) = w−1 + ∑
j∈Z+

a(0)j w−j−1

ψi(w) = ∑
j∈Z+

a(i)j (w− zi)
j for 1 ≤ i ≤ n− 1

ψn(w) = ∑
j∈Z+

a(n)j wj

for some complex numbers a(i)j ∈ C such that a(i)0 6= 0 for each i = 1, . . . , n, and these Laurent series are
absolutely convergent in neighborhoods of w = ∞, wi = zi for 1 ≤ i ≤ n− 1, and w = 0, respectively.
The moduli space of spheres with tubes of type (1, 0) can be identified with the set of all power seres ψ0 of
the form (5.3.3) that are absolutely convergent in a neighborhood of ∞. �

The correspondence of Corollary 5.3.6 allows us to define the notion of a meromorphic
function on the moduli space of spheres with tubes in terms of a rational function in certain
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variables with restrictions on the poles. More specifically, for a positive integer n, the moduli
space of spheres with tubes of type (1, n) may be identified with a subset of the set of sequences
of the form

{(z1, . . . , zn−1), {a(i)j }}

where {zi : 1 ≤ i ≤ n− 1} are distinct nonzero complex numbers and {a(i)j : j ∈ N, 0 ≤ i ≤ n}
are complex numbers such that

a(i)0 6= 0 for each i = 1, . . . , n.

A meromorphic function on the moduli space of spheres with tubes of type (1, n) is a rational function
of the form

P({zi}, {a(i)j })(
∏n

i=1(a(i)0 )ri

) (
∏n−1

j=1 z
sj
j

) (
∏1≤k<l≤n−1(zk − zl)tkl

)
where P({zi}, {a(i)j }) is a polynomial in the variables {zi : 1 ≤ i ≤ n− 1} and {a(i)j : j ∈ N, 0 ≤
i ≤ n} and ri, sj, tkl are nonnegative integers. A meromorphic function on the moduli space of spheres
with tubes of type (1, 0) is a polynomial in the variables {aj : j ∈ Z+ + 1}.

5.4 The sewing equation

Let m be a positive integer and n a nonnegative integer. Let

C1 = C1(Ĉ, m, U, p, φ)

C2 = C2(Ĉ, n, V, q, ψ)

be two canonical spheres with tubes. Suppose that we may sew the 0-th tube of C2 to the i-th
tube of C1. Then the resulting sewn sphere C1 i∞0 C2 with tubes is conformally equivalent to
some canonical sphere with tubes

C3 = C3(Ĉ, m + n− 1, W, r, θ),

which we describe now.

By the definition of sewing, there are real numbers r1 and r2 satisfying 0 < r2 < r < r1 such
that

Cl(Br1
0 ) ⊂ φi(Ui)

Cl(B1/r2
0 ) ⊂ ψ0(V0).
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Define an equivalence relation on the disjoint union

(Ĉ \ φ−1
i (Cl(Br2

0 ))) t (Ĉ \ ψ−1
0 (Cl(B1/r1

0 )))

by p ∼ q if an only if one of the following two conditions is satisfied

• p = q or

• p ∈ φ−1
i (Cl(Br1

0 )) \ φ−1
i (Cl(Br2

0 )) and q ∈ ψ−1
0 (Cl(B1/r2

0 )) \ ψ−1
0 (Cl(B1/r1

0 )) satisfy

(ψ−1
0 ◦ J ◦ φi)(p) = q.

Let M denote the one-dimensional complex manifold given by the topological space

((Ĉ \ φ−1
i (Cl(Br2

0 ))) t (Ĉ \ ψ−1
0 (Cl(B1/r1

0 ))))/ ∼

together with the atlas determined by the atlases of S1 \ φ−1
i (Cl(Br2

0 )) and S2 \ ψ−1
0 (Cl(B1/r1

0 ))

with the complex analytic transition map

ψ−1
0 ◦ J ◦ φi : φ−1

i (Cl(Br1
0 )) \ φ−1

i (Cl(Br2
0 )) −→ ψ−1

0 (Cl(B1/r2
0 )) \ ψ−1

0 (Cl(B1/r1
0 )).

The sphere with tubes C1 i∞0 C2 is the sphere M together with the punctures

p0, p1, . . . , pi−1, q1, q2, . . . , qn, pi+1, pi+2, . . . , pm.

and tubes given by

(U′0, φ′0), . . . , (U′i−1, φ′i−1), (V
′
1, ψ′1), . . . , (V ′n, ψ′n), (U

′
i+1, φ′i+1), . . . , (U′m, φ′m),

as described in Section 5.2.

Let F : M→ Ĉ denote the conformal equivalence from C1 i∞0 C2 to the canonical representa-
tive C3. We call F the uniformizing function. By the complex structure we have taken on the sewn
sphere, we may express F as two functions, one F(1) from Ĉ \ φ−1

i (Cl(Br2
0 )) to Ĉ and another

F(2) from Ĉ \ ψ−1
0 (Cl(B1/r1

0 )) to Ĉ such that

F(p) =

{
F(1)(w), w ∈ Ĉ \ φ−1

i (Cl(Br2
0 ))

F(2)(w), w ∈ Ĉ \ ψ−1
0 (Cl(B1/r1

0 ))
.

Moreover, from the sewing operation, we obtain the following conditions on F(1) and F(2).

(i) From the equivalence relation on the overlapping annulus given by (5.2.1), we find that if
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w ∈ φ−1
i (Cl(Br1

0 )) \ φ−1
i (Cl(Br2

0 )), then

((F(2))−1 ◦ F(1))(w) = (ψ−1
0 ◦ J ◦ φi)(w). (5.4.1)

Equation (5.4.1) is called the sewing equation.

(ii) In order for the sphere with tubes C3 to be canonical, we require some extra conditions
on the uniformizing function F. In particular, we need the first puncture of the resulting
sphere C3 to be at infinity and the last puncture to be located at zero—if such a puncture
exists. We also require that the local coordinates at these punctures satisfy the conditions
of Proposition 5.3.1. In the particular case where i = m and n 6= 0, these conditions are
equivalent to the conditions

F(1)(∞) = ∞ (5.4.2)

F(2)(0) = 0 (5.4.3)

lim
w→∞

1
w

F(1)(w) = 1, (5.4.4)

which are called the normalization conditions for the function F.

In the case where i = m and n 6= 0, conditions (i) and (ii) completely determine a uniformiz-
ing function F, and the resulting sphere with tubes C3 is a canonical sphere with tubes of type
(1, m + n− 1).

In the case where i 6= m or n = 0, one can still find an F satisfying conditions (i) and (ii)
to map the sewn sphere with tubes C1 i∞0 C2 to some sphere with tubes C3, but the resulting
sphere with tubes may not be canonical. If n = 0 and i = m for m > 1, or if m 6= n, then the last
puncture of the resulting sphere with tubes will not be at zero, since F sends the zero puncture
of the second sphere to zero. If n = 0 and m = 1, then the resulting sphere will have only
one puncture (at infinity), and the local coordinate at this puncture may not satisfy the extra
condition of Proposition 5.3.4, namely that the second coefficient of the power series expansion
be zero. In these cases, to find a canonical sphere with tubes conformally equivalent to C3, we
simply compose F with a desired Möbius transformation, as in the proof of Proposition 5.3.1.

5.5 A formal study of the right hand side of the sewing equation

The goal of this section is to explicitly describe a solution F to the sewing equation (5.4.1) of the
previous section. We follow the treatment presented in Huang [H97], highlighting the major
points while skipping over some of the finer details.

The following result from [H97] gives an equivalent way of expanding formal power series.
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Theorem 5.5.1. Let R be a commutative algebra over Q with identity. Let

f (w) = a0

(
w + ∑

n∈Z+

ajwj+1

)

be a formal power series in R[[w]]. Then there is a unique sequence A = {Aj}∞
j=1 in R∞ such that

f (w) = exp

(
∑

j∈Z+

Ajwj+1 d
dw

)
aw d

dw
0 w,

where aw d
dw

0 is the linear operator on R[[w, w−1]] defined by

aw d
dw

0 wn = an
0 wn

for n ∈ Z.

The following result is a particular case of a more general result taken from [Ba03], where it
is shown how to “compose” two power series in the exponential form of Theorem 5.5.1.

Theorem 5.5.2. Let R be a commutative algebra over Q with identity. Let g(w) ∈ R[[w, w−1]] and let
f (w) ∈ R[[w]]. Write

f (w) = exp

(
∑
j∈N

Ajwj+1 d
dw

)
aw d

dw
0 w,

for some Aj ∈ R and a0 ∈ R. If (g ◦ f )(w) is a well-defined element of R[[w, w−1]], then

(g ◦ f )(w) = exp

(
∑
j∈N

Ajwj+1 d
dw

)
aw d

dw
0 · g(w).

Moreover, we need the following proposition, found in [H97], on how to “invert” power
series.

Theorem 5.5.3. Let R be a commutative algebra over Q with identity. Let

f (w) = a0

(
w + ∑

n∈Z+

ajwj+1

)

be a formal power series in R[[w]], and write

f (w) = exp

(
∑

j∈Z+

Ajwj+1 d
dw

)
aw d

dw
0 w
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for some unique sequence {Aj}∞
j=1 in R∞. Suppose that a0 is an invertible element of R. Then there is a

unique formal series f−1(w) ∈ R[[w, w−1]] such that

( f ◦ f−1)(w) = ( f−1 ◦ f )(w).

Moreover, the series f−1(w) ∈ R[[w, w−1]] is given by

f−1(w) = a−w d
dw

0 exp

(
− ∑

j∈Z+

Ajwj+1 d
dw

)
w.

We now study the local coordinate maps vanishing at ∞ as formal power series. Let

g(z) =
1
z
+ ∑

j∈Z+

bj

(
1
z

)j+1

be a formal series in z−1R[[z−1]]. Then g#(z) = g( 1
z ) is a formal power series in wR[[w]]. By

Theorem 5.5.1, there is a unique sequence {Bj}∞
j=1 in R∞ such that

g#(z) = exp

(
∑

j∈Z+

Bjzj+1 d
dz

)
z.

Now let z = 1
w . Then note that

dz = −dw
w2

and hence

d
dz

= −w2 d
dw

.

It now follows that

g(w) = g#

(
1
w

)
= g#(z)

= exp

(
∑

j∈Z+

Bjzj+1 d
dz

)
z

= exp

(
∑

j∈Z+

Bjw−j−1
(
−w2 d

dw

))
1
w

= exp

(
− ∑

j∈Z+

Bjw−j+1 d
dw

)
1
w

.
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To summarize, we have the following proposition.

Proposition 5.5.4. Let

g(z) =
1
z
+ ∑

j∈Z+

bj

(
1
z

)j+1

be a formal series in z−1R[[z−1]]. Then there is a unique sequence {Bj}∞
j=1 in R∞ such that

g(w) = exp

(
− ∑

j∈Z+

Bjw−j+1 d
dw

)
1
w

.

Moreover, we may find the inverse for g in the following manner.

Proposition 5.5.5. Let

g(z) =
1
z
+ ∑

j∈Z+

bj

(
1
z

)j+1

be a formal series in z−1R[[z−1]]. Then g has an inverse in R[[z, z−1]] given by

g−1(w) =
1

g−1
# (w)

.

Proof. By Theorem 5.5.3, the formal series g#(w) has in inverse g−1
# (w). It remains to show that

the inverse for g is given by the formula

g−1(w) =
1

g−1
# (w)

.

But this is the case, for

(g ◦ g−1)(w) = g

(
1

g−1
# (w)

)
= g

(
1

g−1
# (w)

)
= g#(g−1

# (w)) = w

and

(g−1 ◦ g)(w) =
1

g−1
# (g(w))

=
1

g−1
#

(
g#
( 1

w

)) =
1
1
w

= w,

as desired. �

Finally, we need to know how to “push” the operator aw d
w

0 past exponentials, as described in
the next proposition.

66



Proposition 5.5.6. Let R be a commutative algebra over Q with identity. Then the equality

exp

(
∑

j∈Z+

Cjw−j+1 d
dw

)
aw d

dw
0 w = aw d

dw
0 exp

(
∑

j∈Z+

Bjw−j+1 d
dw

)
w (5.5.1)

holds in R[[w, w−1]] if and only if Cj = a−j
0 Bj for each j.

Proof. Let

f (w) = aw d
dw

0 w

g(w) = exp

(
∑

j∈Z+

Bjw−j+1 d
dw

)
w.

Then Theorem 5.5.2 implies that (5.5.1) is equivalent to

exp

(
∑

j∈Z+

Cjw−j+1 d
dw

)
aw d

dw
0 w = (g ◦ f )(w) = g(a0w),

that is,

exp

(
∑

j∈Z+

Cjw−j+1 d
dw

)
· (a0w) = exp

(
∑

j∈Z+

Bja
−j
0 w−j+1 d

dw

)
· (a0w).

The result now follows. �

As a consequence of these results, we may write the right hand side of the sewing equation
(5.4.1) in another form.

We may express the local coordinates φi(w) and ψ0(w) as power series, and we may regard
them as formal power series in C[[w]] and C[[w−1]] respectively. By Theorem 5.5.1, there is a
sequence {Aj}∞

j=1 in C∞ such that

φi(w) = exp

(
∑

j∈Z+

Ajwj+1 d
dw

)
aw d

dw
0 w,

and by Proposition 5.5.4, there is a sequence {Bj}∞
j=1 in C∞ such that

ψ0(w) = exp

(
− ∑

n∈Z+

Bjw−j+1 d
dw

)
1
w

.
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Let

(ψ0)#(w) = ψ0

(
1
w

)
= exp

(
∑

j∈Z+

Bjwj+1 d
dw

)
w.

Applying Proposition 5.5.5, we find that the inverse of ψ0 is given by

ψ−1
0 (w) =

1
(ψ0)

−1
# (w)

= (J ◦ (ψ0)
−1
# )(w)

= exp

(
− ∑

j∈Z+

Bjwj+1 d
dw

)
1
w

where we have used Theorem 5.5.2 in the second line and the fact that

(ψ0)
−1
# (w) = exp

(
− ∑

j∈Z+

Bjwj+1 d
dw

)
w

by Theorem 5.5.3. Now we may compute

(ψ−1
0 ◦ J)(w) = (ψ−1

0 )#(w)

= exp

(
∑

j∈Z+

Bjw−j+1 d
dw

)
w.

Using Theorem 5.5.2, we find

(ψ−1
0 ◦ J ◦ φi)(w) = exp

(
∑

j∈Z+

Ajwj+1 d
dw

)
aw d

dw
0 exp

(
∑

j∈Z+

Bjw−j+1 d
dw

)
w

= exp

(
∑

j∈Z+

Ajwj+1 d
dw

)
exp

(
∑

j∈Z+

Cjw−j+1 d
dw

)
aw d

dw
0 w (5.5.2)

where Cj = a−j
0 Bj by Proposition 5.5.6.

To deal with the left hand side of (5.4.1), we need a small digression on more results in
formal calculus.

5.6 Factoring formal exponentials and a solution to the sewing equa-
tion

To complete our formal study of the sewing equation, we need more general results regarding
factorization of formal exponentials.
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Our discussion is based upon the observation that the derivations of C[[x, x−1]] of the form

L(n) = −xn+1 d
dx

, n ∈ Z

span a Lie algebra, called the Witt algebra. One can check that algebra structure amounts to the
Lie bracket relations

[L(m), L(n)] = (m− n)L(m + n)

for m, n ∈ Z. Elements of this Lie algebra appear in the exponentials of the left hand side of the
formal sewing equation, as discussed in Section 5.5.

The Witt algebra is a special case of the Virasoro algebra, namely the Virasoro algebra of
central charge zero. More generally, the Virasoro algebra with central charge c ∈ C is the
complex Lie algebra spanned by independent symbols of the form Ln for n ∈ Z and c ∈ C

subject to the Lie bracket relations

[Lm, Ln] = (m− n)Lm+n +
1
12

(m3 −m)δm+n,0c,

[Lm, c] = 0.

Motivated by this observation and others, Barron, Huang, and Lepowsky [BHL] gave a result
concerning formal exponentials, which has the following implication.

Theorem 5.6.1. Let vc denote the Virasoro algebra of central charge c. Let

g+ = ∑
j>0

AjLj and g− = ∑
j>0

CjL−j

be formal series in vc[[A1, C1, A2, C2, . . .]] where the order of each Aj and each Cj is taken to be one. Then
there are unique formal series

Φ−, Φ0, Φ+ ∈ vc[[A1, C1, A2, C2, . . .]]

of the form

Φ− = ∑
j<0

ΦjLj, Φ+ = ∑
j>0

ΦjLj, and Φ0 = Φ0L0 + Γc,

where Φj, Γ ∈ C[[A1, C1, A2, C2, . . .]] such that

eΦ−eΦ+
eΦ0

= eg+eg− .

69



More precisely, the series Γ is of the form

Γ = ∑
m>0

AmCm
m3 −m

12
+ Γ0

where Γ0 ∈ C[[A1, C1, A2, C2, . . .]] contains only terms of total order three or more with order at least
one in the Am’s and at least one in the Cm’s.

By the theorem, there are unique formal series

Ψ−, Ψ0, Ψ+ ∈ C[[x, x−1]]

of the form

Ψ− = ∑
j<0

Ψjxj+1 d
dx

, Ψ+ = ∑
j>0

Ψjxj+1 d
dx

, and Ψ0 = Ψ0x
d

dx
,

where Ψj ∈ C such that

eΨ−eΨ+
eΨ0

ax d
dx

0 x = exp

(
∑

j∈Z+

Ajxj+1 d
dx

)
exp

(
∑

j∈Z+

Cjx−j+1 d
dx

)
ax d

dx
0 x,

where the right hand side is taken from (5.5.2). Then using Theorem 5.5.2 and 5.5.3, it is clear
that the candidates for uniformizing functions F(1) and F(2) are the formal power series in
C[[x, x−1]] given by

F(1)(x) = eΨ−x

F(2)(x) = a−x d
dx

0 e−Ψ0
e−Ψ+

x.

In [H97], it is shown that the formal series F(1) and F(2) converge to analytic functions in the
necessary domains and that they satisfy the normalizing conditions for the well-defined uni-
formizing function F.

Remark 5.6.2. Notice that in the above identity, the term Ψ0 did not involve the series Γ of
Theorem 5.6.1. This is because the Witt algebra spanned by the derivations xn+1 d

dx is a Virasoro
algebra with central charge c = 0. However, the notion of a geometric vertex operator algebra
will involve, more generally, a representation of the Virasoro algebra, possibly with nontrivial
central charge c 6= 0. In such a case, the series Γ will play a fundamental role. Because of
this, we note that the series Γ is a series in the variables Aj and Cj with coefficients in C, and
following the notation of [H97], we write Γ = Γ(Aj, Cj) and we let

Γt(Aj, Cj) = ∑
m>0

tm AmCm
m3 −m

12
+ Γ0 ∈ C[[t, t−1, A1, C1, A2, C2, . . .]]
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where Γ0 is as in Theorem 5.6.1.

The following lemma concerning the series Γ = Γ(Aj, Cj) is discussed at more length in
[H97]. Because the proof of this result is technical and beyond the scope of these notes, we omit
a detailed discussion of the proof.

Lemma 5.6.3. Let m be a positive integer and n a nonnegative integer. Let

C1 = C1(Ĉ, m, U, p, φ)

C2 = C2(Ĉ, n, V, q, ψ)

be two canonical spheres with tubes. Suppose that we may sew the 0-th puncture of C2 to the i-th puncture
of C1. Let Aj and Cj be defined as in (5.5.2) and let Γt(Aj, Cj) be defined as in Remark 5.6.2. Then for
any c ∈ C, the series e−Γt(Aj,Cj)c is absolutely convergent when t = 1.

We write the limit of the series in the lemma as

e−Γ(C1,C2)c.

In the case where

S1 = S1(Ĉ, m, U, p, φ)

S2 = S2(Ĉ, n, V, q, ψ)

are two spheres with tubes with m > 0 and n ≥ 0 and if the i-th tube of S1 can be sewn with
the 0-th tube of S2, then we find respective canonical representatives C1 and C2 and we write

e−Γ([S1],[S2])c = e−Γ(C1,C2)c.

5.7 Geometric vertex operator algebras

By now, we have endowed the collection of moduli spaces of spheres with tubes

K =
⋃

n∈N

K(n)

with a partial operad structure (see Appendix A for information about operads and partial
operads) given by sewing

i∞0 : K(m)×K(n) −→ K(m + n− 1).
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We seek to study this object algebraically, translating the notion of sewing into some sort of
multiplicative operation. Following Huang [H97], we will introduce an appropriate notion of
an algebra over K that we will call a geometric vertex operator algebra. We first need some
notation.

For a Z-graded vector space

V = ä
n∈Z

V(n)

over C with finite-dimensional homogeneous subspaces, let

V ′ = ä
n∈Z

V∗(n)

denote its graded dual space, and let

V = ∏
n∈Z

V(n) = (V ′)∗

denote the algebraic completion of V. Let πn : V → V(n) denote the natural projection map. Let
〈−,−〉 denote the natural pairing of V and V ′. Let

V[[t, t−1]] =

{
∑

n∈Z

vntn : vn ∈ V

}

denote the space of formal power series in t and t−1 with coefficients in V.

Let V be a Z-graded vector space with finite-dimensional homogeneous subspaces. Let m
and n be integers such that m > 0 and n ≥ 0. For any positive integer i satisfying i ≤ m, we
define the t-contraction map

(· i∗0 ·)t : Hom(V⊗m, V)×Hom(V⊗n, V) −→ Hom(V⊗m+n−1, V[[t, t−1]])

( f , g) 7→ ( f i∗0 g)t

by

( f i∗0 g)t(v1 ⊗ · · · ⊗ vm+n−1)

= ∑
k∈Z

f (v1 ⊗ · · · ⊗ vi−1 ⊗ πkg(vi ⊗ · · · ⊗ vi+n−1)⊗ vi+n ⊗ · · · ⊗ vm+n−1)tk

for all v1, . . . , vm+n−1 ∈ V.

If for arbitrary v′ ∈ V ′ and v1, . . . , vm+n−1 ∈ V, the series

〈v′, ( f i∗0 g)t(v1 ⊗ · · · ⊗ vm+n−1)〉
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is absolutely convergent when t = 1, then ( f i∗0 g)1 is a well-defined element of

Hom(V⊗m+n−1, V)

and we define the contraction

f i∗0 g ∈ Hom(V⊗m+n−1, V)

by

f i∗0 g = ( f i∗0 g)1.

We have a left action of Sn on V⊗n defined by

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

for σ ∈ Sn and v1, . . . , vn ∈ V. This action induces a left action of Sn on Hom(V⊗n, V) defined
by

Sn ×Hom(V⊗n, V) −→ Hom(V⊗n, V)

(σ, f ) 7→ σ( f )

where

σ( f )(v1 ⊗ · · · ⊗ vn) = f (σ−1(v1 ⊗ · · · ⊗ vn))

for v1, . . . , vn ∈ V.

A geometric vertex operator algebra is a pair (V, ν) where V is a Z-graded vector space

V = ä
n∈Z

V(n)

with finite-dimensional homogeneous weight spaces and ν = {νn}n∈N is a family of maps

νn : K(n) −→ Hom(V⊗n, V)

[S] 7→ νn([S])

satisfying the following axioms

(GVOA1) Positive Energy Axiom: For n sufficiently small, we have V(n) = 0.

(GVOA2) Grading Axiom: If v ∈ V(n) is homogeneous of weight n, then

〈v′, ν1[(Ĉ; ∞, 0; 1/w, aw)](v)〉 = a−n〈v′, v〉
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for each a ∈ C× and v′ ∈ V ′.

(GVOA3) Meromorphicity Axiom: For any positive integer n, for any v′ ∈ V ′, v1, . . . , vn ∈ V, the
function

[S] 7→ 〈v′, νn([S])(v1 ⊗ · · · ⊗ vn)〉

on K(n) is meromorphic (in the sense of Section 5.3) and if zi and zj are the i-th and j-th
punctures of the canonical representative of S respectively, then for each vi and vj in V,
there is a positive integer N(vi, vj) such that for any v′ ∈ V ′ and vk ∈ V for k 6= i, j, the
order of the pole zi = zj of

〈v′, νn([S])(v1 ⊗ · · · ⊗ vn)〉

is less than N(vi, vj).

(GVOA4) Permutation Axiom: If σ ∈ Sn, then for any [S] ∈ K(n), we have

σ(νn([S])) = νn(σ[(S)]).

(GVOA5) Sewing Axiom: There exists a unique complex number c (called the charge) such that if

S1 = C1(Ĉ, m, U, p, φ)

S2 = C2(Ĉ, n, V, q, ψ)

are two spheres with tubes with m > 0 and n ≥ 0 and if the i-th tube of S1 can be sewn
with the 0-th tube of S2, then

νm([S1]) i ∗0 νn([S2])

exists and we have

νm+n−1([S1] i∞0 [S2]) = (νm([S1]) i ∗0 νn([S2]))e−Γ([S1],[S2])c.

This completes the definition.

Let (V1, µ) and (V2, ν) be two geometric vertex operator algebras over C. A homomorphism
from V1 into V2 is a Z-graded linear map η : V1 → V2 such that for any [S] ∈ K(n), we have

η ◦ µ([S]) = ν([S]) ◦ η⊗n

where
η : V1 −→ V2

denotes the natural extension of η.

Let GVOA denote the category of geometric vertex operator algebras. One can show that if
η : V1 → V2 is a homomorphism of geometric vertex operator algebras, then the central charges
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of V1 and V2 are equal. Thus for each complex number c ∈ C, we may consider the category
GVOA(c) of geometric vertex operator algebras with central charge c, which is a subcategory
of the category GVOA of all geometric vertex operator algebras.

An important result of [H97] asserts that the category of vertex operator algebras is isomor-
phic to the category of vertex operator algebras, as developed in Chapter 2. That is, we have the
following result, whose proof can be found in [H97].

Theorem 5.7.1. For any c ∈ C, there are two functors

Fc : VOA(c) −→ GVOA(c)

and

Gc : GVOA(c) −→ VOA(c)

such that
Fc ◦ Gc = IGVOA(c) and Gc ◦ Fc = IVOA(c)

where IC denotes the identity functor on the category C.

This theorem establishes a firm connection between the genus-zero two-dimensional confor-
mal geometry of string interactions and the algebraic study of vertex operator algebras.
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Appendix A

Operads

This appendix is included in order to make more explicit the formulation of a geometric vertex
operator algebra as a suitable algebra over the partial operad of conformal equivalence classes
of spheres with tubes.

An operad X consists of

• a family of sets {X(j)}j∈N,

• a family of compositions

◦i : X(k)× X(j) −→ X(j + j− 1)

(a, b) 7→ a ◦i b

for each k ∈ Z+, each j ∈N and each i satisfying 1 ≤ i ≤ k,

• an identity element I ∈ X(1),

• for each nonnegative integer j, a left action of the symmetry group Sj on X(j) (where S0 is
understood to be the trivial group)

such that the following axioms hold

(OP1) Composition-associativity. For each k ∈ Z+, each j, l ∈ N, each positive integer i1 satisfying
1 ≤ i1 ≤ k, each positive integer i2 satisfying 1 ≤ i2 ≤ k + j − 1, each a ∈ X(k), each
b ∈ X(j), and each c ∈ X(l), we have

(a ◦i1 b) ◦i2 c =


(a ◦i2 c) ◦l+i1−1 b, i2 < i1
a ◦i1 (b ◦i2−i1+1 c), i1 ≤ i2 < i1 + j
(a ◦i2−j+1 c) ◦i1 b, i1 + j ≤ i2.
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(OP2) For each k ∈N, each i satisfying 1 ≤ i ≤ k, and each a ∈ X(k), we have

a ◦i I = I ◦1 a = a.

(OP3) For each k ∈ Z+, each j ∈ N, each i satisfying 1 ≤ i ≤ k, each a ∈ X(k), each b ∈ X(j),
each σ ∈ Sk, and each τ ∈ S(j), we have

σ(a) ◦i b = σ(

i−1︷ ︸︸ ︷
1, . . . , 1, j,

k−i︷ ︸︸ ︷
1, . . . , 1)(a ◦σ(i) b)

a ◦i τ(b) = (

i−1︷ ︸︸ ︷
1⊕ · · · ⊕ 1⊕τ ⊕

k−i︷ ︸︸ ︷
1⊕ · · · ⊕ 1)(a ◦i b)

If in the above definition, we assume that the composition maps ◦i are only partially defined,
that is, each map ◦i takes a subset of X(k)× X(j) to X(k + j− 1); that all other data remain the
same; that each of the expressions in (OP1) to (OP3) hold whenever both sides exist; and that
the expressions in (OP2) always exist, then we call X a partial operad.

As an example, let V be a vector space and let W be a subspace of V. We use the notation
V j to denote the j-fold tensor product of V with itself for j > 0 and V0 as a one element set. We
define the endomorphism operad MV,W in the following manner. Let MV,W(j) denote the set
of multilinear maps from V j to V which map W j to W. (We regard multilinear maps from the
sets V0 and W0 sets to V and W, respectively, as maps of sets. In particular, MV,W(0) = W.)
Now for n ∈ Z+, m ∈ N, and a positive integer i satisfying 1 ≤ i ≤ n, we define a composition
map

◦i :MV,W(n)×MV,W(m) −→MV,W(n + m− 1)

( f , g) 7→ f ◦i g

where

( f ◦i g)(v1 ⊗ · · · ⊗ vn+m−1) = f (v1 ⊗ · · · ⊗ vi−1 ⊗ g(vi ⊗ · · · ⊗ vi+m−1)⊗ vi+m ⊗ · · · ⊗ vn+m−1).

The identity element is the identity map idV : V1 → V. We let Sn act onMV,W(n) by

(σ( f ))(v1 ⊗ · · · ⊗ vn) = f (vσ(1) ⊗ · · · ⊗ vσ(n))

for each σ ∈ Sn and f ∈ MV,W(n).

Let X and X′ be operads. A morphism of operads φ : X → X′ is a sequence of Sj-equivariant
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maps {φj : X(j)→ X′(j)}j∈N such that φ1(I) = I′ and the following diagram commutes

X(k)× X(j)
◦i //

φk×φj

��

X(k + j− 1)

φk+j−1

��
X′(k)× X′(j)

◦′i // X′(k + j− 1).

In the case where X and X′ are partial operads, we also require that the domains of the compo-
sitions for X are mapped into the domains of the compositions for X′.

If X is an operad, an X-algebra is a triple (V, W, ν) where V is a vector space, W is a subspace
of V, and ν : X →MV,W is a morphism of operads such that the subspace of V spanned by the
elements of ν0(X(0)) isMV,W(0) = W. In the case where X is a partial operad, we require that
the map ν be a morphism of partial operads.

The language of operads allows one to formulate a geometric vertex operator algebra in a
different manner, namely as an algebra over a certain partial operad. More precisely, if K =

∪n∈NK(n) denotes the collection of moduli spaces of spheres with tubes, then a geometric
vertex operator algebra is a K-algebra of the form (V, W, ν) with some additional requirements
on the spaces V and W and on the collection of maps ν.
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